University of Rochester
Department of Electrical & Computer Engineering
ECE111 Examination #1
10-9-09

This is a closed-book examination. No computers are allowed but you may use a hand-held calculator. Do all work in the bluebook provided, clearly indicating answers. Partial credit is more likely for neat, well-organized solutions. Put your name on your exam booklet. The four problems are weighted equally.

Specify units in all numerical answers and do not overstate or understate their precision.

1) Consider the circuit below. (a) Find the **Thevenin** equivalent by solving for the open circuit voltage and short circuit current. Fully explain your methods in words and appropriate ckt diagrams. (b) Carefully plot v_{out} versus i.

![Circuit Diagram](image)

2) The specified precision requirement for the 10x resistive **current divider** shown below is ±5%, i.e., $i_2/i_o = 0.10$ (±0.005). (a) What must be the ratio of the values for the resistors R_1 and R_2? (b) Use **worst-case analysis** to determine whether or not ±3% resistors can be used to achieve the ±5% precision requirement specified for the divider.

![Current Divider Diagram](image)

HINT: An effective way to do part (b) is to select convenient numerical values (in Ω) for the two resistors that achieve the voltage ratio, and then perform the worst-case analysis using these values with their assumed ±3% tolerances.
3) For the circuit below, find the current i in Amps flowing through the 2-Ohm resistor at the right side of the circuit by direct application of the **superposition principle**. Explain your method fully in words using appropriate circuit diagrams.

![Circuit Diagram](image)

Do not use source reduction or a Thevenin equivalent for this problem.

4) For the circuit below, use **nodal analysis** to obtain the set of two equations needed to solve for the nodal voltages (which you should define in a sketch of the circuit in your exam booklet. Show all steps of your work. *Do not solve for the voltages!*

![Circuit Diagram](image)

Do not solve for the nodal voltages.