Skip to main content

News & Events

Department of Electrical and Computer Engineering Colloquia Series

 

Direct-write Helium Ion Lithography of High-Transition Temperature Superconducting Electronics

Professor Shane Cybart, University of California Riverside

Wednesday, October 18, 2017
12:00 p.m.–1:00 p.m.
Wegmans Hall 1400

 Abstract: The 1987 discovery of high-TC superconductivity in ceramic materials at temperatures around 90K set off a frenzy of research in the development of high-TC electronics, motivated by the prospects of electronics operating in liquid nitrogen at 77K opposed to 4K liquid helium. Unfortunately, researchers soon discovered that these new materials were much more difficult to process than conventional metal superconductors. High-TC materials are very anisotropic and the superconducting properties vary along the different crystallographic directions which complicates manufacturing of the basic building blocks of superconducting electronics: Josephson junctions. Furthermore, the length scale of superconductivity in high-TC ceramics is very short compared to low-TC metals. Despite these challenges many high-TC Josephson junction manufacturing techniques have emerged over the last three decades but none is able to generate large numbers of junctions with predictable characteristics necessary for large scale circuits. Recently, my group has demonstrated a new scalable nanomanufacturing method of high TC electronics using the finely focused beam from a helium ion microscope, which has the potential to deliver large numbers of high-quality circuits while at the same time reducing their costs by orders of magnitude. In this seminar, I will present some of the novel characteristics and applications of this new remarkable technology ranging including biomedical sensors for neural imaging and advanced wide bandwidth electrically small antennas.

Bio:  Professor Shane Cybart is the principle investigator of the Oxide Nano Electronics Laboratory at UC Riverside. He obtained a PhD in Materials Science from the UC San Diego in 2005 studying high-transition temperature Josephson devices. He continued his work in superconducting electronics as a post-doctoral research at UC Berkeley from 2006-2009. More recently, he served as a project scientist at UC Berkeley and the Lawrence Berkeley Laboratory working on oxide superconductors, multiferroic and magnetic oxides. From 2013-2016, he led a group at UC San Diego developing oxide electronic devices for a diverse range of applications. In June 2016 he joined Department of Mechanical Engineering and Materials Science and Engineering Program at University of California Riverside. His group studies the basic science and applications of Josephson devices.

 

Pizza and Soda provided