Prelab:
1. Familiarize yourselves with data sheets for the 2N7000 MOSFET.
2. Design a circuit for biasing the enhancement n-channel 2N7000 MOSFET employing the voltage-divider bias to meet the following specifications:
 a) $V_{DD} = 16\, \text{V}$.
 b) Set the operating Q-point at $I_D = 4\, \text{mA}$ and $V_{DS} = 8\, \text{V}$.
 c) Current through the voltage divider $I_{VD} \leq 20\, \mu\text{A}$, which is the current flowing through R_1 and R_2.
3. Draw the DC load line for the specified case and label the slope and the crossing points.
4. Calculate g_m and r_o, at $I_D = 1\, \text{mA}$ and $4\, \text{mA}$ assuming $V_A = -50\, \text{V}$. How does the drain current affect g_m and r_o?

Experiments:
1. Measure and plot the I_D-V_{GS} and I_D-V_{VS} characteristics of the 2N7000 MOSFET for $V_{GS}\leq 2.25\, \text{V}$ and $V_{DS}\leq 10\, \text{V}$ using the test circuit shown in Fig. 3-b. Measure the threshold voltage V_t of the MOSFET. Enter the collected data in the data table.
2. Build and test the circuit for biasing the MOSFET designed in prelab 2 (Fig. 3-a). Measure V_S, V_G, V_D, V_{GS}, V_{DS}, V_{DG}, and I_D. Adjust the component values so that the given specifications are met.

Postlab:
Submit a written report.
1. Plot I_D-V_{GS} and I_D-V_{DS} characteristics of the 2N7000 MOSFET and determine g_m and r_o, at $I_D=4\, \text{mA}$ from the slope of the measured characteristics.
2. Compare the theoretical and measured results, i.e., V_S, V_G, V_D, V_{GS}, V_{DS}, V_{DG} and I_D.
3. Compare I_D-V_{DS} curves obtained from curve tracer and measured point by point.
4. Give conclusions drawn from the experiments.

Circuit Schematics:

Figure 3-a: Voltage-Divider Self-Bias. Figure 3-b: MOSFET Test Circuit.

Data Table: Measure and record I_D at the corresponding V_{GS} and V_{DS}.

<table>
<thead>
<tr>
<th>V_{GS}</th>
<th>0.1V</th>
<th>0.2V</th>
<th>0.3V</th>
<th>0.4V</th>
<th>0.5V</th>
<th>1.0V</th>
<th>2.0V</th>
<th>4.0V</th>
<th>6.0V</th>
<th>8.0V</th>
<th>10.0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.25V</td>
<td></td>
</tr>
<tr>
<td>2.00V</td>
<td></td>
</tr>
<tr>
<td>1.75V</td>
<td></td>
</tr>
<tr>
<td>1.50V</td>
<td></td>
</tr>
</tbody>
</table>