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ABSTRACT 

 

A number of shear wave speed estimators have been 

developed for crawling wave sonoelastography. In this study, 

a new low-cost estimator based on spatial wavelength 

averaging along the slow-time domain is presented while 

assessing its performance through gelatin-based inclusion 

and homogeneous phantoms. Results showed favorable 

estimation mean accuracy (93.8%) on the homogeneous 

phantoms at different concentrations. However, 

underestimation is present in stiffer inclusions with size 

smaller than the true wavelength of the interference pattern 

(83.4% mean accuracy). Still, the new approach’s 

differentiation of stiffness allows rapid visualization of a 

tissue as a qualitative imaging technique. Moreover, the 

estimator results are suitable for further processing as a 

reference mask implemented in several shear wave speed 

estimators. 

 

Index Terms— elastography, crawling waves, shear 

waves 

 

1. INTRODUCTION 

 

Elastography methods enable radiologists to detect and 

localize stiffness variation by exciting the tissue, analyzing 

its response behavior and displaying the response in an 

elasticity map, where increased stiffness is differentiated 

from an examined region of interest (ROI) [1]. Among the 

techniques, crawling wave sonoelastography (CWS) 

provides quantitative information regarding the Young's 

modulus with the application of two opposing mechanical 

vibration sources that generate a moving interference pattern 

or crawling waves (CrW).  Doppler image frames of the 

CrWs have sufficient information to measure the local spatial 

frequency through a shear wave speed (SWS) estimator [2]. 

CWS feasibility and performance has been validated in 

several ex vivo experiments. For instance, Castaneda et al. [3] 

reported stiffness differentiation between cancerous and 

normal tissue in prostate with 80% accuracy. Likewise, Hoyt 

et al. [4] generated 3-D reconstruction of porcine liver with 

consistent boundaries of a radiofrequency ablation lesion. 

Additionally, CWS has proven the capability to differentiate 

shear modulus between relaxed and contracted human 

skeletal muscle, making it feasible for in vivo characterization 

[5]. 

In elasticity techniques with mechanical and acoustic 

radiation force excitation, the estimation of SWS is usually 

derived from time to peak (TTP) displacement analysis, 

wavefront tracking or local frequency estimators (LFE) [6]. 

Regarding the estimators for CWS, Wu et al. [2] applied a 

LFE based on filter banks to assess CrW spatial frequency 

while Zhang et al. [7] calculated it with an implemented 

semi-automatic interface based on pattern recognition. 

Similarly, other estimators focus on phase derivation 

measurements along slow time (i.e. over a number of 

acquired frames) [8] and lateral dimension [9] to compute 1-

D velocity maps. Furthermore, Hoyt et al. proposed a real-

time 2-D estimator based on autocorrelation techniques [5]. 

Recently, Rojas et al. [10] introduced an estimator based on 

dominant component analysis of AM-FM demodulation. 

Despite the numerous SWS methods currently described in 

literature, the presence of artifacts is still reported in most of 

the reconstructed elasticity images. Therefore, a more robust 

algorithm for SWS estimation is constantly being researched, 

and serves as the motivation for the present study. Here, a 

new SWS estimator based on CWS is presented. Feasibility 

and performance of the proposed method were demonstrated 

in tissue mimicking phantoms representing homogeneous 

and heterogeneous tissues. Additionally, preliminary results 

were compared with the phase derivative approach [10] in 

inclusion experiments. 

  

2. THEORY 

 

The proposed method, named the Wavelength Average 

Velocity Estimator (WAVE), is based on the conventional 

crawling wave’s propagation proposed by Wu et al. [2].  

 

A. Crawling Wave Sonoelastography 

Two external low-frequency vibration sources are placed at 

the lateral sides of a tissue, achieving a vertical interference 

moving pattern described by: 

 

|𝑢(𝑥, 𝑡)|2 = 2𝑒−𝛼𝑐𝐷[cos(2𝑘 + Δ𝑘) 𝑥 + Δ𝜔𝑡] (1) 

 

where D is the distance between the sources, 𝛼𝑐 the 

attenuation of the medium, k the wave number, 𝜔 the 
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vibration frequency and Δ𝜔 the offset frequency between the 

sources. An ultrasound probe placed at the top of the tissue 

acquire color radiofrequency (CRF) data over a number of 

frames. Then, a sonoelasticity video is generated using 

Miller’s spectral moment estimator [11] on the acquired in-

phase quadrature signals, as shown in Fig. 1. The estimated 

variance is normalized along the lateral and temporal axis to 

in order to reduce the noise level.  

 
 

Fig. 1. Left side: Conventional crawling wave setup. (a) Vibration 

source, (b) examined tissue, (c) probe. Right: sonoelasticity video 

showing the interference pattern produced by the vibration sources. 

WAVE is computed over each depth slice across the lateral and 

temporal dimension to generate an SWS image.  

 

B. Wavelength Average Velocity Estimator 

The proposed estimator provides a resulting lateral 

vector of local SWS values by analyzing the displacement of 

the interference pattern in a lateral profile. Therefore, WAVE 

is computed over each slice across the lateral and temporal 

dimension in order to generate a complete SWS image. At the 

pre-processing stage, a moving filter is implemented on each 

slide of depth (see Fig. 1) for SNR enhancement and 

suppression of reflection artifacts, following the framework 

of Castaneda et al. [3]. The filter is designed as a 2D band-

pass centered at the normalized temporal frequency 𝑓𝑡 and 

local frequency range 𝑓𝑘. The first parameter depends on the 

frequency offset Δ𝑓 and frame rate (FR), while the second is 

set according to the desired elasticity limits  𝑒ℎ𝑖𝑔ℎ  and 𝑒𝑙𝑜𝑤: 

 

𝑓𝑡 =  Δ𝑓/𝐹𝑅 (5) 

 

𝑓𝑘  ∝ [𝑒ℎ𝑖𝑔ℎ   𝑒𝑙𝑜𝑤] (6) 

 

Given a lateral profile of the interference pattern, shear wave 

speed 𝑐𝑠 is defined as: 

 𝑐𝑠 = 𝜆𝑓, (7) 

 

where 𝑓 is the vibration frequency induced into the tissue and  

𝜆 is two times the lateral distance between peaks of the 

interference pattern, which is assumed to be parallel to the 

axial axis. Considering that 𝜆/2 is narrow enough to be 

included in a homogenous tissue, a partial SWS vector 

containing the average velocity between peaks is generated 

for each frame of the sonoelasticity video, as shown in Fig. 2. 

Boundary regions with no detected peaks in-between are 

filled with extrapolated  𝑐𝑠 of the partial SWS vector. Then, 

the resulting local SWS vector is calculated as the average of 

the partial SWS vectors along the temporal dimension. The 

same process is repeated for each slice until a complete SWS 

image is depicted. Finally, a second SWS image obtained 

from valley recognition is computed as well for further 

average it with the first one, enhancing smoothness. 

 

 
 

Fig. 2. Interference pattern along the lateral dimension at a selected 

depth and frame, and its estimated partial SWS vector. The distance 

between peaks represent half the wavelength of the average SWS. 

 

3. EXPERIMENTS AND RESULTS 

 

A. Phantom Generation and Setup 

Experiments were conducted on gelatin-based homogenous 

and inclusion phantoms following the procedure described by 

Hah et al [9].  Three 13 x 13 x 8 cm homogeneous phantoms 

were generated with 10%, 13% and 16% concentration of 

gelatin (300 Bloom Pork Gelatin, Gelatin Innovations Inc.), 

1.8 l of degassed water, 16.2 g of Na-Cl, 36 g of graphite 

(Graphite Powder, Fisher Scientific Inc.), and 2.7 g of agar 

(Technical Grade Agar, Fisher Scientific Inc.). Likewise, a 

10mm-diameter cylinder inclusion with 10% gelatin 

concentration is added at 26 mm depth and 19mm width 

(centered along the lateral dimension) of the background 

phantom with 8% concentration. Finally, ground truth values 

were estimated with mechanical measurements (MM) 

applied in all gelatin concentration phantom, following the 

procedure described by Ormachea et al. [12].  The Kelvin 

Voigt Fractional Derivative (KVFD) model was 

implemented for fitting each of the acquired stress-relaxation 

curves. Measured SWS of the 10%, 13% and 16% gelatin 

phantoms were approximately 4 m/s, 5 m/s and 6 m/s, 

respectively, as shown in the results section. 

For all the experiments, sonoelasticity data acquisition 

was conducted using the same CrW setup. Two mechanical 

mini-shakers (4810 Brüel & Kjaer, Naerum, Denmark) were 

placed at opposite lateral sides of the inclusion phantom, 

vibrating from 160 to 500 Hz in 20 Hz steps. The excitation 

signals, differentiated by 0.4 Hz, were generated with a dual 

channel function generator (AFG3022B, Tektronix, 

Beaverton, OR, USA) and an amplifier (5530, AE Techron, 

Elkhart, IN, USA). CRF data was acquired using a linear 

transducer M12L (GE Healthcare, Wauwatosa, WI, USA) 

connected to a GE LOGIQ 9 ultrasound system (GE 

Healthcare, Wauwatosa, WI, USA). Regarding the moving 

filter configuration, the desired elasticity range was set from 

1 m/s to 7 m/s. Finally, a 60 x 38.4 mm windows size was 

used for the CRF data acquisition and analysis. 
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B. Results 

The resulting mean and standard deviation of SWS 

values for each homogeneous phantom are depicted in Fig. 3. 

Estimation was conducted over a small windows of 15mm 

width and 30 mm depth located at the center of the ROI. 

Despite the slight underestimation from the MM present 

throughout all concentrations and frequencies (mean SWS of 

3.84 m/s, 4.89 m/s and 5.76 m/s for 10%, 13% and 16% 

gelatin concentration, respectively), WAVE results closely 

followed the ideal homogenous shear wave speed. However, 

a decrease of accuracy is observed in frequencies below 200 

Hz and in nearly all of the 16% gelatin frequencies. This is 

understandable since imaging stiffer tissues using low 

excitation frequencies would produce fewer interference 

patterns in a single frame, detecting one or two pairs of peaks 

at most. Hence, the resolution of the partial SWS vectors is 

compromised and estimation errors are induced. In contrast, 

the standard deviation (STD) remained constant through the 

frequency range (0.053 m/s, 0.105 m/s and 0.132 m/s for 

10%, 13% and 16% gelatin concentration, respectively). 

SWS plots for the heterogeneous phantom are shown in 

Fig. 4. Here, two square windows of 8 mm were used to 

quantify mean SWS and STD (see Fig.5). Similar to 

homogeneous assessments, crawling waves with vibration 

frequencies below 200 Hz adversely affected the estimator’s 

accuracy for both inclusion (3.43 ± 0.02 m/s) and background 

regions (3.29 ± 0.11 m/s). Subsequently, comparable 

accuracy with the homogeneous evaluation is observed in the 

inclusion region just above 360 Hz (3.86 ± 0.067 m/s). 

Fig. 5 depicts the generated SWS images of the inclusion 

phantom at a low (280 Hz) and high frequency (500 Hz). 

Additionally, SWS images obtained from the phase 

derivative (PD) estimator proposed by Hah et al. [9] are 

presented for quality comparison. A smoothing filter with 

kernel size of 20% in the lateral dimension is used for jitter 

suppression in phase estimation. Fig. 4a and Fig. 4c reflects 

the results in Fig. 3, while Fig. 4b and Fig. 4d provide better 

boundary definition and SWS accuracy at the cost of 

increased artifacts.  
Fig. 3. SWS estimation obtained from WAVE method in 

homogenous phantom of 10%, 13%, and 16% gelatin 

concentration with their respective mechanical measurements. 
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Fig. 4. SWS estimation (m/s) of a heterogeneous phantom of 

10% and 8% for inclusion and background region with their 

respective mechanical measurements.  

 

Fig. 5. SWS images (m/s) of an inclusion phantom at (a, b) 280 

Hz and (c, d) 500 Hz vibration frequency. Left side: WAVE. 

Right side: PD. Measurement are shown in mm. Squares 

windows of 8mm were used for mean and STD estimation. 
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4. DISCUSSION 

 

WAVE results suggest favorable SWS estimation on 

homogenous phantoms (93.78% accuracy) with the exception 

of 16% concentration and frequencies below 200 Hz due to 

the low number of peaks along the lateral profile, as noted in 

the results section. In practice, limitations of the algorithm 

application may be found on stiffer lesions or regions where 

the typical excitation frequency is set under 200 Hz (i.e. 

prostate and ablated liver).  

Likewise, a considerable underestimation of the 

inclusion in the heterogeneous phantom experiment was 

observed. For frequencies below 350 Hz, the measured 

distance between the interference pattern’s peaks were wider 

than the inclusion diameter. Thus, a complete interference 

pattern inside the inclusion was undetected, resulting in 

weighted average estimations of SWS between the inclusion 

and background regions. Therefore, a dependency of lesion 

size, stiffness and vibration frequency is introduced in the 

WAVE’s performance. 

One of the advantages of the WAVE method in 

comparison with the PD method is the reduction of artifacts 

in the boundaries of the ROI. While artifacts in the lateral 

sides were severely diminished mostly as a result of the 

wavelength extrapolation, top regions were improved as well. 

In practice, artifacts with high values of shear wave speed 

might mislead the technician into surmising that stiffer 

masses are present. Thus, the accuracy of diagnosis is 

undermined due to false-positive lesions, which are 

suppressed by the WAVE method.  

Finally, despite the underestimation at lower 

frequencies, WAVE successfully differentiated between a 

stiffer and softer mask similar to the PD estimator, as shown 

in Fig. 4. Therefore, it is suitable for quick and preliminary 

visualization of a tissue as a qualitative imaging technique, 

which might benefit image-guided surgery procedures. 

Furthermore, it could be used as a reference mask for 

additional SWS estimators in order to compensate for 

estimation errors due to low vibration frequencies and high 

stiffness inclusions, as well as enhance the estimation 

accuracy on inclusion boundaries. 

 

5. CONCLUSION 

 

In this study, a new shear wave speed estimator is proposed 

for ultrasound elastography based on a conventional crawling 

wave setup. The estimator showed favorable estimation 

accuracy (93.8%) on homogeneous phantoms at different 

gelatin concentrations. Additionally, preliminary results on 

inclusion phantoms demonstrate comparable performance 

with other approaches, such as the phase derivative estimator. 

However, the accuracy dependence on excitation frequency 

range and lesion size severely compromise its 

implementation as a quantitative elastography technique. 

Still, WAVE’s differentiation in stiffness allows quick and 

preliminary visualization of a tissue as a qualitative imaging 

technique. Moreover, the estimator results are suitable for 

further processing as a reference mask implemented in 

several shear wave estimators. Simulation and experiments 

regarding this last observation will be conducted in future 

works. 
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