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Abstract—Across a range of spectral estimation problems 
and beam focusing problems, it is necessary to constrain the 
properties of a function and its Fourier transform. In many 
cases, compact functions in both domains are desired, within 
the theoretical bounds of the uncertainty principle. Recently, 
a hyperbolic sine function of modified argument and power 
was found to be an approximate eigenfunction of the Fourier 
transform operation, and demonstrated useful properties of 
compactness with low side lobes. The empirical finding of the 
eigenfunction relationship is explained by comparison with the 
prolate spheroidal wave functions, which have exact eigenfunc-
tion properties, and their usefulness is demonstrated by ex-
amples.

I. Introduction

In many applications of focused beams we apply an apo-
dization function at the source and a focal pattern is 

given approximately as the Fourier transform of the apo-
dization function. It is commonly the case that the avail-
able support for the apodization function is strictly lim-
ited, but at the same time a highly compact focal region 
is desired to achieve high resolution. Furthermore, in the 
area of spectral windowing, analogous considerations of 
concentrated time and frequency signals are common [1].

In considering the problem of apodization of focused 
ultrasound systems, and more generally the spectral win-
dowing problem, we recently [2] introduced the useful hy-
perbolic sine function mapped to a limited domain:

	 F x x x( ) (sinh[ ])= − − < <{ 1 1 1
0

2 α

elsewhere.
	 (1)

For the particular case α = 5, this function was shown to 
be an approximate eigenfunction of the Fourier transform 
(FT) operation, meaning that its FT was also approxi-
mately described by a sinh5 function. In theory, under 
the uncertainty principle [3, ch. 4], no function and its 
Fourier transform can both have strictly limited support, 
and so the transform of the sinh5 function of limited sup-
port necessarily includes side lobes, however these are at 
a level below −78 dB, which is sufficiently negligible for 
many applications.

This sinh5 approximate eigenfunction pair was shown 
to have useful properties in the context of designing fo-
cused beam patterns, because the sinh5 apodization func-

tion and its Fourier transform (which approximates the 
shape of the transverse focal beam pattern [4], [5]), are 
both compact or localized and have a nearly parabolic 
fall-off of amplitude on a log or decibel scale. In this cor-
respondence, we examine the theoretical basis for the ap-
parent eigenfunction relation. The key concept is that the 
sinh5 function closely resembles a prolate spheroidal wave 
function (PSWF), which has a unique and useful eigen-
function relation with respect to the Fourier transform 
operation.

II. Relation of sinhα to PSWFs

The similar functions (sinh[1 − x2])5 and the spheroidal 
function PS0,0[14, x] are given in Fig. 1 (the notation and 
use of the PSWF will be explained in the following sec-
tion). Their differences are barely distinguishable on this 
linear scale, and the maximum difference is on the order 
of 0.005, peaking between |x| = 0.6 and 0.7. The Fourier 
transforms of these two functions are given in Fig. 2, but 
on a decibel scale to emphasize the existence of side lobes 
which are important in applications that cover very wide 
dynamic range of signals. The two signals’ transforms have 
a nearly identical main lobe but the lowest values, below 
−100 dB, correspond to the transform of the spheroidal 
function. Along with the lower side lobes, the spheroidal 
function has an exact and very useful eigenfunction prop-
erty that is compatible with the requirement for limiting 
the domain of the aperture or window function.

III. Properties of the Prolate Spheroidal  
Wave Function

The central importance of the PSWFs to the prob-
lem of signals that are concentrated in both time and 
frequency was developed by Slepian and his colleagues at 
Bell Labs from 1960 onward, spurred on by a theoretical 
question of limits posed by Shannon [6]–[11]. There are 
many useful and fortunate properties of the PSWFs—so 
many that Slepian said “The mystery of this serendipity 
grows. Most of us feel that there is something deeper here 
than we currently understand” [11]. A full review of the 
PSWFs functions and their properties are well beyond the 
scope of this communication. However, a brief outline of 
the relevant properties will be given as background.

Using the notation of Slepian [6] and Moore and Cada 
[12], the PSWFs ψn(c, t) concentrated in the interval of  
[−t0, t0] are normalized eigenfunctions of the system
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where Ω is the cut-off bandwidth of the eigenfunction and 
c = t0Ω, a time–bandwidth product. The λn(c) are the 
eigenvalues of the sinc kernel and can be also regarded 
as the index of concentration on the interval [−t0, t0]. For 
the sake of simplicity, we set the concentration interval 
to [−1, 1] in our implementation. Slepian [6] would some-
times suppress the parameter c, writing ψn(c, t) as simply 
ψn(t). Some of the important properties of these functions 
are [11]
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where kn and αn are independent of x. Eq. (4) demon-
strates an unusual and important property: the Fourier 
transform of ψn(t) restricted to | t | < 1 has the same form 
as ψn except for a scale change. The equation can also be 
written
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which shows ψn(x) to be band-limited to bandwidth c/2π. 
The ψn(x) are complete in −∞ < x < ∞ in the L2 sense 
among signals of bandwidth c/2π or less, i.e., complete in 
Bc/2π. Finally, the ψ0(c, t) are the most concentrated sig-
nal possible within the time and band limits [11].

A key point useful for the application to apodization 
and focused beams is that a PSWF of unlimited support 

or extent can be concentrated (that is, have most of its 
energy) within the limits ±1. If this function is strictly 
windowed to | arg | ≤ 1, its Fourier transform, properly 
scaled, is the original prolate spheroidal (PS) function of 
unlimited extent, and similarly concentrated near the ori-
gin. It is worth noting that for other general functions, 
such as the Gaussian, the Fourier transform of the func-
tion after strict truncation [as implied by the limits of 
integration of (4) or (5)] will be the Fourier transform of 
the original function convolved with a sinc function [3, 
ch. 2]. This typically creates extensive side lobes, as dem-
onstrated in [2] and as will be shown later in Fig. 5(a). 
The PSWFs also have side lobes, but retain the maximum 
concentration within the main lobe. For some applications 
of ultrasound imaging, we therefore seek PSWFs that are 
concentrated near the origin and that have very low (less 
than −70 dB relative amplitude for typical ultrasound ap-
plications) side lobes outside the limits of | arg | ≤ 1.

To do this, an additional comment on notation in nec-
essary. The generalized angular spheroidal wave function 
Sn,m(c, x) discussed in [13] and [14] has a direct relation 
to Slepian’s functions. We use the Mathematica (Wolfram 
Research, Champaign, IL) function SpheroidalPS[n, 0, c, x], 
alternatively denoted as PSn,0[c, x], as the equivalent to 
ψn(c, x) as given in (2).

Using the property that the nth eigenmode has exactly 
n zeros within the range [−1, 1], and now applying this 
to the problem of a compact and positive main lobe, we 
examine the particular case of n = 0.

Fig. 3(a) shows the PSWF [0, 0, c, x] for three cases: c 
= 9 (widest curve), c = 12, and c = 15 (narrowest curve). 
The c parameter is related to the limits of the bandwidth 
of the signal. The case c = 15 has the largest bandwidth 
and also has the narrowest lobe. Fig. 3(b) shows the sig-
nals outside of the domain | x | < 1. These bandlimited sig-
nals oscillate; the largest oscillations are for the case c = 
9 and smaller values are found for c = 12. The signal for c 
= 15 is too small to be seen on this scale. For comparison, 
the sinhα functions are given in Fig. 4 for the cases α = 

Fig. 1. Two functions (normalized to 1) are plotted over the domain −1 
< x < 1. The functions are (sinh [1 − x2])5 and SpheroidalPS [0, 0, 14, x]. 
The differences are smaller than 0.005 at any point within the domain; 
this slight difference is most visible around | x | = 0.7. The (sinh)5 func-
tion is the lower of the two in this subrange. 

Fig. 2. The magnitude of the Fourier transform of the sinh5 and PS func-
tions, shown on a decibel scale. The horizontal axis is spatial frequency. 
The PS function side lobes are below −100 dB. 



parker: apodization and windowing eigenfunctions 1577

3 (widest curve), α = 4, and α = 5.5 (narrowest curve). 
These functions have similar characteristics to the PSWF 
within the domain of | x | < 1, and are defined to be zero 
outside of the region of support.

IV. Results

A comparison of apodization functions and their trans-
forms are given in Table I. The energy term is the integral 
of the square of the normalized function over the range 
of apodization, −1 to +1. The Rect function is simply 
the entire apodization at maximum transmit (or receive) 

gain, and so represents 100%. The Rect function has the 
highest side lobe levels, however, and therefore more suit-
able functions are typically used, but with the tradeoff 
of lowered energy. The Gaussian function is truncated at 
5σ over the standard interval of −1 ≤ x ≤ 1, so σ = 
0.4. The widely used Blackman window is defined by 0.42 
+ 0.5 cos [π x] + 0.08 cos [2π x] over the standard interval. 
The PSWFs become progressively narrower as the band-
width parameter increases from 9 to 15. At the same time, 
the −6-dB beamwidth of the transform increases slightly, 
while the maximum side lobe levels drop significantly. The 
sinhα functions are listed as approximate functions for 
reference, but are rounded values for simplicity. A least-
squares error best fit would provide more precise values of 
α. In practice, the sinhα functions are easier to compute 
and manipulate than the PS functions. However, the sinhα 
functions have significantly (over 10 dB) higher side lobe 
levels compared with the PSWFs.

V. Discussion

One way to evaluate the combination of factors is to 
examine the image produced from a pair of reflectors sepa-
rated by a small distance. Fig. 5(a) shows the image of 
two point reflectors separated by 4.68 mm laterally, at the 
focus of a 5-MHz, f-number 3.2 simulated imaging system 
using the Field II acoustic pressure field simulation pack-

Fig. 3. (a) The PSWF behavior as a function of the bandwidth param-
eter c. Shown are normalized values over the domain −1 < x < 1 for 
SpheroidalPS [0, 0, c, x], where c = 9 (widest function), c = 12, and c = 
15 (narrowest function). (b) The PSWF behavior outside of the domain 
| x | < 1, as a function of the bandwidth parameter c. The largest oscil-
lation corresponds to c = 9 (the narrowest band); the smaller function 
corresponds to c = 12. 

Fig. 4. The functions (sinh [1 − x2])α are shown for α = 3 (widest curve), 
α = 4, and α = 5.5 (narrowest curve). These are approximations to the 
PS functions shown in Fig. 3(a). 

TABLE I. Comparison of Apodization Functions. 

Energy 
% of maximum

−6-dB beamwidth 
(normalized units)

Side lobe 
maximum level (dB)

Approximate 
function

Rect 100 3.8 −13 ·
Gauss 5σ 35 6.0 −43 ·
Blackman 30 7.2 −57 ·
PS0,0(9, x) 30 7.0 −65 sinh[·]3

PS0,0(12, x) 26 8.2 −92 sinh[·]4

PS0,0(14, x) 24 8.8 −107 sinh[·]5
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age [15]. A 100 dB dynamic range gray scale is used to vi-
sualize side lobes that would be above −50 dB one-way. A 
5σ truncated Gaussian apodization is used in Fig. 5(a) in 
both transmit and receive modes. The truncation results 
in low-level side lobes. The function SpheroidalPS [0, 0, 9, x] 
was used as an apodization function in Fig. 5(b). This has 
a slightly larger main lobe than the truncated 5σ Gauss-
ian but much reduced side lobes (not visible on 100 dB 
dynamic range gray scale). Similar images from other apo-
dization functions can be compared in [2].

Finally, we note that a discrete version of the PSWF 
window has been applied to digital signal processing 
(DSP) applications [10], [16]. In addition, Harris [1] as-
serts that the discrete Fourier transform versions of the 
Barcilon–Temes window and the Kaisar–Bessel windows 
are approximations of Slepian’s functions.

VI. Conclusion

Around 1960, Slepian and colleagues considered the 
important class of problems in communications theory 
concerning signals that are concentrated in time and fre-

quency. Within the general time–frequency uncertainty 
principal, no signal can be both time-limited and band-
limited, so the important practical question pertains to 
how we can maximize the concentration of signals in both 
domains. Out of this came a set of remarkable papers and 
developments that pertain to the PSWFs [6]–[11]. The 
apodization of focused beams is a closely related problem, 
as designers seek to concentrate the apodization function 
across a strictly limited aperture, while simultaneously 
concentrating the focal beampattern that is produced 
(which can be approximated by the Fourier transform of 
the apodization function in many cases). Because of the 
similar considerations, the PSWFs can have an equally 
useful role in applications to the design of apodization 
and beampattern functions. Specifically, the Spheroi-
dalPS [0, 0, c, x] function is an eigenfunction of the Fourier 
transform operation and is maximally concentrated over 
−1 < x < 1. Simultaneously, this function is maximally 
concentrated in the transform domain within limits re-
lated to the parameter c. A consequence of this fortunate 
property is very low side lobes compared with many other 
common window functions. The only disadvantage of the 
PSWFs is their computational complexity: they exist as 
callable functions in Mathematica, but must be calculated 
from their defining expansions [14]. For simplicity, the 
sinhα functions can be used as approximations if desired.
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