OBJECTIVES

Objective of this experiment is to become familiar with the some of the common applications of diodes with capacitors. We will compare the theoretical results with the practical ones. We will also see the input output relationship in a DC diode circuit.

PRELAB

1. The analysis of the following circuits is required to be done before the lab. You will not be allowed to enter the lab session if you do not bring your prelab with you.

2. Diode states in DC circuits
 Plot V_{OUT} vs. V_{IN} for the circuit in figure 1. Assume that the diodes show zero resistance in ON state, and have a turn-on voltage of 0.7 Volts.

3. Half-Wave Rectifier
 Half-wave rectifiers are found in many applications such as AC/DC conversion (power supplies) and AM demodulation (radios).

 (a) Consider the circuit shown in figure 2. Let $V_{IN} = 10V_{pp}$ sine wave at 1kHz with no DC component. Sketch V_{OUT} vs. time and V_{IN} vs. time on the same axis. Indicate any relevant voltage values.

 (b) Repeat (a) with $V_{IN} = 0.8V_{pp}$

 (c) Repeat (a) for circuit in figure 3.
4. Level Shifter (DC Restorer)
 (a) Consider the circuit shown in figure 4. Let $V_{IN} = 10V_{pp}$ square wave at 1kHz with no DC component. Sketch V_{OUT} vs. time and V_{IN} vs. time on the same axis. Indicate any relevant voltage values.
 (b) Repeat (a) with $V_{IN} = 0.8V_{pp}$
 (c) Repeat (a) for circuit in figure 5.

5. Voltage Tripler
 Using certain combinations of previous circuits we can build ourselves a "voltage tripler". As its name implies it is going to multiply the input AC voltage by 3 and show it at the output as a DC voltage.

 Consider the circuit shown in figure 6. Let V_{IN} be a square wave at $2kHz$ alternating between -5V and 5V. Plot the waveforms observed at V_1, V_2, V_3, V_4 and V_{OUT}.
EXPERIMENT

1. Build the circuit in figure 1. From your prelab, determine reasonable peak-to-peak amplitude for V_{IN}. Set the waveform to triangle and frequency to 1kHz. Using X/Y mode of the oscilloscope plot V_{OUT} vs. V_{IN}.

2. Build the circuit shown in figure 2.
 a) Set $V_{IN} = 10V_{pp}$ sine wave at 1kHz with no DC component. Plot V_{OUT} vs. time and V_{IN} vs. time on the same axis on the provided sheet.
 b) Repeat (a) with $V_{IN} = 0.8V_{pp}$
 c) Repeat (a) for circuit in figure 3. Find the amplitude of the ripple.
 d) **Comment** on the observed results and computed results.

3. Build the circuit shown in figure 4.
 a) Set $V_{IN} = 10V_{pp}$ square wave at 1kHz with no DC component. Plot V_{OUT} vs. time and V_{IN} vs. time on the same axis on the provided sheet.
 b) Repeat (a) with $V_{IN} = 0.8V_{pp}$
 c) Repeat (a) for circuit in figure 5.
 d) **Comment** on the observed results and computed results.

4. Build the circuit shown in figure 6. Set V_{IN} to a square wave at 2kHz alternating between -5V and 5V. Sketch V_1, V_2, V_3, V_4 and V_{OUT}. Measure the ripple. **Comment** on the observed and computed results.

REPORT

Please follow the instructions given in the experiment section and work out a report of your own. Each person should submit a separate report. Remember to fully label the plots: plot title, axis labels and axis units. Note that the report deadlines are as follows:

- Monday group: First Monday after the lab
- Wednesday group: First Wednesday after the lab