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Abstract
A number of advances, including imaging of tissue displacements, have 
increased our ability to make measurements of tissue elastic properties of 
animal and human tissues. Accordingly, the question is increasingly asked, 
‘should our data be fit to a viscoelastic model, and if so which one?’ In this 
paper we focus solely on soft tissues in a functional (non-pathological) state, 
and develop a model of elastic behavior that is based on the flow of viscous 
fluids through the extensive network of tissue microchannels in response to 
applied stress. This behavior can be captured in a 2-parameter model, and the 
model appears to predict the stress-relaxation behavior and the dispersive shear 
wave behavior of bovine liver specimens and other soft tissues and phantoms. 
The relationship of the microchannel flow model to more traditional models is 
also examined.
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(Some figures may appear in colour only in the online journal)

1.  Introduction

The precise viscoelastic properties of soft tissues are important for many fields, from injury pro-
tection to surgical devices. In the last 20 years, a major new focus on tissue mechanical proper-
ties has arrived with the introduction of the field of ‘imaging the elastic properties of tissues’, 
with many diagnostic advances made possible by imaging and quantifying tissue parameters 
(Parker et al 2011). An ongoing debate concerns the most appropriate model to apply to experi-
mental results from elastographic and shear wave speed images. Since there are many different 
types of tissues and since all tissue models are only approximations, there is ample room for dif-
ferent approaches (Delingette 1998, Liu and Bilston 2000, Walker et al 2000, Humphrey 2003, 
Bercoff et al 2004, Catheline et al 2004, Chen et al 2004, Gennisson et al 2006, Samani et al 
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2007, Chen et al 2009, Giannoula and Cobbold 2009, Chen et al 2013a,b). The most common 
viscoelastic models include the Maxwell (series spring and dashpot), the Kelvin-Voigt (parallel 
spring and dashpot), and more elaborate configurations including the Zener or Standard model, 
progressing to the many elements of the Maxwell-Weichert model (Fung 1981, Carstensen and 
Parker 2014). There are also models that invoke fractional order integrals and derivatives, and 
the Kelvin-Voigt Fractional Derivative (KVFD) model has been applied to a number of experi-
mental results from different tissues (Caputo 1967, Bagley and Torvik 1983, Suki et al 1994, 
Taylor et al 2001, Kiss et al 2004, Robert et al 2006, Zhang et al 2007).

In this paper we derive a model based on extracellular fluid flow in the microvasculature 
and related channels, aiming for the simplest and most appropriate approximation for soft tis-
sues. By ‘soft tissues’ we mean relatively isotropic and homogeneous tissues such as the liver, 
the prostate, and the thyroid in their normal state. By ‘model’ we mean an analytical approxi-
mation that closely captures and predicts the small amplitude response of tissue to applied 
stress or strain. We are not considering large strains and nonlinear behavior. The following 
considerations guide the development of this paper:

(1) agreement with observed behavior. A valid model must predict some reasonable range 
of experimental measurements. In this paper we are specifically concerned with two different 
sets of small-strain measurements:

	 −	stress relaxation measurements

	 −	shear wave speed and dispersion measurements

These are commonly reported measurements and they should be mutually consistent with 
an accurate model.

(2) Philosophy of a preferred model. When choosing between different models that 
match the observed behavior with reasonable accuracy, the one with the fewest parameters 
is the preferred and canonical model. The preference and priority for the most simple model, 
including the fewest parameters, is succinctly captured by Ockham’s razor (Britannica 2013). 
Furthermore, there is a practical reason to prefer a model with 2 or 3 parameters as opposed 
to 6 or more parameters. Experimental data over a limited range of time or frequency, in the 
presence of noise, is commonly input to a curve-fitting routine to derive the model parameters. 
The confidence in the resulting best fit parameters is weakened as the number of simultaneous 
unknowns is increased. Finally, when choosing among competing models with equally few 
parameters, the model with parameters that can be directly linked to tissue structure, composi-
tion, and architecture, is preferred.

In this paper, we attempt to meet the guiding principles above by deriving a model which in 
its simplest form has two parameters linked to the fluid outflow from the distribution of micro-
channels and microvasculature in soft tissues such as the liver. We specifically aim to predict 
the stress relaxation results and shear wave dispersion results shown in figure 1.

These results were selected by Drs M Zhang, L Taylor, and B Castaneda in our lab after 
their experience with measurements of hundreds of samples from livers, prostates, and other 
soft tissues and phantoms (Taylor et al 2001, Taylor 2002, Taylor et al 2002, Zhang et al 
2007). As such, we believe these examples of stress relaxation and shear wave speed versus. 
frequency are representative of the stress-strain behavior of healthy soft tissues under condi-
tions that exist in many ex vivo elastographic and shear wave imaging techniques. Any valid 
model must therefore be capable of demonstrating the time-domain and frequency-domain 
behavior shown in these figures.

The organization of this paper begins with a consideration of the stress-strain relations 
for a tissue with multiple microchannels. Once established, the second section summarizes 
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key attributes of the KVFD model. The third section compares the microchannel flow model 
against the KVFD model, in order to reconcile similarities and differences. A test on treated 
liver samples is presented for comparison against theory. Finally, some practical issues and 
limitations are discussed.

2. Theory

2.1.  Microchannel flow

Consider a block of liver tissue (figure 2), comprised of a fine-scale interlocking of hepatic cells, 
connective tissue, and a variety of fluid channels including billary, capillary, and lymphatic.

As a structural element, we isolate a perfect cube, support it at the base, and subject it to 
uniaxial loading in the x-direction (figure 3).

Using conventional notation, σx is the stress and εx the engineering strain in the x-direction. 

If a steady force F is applied to the upper surface of area A, then σ = F
A .x  We assume that 

the idealized tissue block has an elastic component E and that stress is approximately uniform 
over the element. In the case of a pure elastic response, the element would follow Hooke’s 
Law, σ ε= E .x x  Now consider the inclusion a small fluid microchannel (figure 2). If the fluid 
within a microvessel of length L experiences a pressure drop ΔP, then under Poiseuille’s Law 
for incompressible fluids in pipes, a volumetric flow rate Q will result (Sutera 1993).

Δ π
η

=Q
P r

L8

4

� (1)

where r is the radius of the microvessel, η is the viscosity of the fluid, and L is the length of 
the vessel segment. We then assume that the pressure Pin within the sample and microchannel 
interior is proportional to σx, and is zero outside the sample. Then the pressure drop is simply:

Δ σ≅ − ≅P P C( 0)in x1� (2)

where C1 is a constant of proportionality. Combining equation (1) and (2) gives

Figure 1.   A diagram of (a) the typical stress relaxation curves obtained from cylindri-
cal cores of different soft tissues at 5% strain, and (b) the typical frequency dependent 
Young’s moduli of soft tissues with different stiffness, as predicted from (a) and as veri-
fied from independent shear wave measurements (see Zhang et al (2007) reproduced 
with permission from Elsevier).
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σ
η

=Q
C rx

4

� (3)

where C is a constant that incorporates all previous constant terms. Here we assume the fluid 
exits the free boundary shown in figure 3. The loss of fluid volume will result in a loss of 
volume in of the original cube, and this can be related to the change in height of the block 
under compression. Assuming we can, to first order approximation neglect the change in cross 
section area A caused by the lateral strain, the volume change from the loss of fluid from the 
sample must be accounted for by a decrease in the x-dimension, or strain ε. Thus,

ε σ
η

= =d

dt

Q

A x

C r

A x
x

o

x

0

4

0 0
� (4)

or

⎜ ⎟
⎛
⎝

⎞
⎠σ η ε= A x

Cr

d

dt
x

x0 0
4� (5)

Figure 2.  Magnified views of liver microchannels in 3D. This microanatomical liver 
model is rendered by 3B Scientific (reproduced with permission (www.a3bs.com/)).

Figure 3.  Model of stress and flow on an idealized cube of soft tissue.

http://www.a3bs.com/
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Note that this resembles the equation for a simple dashpot and, furthermore, the basic propor-

tionality between εd
dt , Q, and σ could alternatively be derived from Darcy’s Law, assuming 

a porous material. This will be reconsidered later. Now combining elastic and fluid outflow 
strains as additive leads to a Maxwell model of a series spring and dashpot, where the stress 
relaxation (SR) curve is a simple exponential decay. If ε ε=t t( ) UnitStep( )0 , then

σ ε= ≥τ−et E t( )   for   0.SR
t

0� (6)

where the time constant τ η= Ax
ECr0 4. It should be noted that the single time constant expo-

nential decay is not capable of matching soft tissue stress relaxation responses, nor the fre-
quency responses (figure 1).

Now assume there are multiple microchannels of unequal radius rn and therefore unequal 
flow rates Qn. In this case, if each contributes to the stress relaxation at their respective time 
constant τn, then the simplest model for this looks like a parallel set of Maxwell elements 
(figure 4).

This configuration of multiple parallel elements and an optional single spring element is 
the generalized Maxwell-Weichert model (Fung 1981). Generally, we can write the stress 
relaxation solution for N Maxwell elements as

∑σ = τ
−et A( )SR

N

N
t

N� (7)

where AN are the relative strengths of the components with characteristic relaxation time con-
stant τN. In the limit, as we allow a continuous distribution of time constants τ, the summa-
tion becomes an integral and τA( ) is the relaxation spectrum, which can be either discrete or 
continuous, depending on the particular medium under study (Fung 1981). Given a material’s 

τA( ) we can write:

∫σ τ τ= τ

∞
−et A d( ) ( )SR

t

0

� (8)

Now consider a specific power law distribution:

τ τ= < <−A A b( ) ; 1 2b
0� (9)

One rationale for introducing this function is that the power law distribution is frequently 
found to describe fractal systems in nature and biology (West et al 1999). Specifically, power 
law distributions have been observed in measures related to branching vasculature, including 

Figure 4.  Parallel elements.
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normal and pathological circulatory systems (Gazit et al 1997, Risser et al 2007). Substituting 
equation (9) into equation (8) and solving yields the solution:

σ Γ= ⋅ −         < <     >−t t b b t( ) A [ 1] for 1 2, 0SR
b

0
1� (10)

where Γ is the Gamma function. The stress relaxation response is characterized by −t
1 b 1 

decay for >t 0. For values of < <b1 2 this tends to have a sharp initial drop and then a slow 
asymptotic decay. The derivative of the step response yields the impulse response, which 
defines the basic elastic transfer function for the material. If ε ε δ=t t( ) ( ) ,0 , then

σ ε Γ= − −         < <     >−t b b t b t( ) A [ 1] [(1 ) ] for 1 2, 0i
b

0 0� (11)

For simplicity, let = −a b 1 and given the restriction on < <b1 2, then < <0 a 1. The impulse 
response normalized by ε0 is

t a a t t( ) A [ ][ / ]   for    0i
a

0
( 1)σ Γ= − >+� (12)

The Fourier transform of equation (12) is:

ω
π

Γ Γ ω π ω π= − +
⎛
⎝
⎜ ⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟E

A
a a

a a
( )

2
[ ] [1 ] Abs[ ] cos

2
jSign[ ] sin

2
a0

� (13)

where = −j 1. This response is dominated by the steady increase with frequency to the 
power of a.

Let us recap the derivations. If a tissue has a distribution of microchannels leading to a 
power law relaxation spectrum τ τ= −A( ) b, then the stress relaxation response will show a 

σ ≅ =−t t
1

SR
b a1  response. The tissue stress-strain transfer function in the frequency domain, 

ωE( ), will have an ω ω=−b a1  dependence. For example, let =b 5
4 then τ τ=A( ) 1 5

4 and, 

thus, σ τ≅ 1
SR

1
4 and ω ω≅E( )

1
4. These values happen to closely match soft tissue response 

(see figures 1(a, b), compared to 5(a, b).
The transfer function ωE( ) of tissue samples was cross checked by Zhang et al (2007) 

in two ways. First, curve fitting of σ t( )SR  was performed and the KVDF Fourier transform 
relations applied to plot ωE( ). These equations  will be reviewed in the next section. The 
second way of estimating ωE( ) was from measurements of shear wave phase velocity cph at 
discrete frequencies. For a lossless plane shear wave in a homogeneous, nearly incompressible 

elastic medium we find that c E
3ph ρ=  where ρ is density (Graff 1975, Parker et al 2011, 

Carstensen and Parker 2014), and in this simple case the speed is constant over any frequency 
band. More generally, when E is frequency dependent and complex, the complex wave num-
ber ̂k  is given by (Blackstock 2000, Carstensen and Parker 2014):

̂k j
c

,  where 
E ph( )

3

ω β α β ω= = − =
ω
ρ

� (14)

and α is the attenuation, taken from the real and imaginary parts of the E( )
3

ω ω
ρ  term, respec-

tively. For the microchannel flow model, if ω ω∝ −E( ) b 1, then ω ω∝ −c ( )ph
b2 1 also. This was 

the experimental observation of Zhang et al (2007).
Experienced readers will recognize that the 2-parameter microchannel flow model’s behav-

ior resembles a simplified KVFD model. In the next section we review the 3-parameter KVFD 
which indeed reduces to the microchannel model for the case where the parallel spring E0 is 
set equal to 0. However, the key difference lies in derivation, as the microchannel flow model 
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is constructed without invoking a priori mathematical definitions of fractional derivatives or 
fractional transforms. Instead it is derived from fluid flow distribution of the relaxation spec-
trum, linked to tissue architecture.

2.2. The Kelvin-Voight fractional derivative model

Fractional derivatives describe some systems that contain a broad distribution of relaxation 
times (Sokolov et al 2002). The Kelvin-Voight fractional derivative (KVFD) model is a 
generalization of the Kelvin-Voight (KV) model. Caputo (1967) introduced a fractional 
calculus Kelvin-Voigt model that consists of a spring in parallel with a dashpot where the 
stress in the dashpot is equal to the fractional derivative of order a of the strain. Koeller 
(1984) derived the stress relaxation function, with a time dependence −t a in the function 
for the KVFD model. Later, Bagley and Torvik (1983) described molecular theories that 
predicted the macroscopic behavior of some viscoelastic polymers and established a link 
between those theories and the empirical approach from fractional derivative models. Suki 
et al (1994) argued that the molecular theories derived for polymers may also apply to soft 
tissues because biological tissues consist of long flexible biopolymers. They used the frac-
tional calculus in biomechanics and discussed the utility of the single fractional dashpot 
to the KV model. A number of papers have explored the power law behavior of waves in 
attenuating media (Szabo 1994, Szabo 1995, Szabo and Wu 2000, Chen and Holm 2003, 
Sushilov and Cobbold 2004, Holm et al 2013, Holm and Nasholm 2014). Szabo and Wu 
(2000) described a frequency-dependent power law for ultrasound attenuation in soft tis-
sues, suggesting that many soft tissues can be modeled by a generalized KV model, where 
the dashpot is replaced by a convolution operator. Taylor et al (2002) further investigated 
the KVFD model by fitting the liver relaxation data to this model. Dynamic testing was 
performed by Kiss et al (2004) on canine liver, and the data were fitted to both the KVFD 
model and the KV model. After comparison of the curve fitting results of the two models, 
they concluded that the KVFD model had better agreement with the experimental data than 
the KV model.

In the KV model, stress in the dashpot is equal to the first derivative with respect to time of 
the strain. The KVFD model consists of a Hookean spring in parallel with a fractional deriva-
tive dashpot (figure 6).

Figure 5.  In (a) the stress relaxation functions t t t(6500/ )(3000/ )(800/ )1/4 1/4 3/16  on a 
similar scale as figure 1(a). In (b) the Fourier transform magnitude of the three func-
tions (solid lines), shown on the same scale as figure 1(b). The functions closely match 
observed behavior of soft tissues.
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The stress in the dashpot is equal to the fractional derivative of the strain. The KVFD model 
contains three parameters: E0, η, and a, where E0 refers to the relaxed elastic constant, η refers 
to the viscoelastic parameter, a is the order of fractional derivative. The relationship between 
stress and strain in the KVFD model is given by the following constitutive differential equation:

σ ε η ε= +t E t D t( ) ( ) [ ( ) ]a
0� (15)

where σ is stress and ε is strain.
D [ ]a  is the fractional derivative operator defined by (Mainardi 1996)

∫Γ
τ
τ

τ=
− −

′
D x t

a

x

t
d[ ( ) ]

1

(1 )

( )

( )
a

t

a

0

� (16)

where ′x t( ) refers to the first derivative of the function x t( ) with respect to t. For the KVFD 
model we restrict that < <a0 1.

2.2.1.  Stress relaxation.  To derive the stress relaxation response of the KVFD model we fol-
low the derivation of Zhang et al (2007). The applied strain is modeled as a ramp of duration 
T0, followed by a hold period of constant strain ε0 (Taylor 2002). So the strain function is:

⎧
⎨
⎩

ε ε
ε

= < <
≥t

t T t T
t T

( )
( / ) if 0

when
0 0 0

0 0
� (17)

By taking the Laplace transform of the constitutive equation (15) and equation (17), we get

σ ε η ε= +s E s s s( ) ( ) ( )a
0� (18)

ε ε= − −es
s T

( ) (1 )sT0
2

0

0� (19)

where s is the Laplace domain variable. We substitute equation (18) into equation (19) and 
obtain

σ ε η ε= − + −−
−

−e es E
s T s T

( ) (1 ) (1 )sT
a

sT
0

0
2

0

0
2

0

0 0� (20)

Then, inverse Laplace transform is applied to both of the terms in equation (20)

Figure 6.  The KVFD model.
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σ ε

η ε
Γ

= − − −

+
−

− − −− −

t E
T

tu t t T u t T

a T
t u t t T u t T

( ) ( ( ) ( ) ( ) )

(2 )
( ( ) ( ) ( ) )a a

0
0

0
0 0

0

0

1
0

1
0

� (21)

where u( ) is the unit step function. Therefore, during the hold period ≥t T( )0  of the stress 
relaxation curve, the response of a material exhibiting KVFD behavior is

σ ε η ε
Γ

= +
−

− −− −t E
a T

t t T( )
(2 )

( ( ) )SR
a a

0 0
0

0

1
0

1
� (22)

2.2.2.  Frequency response: the complex Young’s modulus.  The frequency-domain response 
can be obtained from the time-domain response and has a frequency-dependent complex-
valued Young’s modulus. Taking the Fourier transform of the constitutive equation (15) yields

σ ω ε ω η ω ε ω= +E j( ) ( ) ( ) ( )a
0� (23)

where ω is radian frequency and the radian frequency is restricted to be positive, i.e., ω≥0. 
The complex modulus as a function of frequency ωE( ) is then obtained by

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ω σ ω

ε ω
η π ω η π ω= = + +E E

a
j

a
( )

( )

( )
cos

2
sin

2
a a

0� (24)

The magnitude of ωE( ) can be expressed as

⎜ ⎟
⎛
⎝

⎞
⎠ω η π ω η ω= + +E E E

a
( ) 2 cos

2
a a

0
2

0
2 2� (25)

From equation (24) we get the storage modulus, ω′E ( ), which is the real part of the com-
plex modulus, and the loss modulus, ω″E ( ), which is the imaginary part.

⎜ ⎟
⎛
⎝

⎞
⎠ω η π ω= +′E E

a
( ) cos

2
a

0� (26)

⎜ ⎟
⎛
⎝

⎞
⎠ω η π ω″ =E

a
( ) sin

2
a� (27)

The storage modulus is related to the elasticity of the soft tissue, whereas the loss modulus 
is related to viscoelasticity.

2.3.  Comparison of models

 Here we examine the relationship between the KVFD and the microchannel flow model 
solutions for stress relaxation and for shear wave dispersion. The key difference is the KVDF 
spring E0. It is germane to point out that Zhang et al (2007) and Taylor (2002) found that 
the vast majority of their soft tissue stress relaxation responses, when curve fit to the KVFD 
model, found E0 very close to zero. In other words, the parallel spring does not seem to be 
a necessary or required element for many soft tissues. Here we are open to the possibility of 
E0 being useful for other types of tissues including fibrotic tissues, but the simplest model 
without E0 has some range of applicability. Accordingly, if we set E0 equal to 0 in the KVFD 
model, and examine the frequency dependence of ωE( ) in equation (24), this is shown to be 
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equal to ωE( ) derived from the microchannel flow model in that they both increase with fre-
quency to the power of a and have a loss tangent independent of frequency.

Now comparing the stress relaxation responses, the microchannel flow model predicts 
a response that, according to equation  (10), decays as −t b(1 ) or t1 / a for >t 0. The KVFD 
response as derived in equation (22) appears to be slightly different, even with E0 set equal to 
0. However, this equation is derived for a practical stress relaxation experiment where a finite 
ramp of strain is applied over a short period T0, as compared with an idealized unit step with 
an instantaneous and discontinuous jump in strain.

If we assume E0 is 0 and T0 is small, then equation (22) becomes

t
t t T

T
( ) ( ( ) )

SR

a a(1 )
0

(1 )

0
σ ∝ − −− −
� (28)

Consider the definition

≅ − −
→

df t

dt

f t f t T

T

( )
lim

( ( ) ( ) )
T 0

0

00
� (29)

written as a first backward difference. Comparing equation (28) and (29), we let f t t( ) a(1 )= −  
and assuming the ramp period T0 is small, and taking the derivative of −t a(1 ), we have

t
a

t
t T( )

(1 )
forSR a 0σ ∝ − >

�
(30)

which is similar to the microchannel flow model, equation (10).

3.  Discussion

In this section some practical issues are addressed.
(1) Avoiding singularities. The more empirical-minded researchers prefer to avoid mathe-
matical singularities which cannot be achieved or measured experimentally, or are difficult to 
handle in analytical operations such as transforms and convolutions. The microchannel model 
has a singularity in the relaxation spectrum in τA( ) at τ = 0, and a singularity in the stress-
relaxation response at σ t( )SR  at =t 0. A simple way to avoid these is to limit the lower range of 
the relaxation spectrum to some small time constant τ = l. Then

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥
⎤
⎦⎥et

A
d A a a

t

a t
t a( ) [ ] [ ],

1
for 0 and 0SR

l

b

t

a
0

0∫σ
τ

τ Γ Γ= = − > >τ

∞
−

� (31)

where = −a b 1 and 
⎡
⎣⎢

⎤
⎦⎥a

t

a
[ ],Γ  is the incomplete Gamma function. The subtraction of the 

Gamma terms in brackets yields a zero at =t 0, sufficient to create a finite value of σ =t( 0)SR . 
The effects of this practical adjustment is only visible for small t in σ t( )SR , but it comes at the 
expense of introducing a third parameter, l. It should be noted that the integral in equation (31) 
could have a finite upper limit l2 instead of infinity. This would represent a tissue structure in 
which both upper and lower limits of the relaxation spectrum are known. This solution has two 
incomplete Gamma functions and is given in table 1. However, by referring again to Ockham’s 
razor, we prefer to not invoke an extra parameter unless it is necessary.

Another way to eliminate the singularity from the stress relaxation curve at the origin is to 
consider the more practical solution of equation (22) where the strain function is a continuous, 



K J Parker﻿

4453

Phys. Med. Biol. 59 (2014) 4443

short ramp applied over T0 and then held, as opposed to an idealized discontinuous step func-
tion. In that case, the stress relaxation solution for >t T0 is finite everywhere and can be linked 
to the power law behavior of t

1 a for small T0 as explained in equations (28) through (30).
(2) Compatibility with polymer models. The microchannel flow model has been derived 

assuming an elastic tissue medium, and yet the solid tissue components of protein, collagen, 
and elastin could exhibit their own viscoelastic behavior. In fact many polymer models predict 
power law relaxation behavior (Van Oene 1978, Grizzuti et al 2000), and so this raises the 
possibility of a more complicated response of tissue. In the simplest case, consider a stress 
relaxation response comprised of two equal parts, a t

1 (1/4) component from a microchannel 
relaxation spectrum and a t

1 (1/2) from a polymer type of relaxation. Mathematically, it is not 
the case that these two functions average to a t

1 (1/3) composite result.
However, for stress relaxation times around 1 – 10 s, it is very difficult to distinguish between 

these functions, and careful precision at very small values or large values of t are required to 
confidently make the distinction. Because of these considerations, we postulate that the micro-
channel model may incorporate viscoelastic effects of the tissue matrix that are similar enough 
to fall within the general model of a relaxation spectrum with power law distribution.

(3) Time-temperature superposition. It is an empirical fact that some tissue and biomaterial 
viscoelastic properties obey a model of time-temperature superposition (Chan 2001, Doyley 
et al 2010). The model is based on consideration of relaxation mechanisms and the theoreti-
cal temperature dependence of the relaxation mechanisms. It is germane to point out that in 
the flow of fluids, including blood plasma, viscosity is temperature dependent and therefore 
the time constants and relaxation spectrum of the microchannel model will depend on tem-
perature and can therefore be consistent, at least in principle, with the general predictions of 
time-temperature superposition models.

(4) Poroelastic models. Under Darcy’s law (Swartz and Fleury 2007) a pressure gradient across 
a porous material sets up a volumetric flow rate Q. The proportionality includes the permeability 
constant of the material κ instead of the single vessel radius used in the initial consideration of a 
medium and Poiseuille’s law in equation (5). The permeability is a macroscopic measure of the 
ease at which fluid can flow within the matrix in response to a pressure gradient; as such it incorpo-
rates the distribution of pores within the material. While the characterization of porous media has 
a long history (de Boer 1996), important milestones include developments by Biot (1941, 1962), 
the biphasic model by Mow et al (1980), (Armstrong et al 1984) for cartilage, and a poroviscoe-
lastic model proposed by Mak (1986). Poroelastic models have been applied to many tissues, and 
linked to elastographic imaging techniques (Mow et al 1984, Miller and Chinzei 1997, Ehlers and 
Markert 2001, Konofagou et al 2001, Righetti et al 2004, Berry et al 2006, Cheng and Bilston 2007,  

Table 1.  Microchannel models in increasing order of complexity.

Parameters Stress relaxation formula Comments

Two: A a, ΓA a t[ ] / a Microchannel flow model

Three: A a l, , Γ Γ−A a a t l t[ [ ] [ , ( / ) ] ] / a Microchannel flow with lower limit l of 
relaxation spectrum

Three: A a E, , 0 or 
η a E, , 0

E A a t[ ]/ a
0 Γ+ KVFD or microchannel flow with 

parallel E0

Four: A a l l, , ,1 2 Γ Γ−A a t l a t l t[ [ , ( / ) ] [ , ( / ) ] ] / a
2 1 Microchannel flow with lower limit l1 and 

upper limit l2 of the relaxation spectrum
Four: A a A a, , ,1 1 2 2 Γ Γ+A a t A a t[ ] / [ ] /a a

1 1 2 2
1 2 Microchannel flow in polymer 

viscoelastic tissue
Five or more Combinations of above Combinations of above
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Righetti et al 2007, Swartz and Fleury 2007, Perrinez et al 2009, Perrinez et al 2010). If we assume 
a porous model for figure 3, then the applied stress still produces a proportional flow rate Q, thus 
the remaining derivation of εd

dtx  to the classic spring-dashpot result is similar. In order to invoke 
a relaxation spectrum under a porous model, we would then need to hypothesize a power law 
distribution of permeability within the tissue sample; that is, networks of larger and smaller pores 
that lead to a distribution of permeability constants. It would be useful to see if solutions to uniaxial 
compression of a poroelastic material (Armstrong et al 1984, Konofagou et al 2001) can be com-
patible with the microchannel flow model, but this will require further research.

(5) The relaxation spectrum. From equation (5) and (6) we conclude that the time constant 
τ is proportional to r

1 4 where r is the vessel radius. But τA( ) is proportional to τ
1 b. Thus the 

smallest time constants corresponding to the largest vessels are strongly weighted. It may be 
that additional scale factors involving average length, number, viscosity, and stress concentra-
tion effects as a function of channel size play a role in generating the overall τA( ) relaxation 
spectrum. This remains open to further research.

(6) Limits of the model. The model does not include inertial effects, as in the acceleration 
or second derivative of time terms that would be part of a complete treatment of the response 
of the fluid to rapid changes in pressure. However typical frequencies used in elastographic 
shear wave configurations are below 500 Hz or even below 100 Hz in larger organs. Inertial 
effects could play a role, but the strong effects of viscosity in narrow channels makes it likely 
that the second order system would be highly overdamped. Again resorting to Ockham’s razor, 
inertial effects would add another parameter yet they should not be employed unless required 
to fit experimental results over the range of conditions being observed. Another key limitation 
of the model is that under steady state stress or strain over time, the fluid in vessels will be 
expelled and the vessels will collapse. Any effects of collapse and post-collapse are clearly 
not included in the model, so long duration stress relaxation measurements may require addi-
tional terms. Furthermore, as stated in the introduction, only small strain and linear behaviors 
have been considered for ‘soft tissues’, so this model would not apply where nonlinear, large 
strain, anisotropic, or long duration conditions are found. The use of this model in vivo entails 
additional considerations including the contributing factors of arterial and interstitial pressure. 
A complete solution for loading of in vivo organs must include boundary conditions and trac-
tions as well as the microchannel model as a constitutive relation.

4.  Conclusion

The microchannel model is developed from consideration of the flow of fluids through micro-
vasculature and microchannels in soft tissue. The derivation, along with a power law relaxation 
spectrum, leads to a two parameter model of tissue, A0 and a of equation (12) and (13), capable 
of modeling the frequency domain measurements and the stress relaxation measurements of 
soft tissues. This resembles the KVFD model; however, the microchannel flow model is derived 
from linear superposition using a relaxation spectrum that is linked to the natural distribution 
of tissue architecture, specifically fluid channels within the tissue elastic matrix. The hierarchy 
of models suggested in this paper is listed in table 1 for reference, yet the preference remains 
for the lowest order model capable of characterizing the particular soft tissue under evaluation.
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