The Evolution of Vibration Sonoelastography

Kevin J. Parker*

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627 USA

Abstract: The field of imaging the elastic properties of tissue has grown to an impressive variety of techniques and applications, some of which are currently in clinical trials. This review focuses on the specific role of vibration sonoelastography, beginning with the first images of tissue "hardness", through the development of real time scanning techniques, 3D reconstructions, and applications to major disease categories, especially the detection of prostate cancer.

Keywords: Vibration elastography, shear waves, tissue stiffness, hardness, biomechanics, imaging elastic properties of tissue, sinusoidal shear waves, diagnosis, cancer detection.

INTRODUCTION

The availability of Doppler ultrasound devices led to a number of studies of tissue motion and abnormalities in the 1970s and 1980s. Out of this background came vibration sonoelastography, where vibrational shear waves (typically between 50 and 1000 Hz continuous wave) are excited within tissue and the resulting vibrations are imaged and displayed using Doppler displacement or phase estimators. Analysis of the vibration patterns yields either images of relative tissue hardness or quantitative maps of elastic modulus, depending on the particular approach. The organization of the paper is as follows: first, we review some of the landmark studies of tissue motion leading up to the development of vibration elastography. Then the first known image of relative hardness is discussed in context, along with the early progress of vibration sonoelastography from 1987 into the early 1990s. The major developments up to the current era are categorized in sections covering Theory, Clinical Applications, 3D Prostate Imaging, and Biomechanics, with a particular focus on the results from the University of Rochester. Vibration phase gradient techniques and crawling waves are also covered. The development of these approaches over 20 years has provided a fertile ground for investigating tissues, organs, and lesions in ways that were not previously possible. Other approaches that employ sinusoidal vibrations are reviewed elsewhere in this special issue [1, 2, 3, 4, 5].

1. BACKGROUND STUDIES OF TISSUE PROPERTIES FROM MOTION

A landmark study of the behavior of the human body when subjected to mechanical vibrations or sound fields was published by Oestreicher and colleagues [6, 7]. Photography and a stroboscope were used to record vibration waves on the skin. Resultant surface wave propagation patterns gave wavelength and wave speed data, which led to the formulation of a theory to correlate increased frequency with increased tissue impedance. From experimental data, the shear modulus was calculated.

A signal processing technique used to measure small liver tissue displacements caused by vessel diameter differences during aortic pulsation was presented by Wilson and Robinson [8]. Assuming that the tissue followed points of constant phase, they obtained radio frequency (RF) M-mode signals and calculated the tissue motion velocity from the trajectory of a constant phase point. A coarse estimate of displacement was achieved by integrating velocity over time.

The correlation coefficient between consecutive A-scans was used by Dickinson and Hill [9] to measure tissue motion frequency and amplitude. In order to measure the changes of the interrogated region between two consecutive A-scans, a correlation parameter was established. The correlation parameter, which is unity for stationary tissue, decreases monotonically as tissue motion increases. Tristam et al. [10, 11] took this approach further to investigate the motion responses of normal liver and cancerous liver to cardiac movement. Various features on the correlation curves were found to distinguish normal liver from that with tumor. Livers with tumor were found to have lower maximum values, fewer peaks, and greater regularity. Modifying the correlation technique to measure tissue motion, De Jung et al. [12] found the maximum cross-correlation using an interpolation algorithm.

Pulmonary maturity and assessment of normal pulmonary development can be indicated by fetal lung elasticity. An attempt to qualitatively determine the stiffness of fetal lung was made by Birnholz and Farrell [13]. This was done by evaluating ultrasound B-scans, which indicate lung compression due to cardiac pulsations. They proposed that soft lung tissue compresses (with maximal deformation immediately adjacent to the heart) while stiff lung tissue exhibits no regional deformation (it transmits cardiac pulsations moving as a block). More quantitative approximations were achieved by Adler et al. [14, 15]. They were able to estimate σ, a parameter that characterizes the range of transmitted cardiac motion in fetal lung, by applying correlation techniques to digitized M-mode images. In actuality, the parameter is the spatially and temporally-averaged systolic to diastolic deformation per unit epicardial displacement.

Induced quasistatic compression was investigated by Eisenscher et al. [16]. This was accomplished by applying a 1.5-Hz vibration source to liver and breast tissue and using

*Address correspondence to this author at the Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627 USA; Tel: (585)275-3294; Fax (585)273-4919; E-mail: kevin.parker@rochester.edu
M-mode ultrasound. It was found that benign lesions had characteristically sinusoidal quasi-static compression response, while malignant tumors tended to have a more non-linear (flat) response.

One of the first quantitative measurements of tissue elasticity using gated pulsed Doppler was reported by Krouskop et al. [17]. Assuming isotropy and incompressibility, the equations relating tissue properties and tissue movements were reduced to linear forms. Measuring tissue peak displacements and their gradients becomes the final reductive solution to finding tissue elasticity. They measured actual tissue motion at various points of interest under external vibration created by one A-line pulsed Doppler instrument. A possible measurement of tissue stiffness in a very small region (i.e., 0.5 X 0.5 mm) was suggested. This paper is noteworthy in that it presages, with local Doppler vectors and external vibration, MRE and vibration sonoelastography.

In certain cases, the Doppler spectrum produced by the scattered ultrasound signal from a vibrating target can be similar to a pure-tone frequency modulation in that it has symmetric side harmonics in the area of the carrier frequency. The harmonic spacing is the same as the target vibrating frequency. The harmonic amplitudes are given by consecutive Bessel functions of the first kind. The expression for the signal [18] is:

\[s_r(t) = A \sum_{n} J_n(\beta) \cos(\omega_0 t + n(\omega_s t + \phi)) \]

In this function, \(\beta \) is proportional to the vibrating amplitude of the tissue. The ultrasound signal’s angular frequency is represented by \(\omega_0 \), the target vibration’s angular frequency is represented by \(\omega_s \), and the vibration phase is represented by \(\phi \).

Using Doppler ultrasound to examine the abnormal oscillation of heart valves, Holen et al. [19] detected this characteristic Bessel-band Doppler spectrum. By counting the number of significant harmonics (as an estimation of the frequency modulated bandwidth), the amplitude of the vibration was estimated.

The Doppler ultrasound response to a low-frequency sound field in the auditory organs of fish was examined by Cox and Rogers [20]. By analyzing the ratio of the carrier to the first side band of the Doppler spectrum, the amplitude of the hearing organ’s vibration was discovered.

2. VIBRATION ELASTOGRAPHY IMAGING

2.1. Vibration Amplitude Sonoelastography; Early Work

In 1987, Lerner and Parker presented early work on vibration amplitude sonoelastography [21, 22]. Vibration amplitude sonoelastography entails the application of a continuous low-frequency vibration (50-1000 Hz) to excite internal shear waves within the tissue of interest. A disruption in the normal vibration patterns will result if a stiff inhomogeneity is present in soft tissue surroundings. A real-time vibration image can be created by Doppler detection algorithms. Modal patterns can be created in certain organs with regular boundaries. The shear wave speed of sound in the tissue of these organs can be ascertained with the information revealed by these patterns [23].

Fig. (1) reproduces the first vibration amplitude sonoelastography image [21, 22]. The vibration within a sponge and saline phantom containing a harder area (the dark region) is depicted by this crude image. Range-gated Doppler was used to calculate the vibration amplitude of the interior of the phantom as it was vibrated from below. By 1990, a modified color Doppler instrument was used by the University of Rochester group to create real-time vibration amplitude sonoelastography images. In these images, vibration above a certain threshold (in the 2 micron range) produced a saturated color (Fig 2).
Tissue elastic constant measurement results, vibration amplitude sonoelastography finite element modeling results, and phantom and ex-vivo tissue results were reported [24, 25, 26]. Thus, by the end of 1990, the working elements of vibration elastography (sonoelastography and sonoelasticity were other names used at the time) were in place, including real-time imaging techniques and stress-strain analysis of tissues such as prostate, with finite element models and experimental images demonstrating conclusively that small regions of elevated Young’s modulus could be imaged and detected using conventional Doppler imaging scanners.

2.2. Theory

Along with the useful finite element approach of [25, 26], there were important theoretical questions to be answered by analytical or numerical techniques. How did vibration fields behave in the presence of elastic inhomogeneities? What is the image contrast of lesions in a vibration field, and how does the contrast depend on the choice of parameters? How do we optimally detect sinusoidal vibration patterns and image them using Doppler or related techniques? These important issues were addressed in a series of papers through the 1990s. One foundational result was published in 1992 under the title: “Sonoelasticity of Organs, Shear Waves Ring a Bell” [23]. This paper demonstrated experimental proofs that vibrational eigenmodes could in fact be created in whole organs including the liver and kidneys where extended surfaces create reflections of sinusoidal steady state shear waves. Lesions would produce a localized perturbation of the eigenmode pattern, and the background Young’s modulus could be calculated from the patterns at discrete eigenfrequencies. Thus, both quantitative and relative imaging contrast detection tasks could be completed with vibration elastography in a clinical setting, in-vivo, by 1992. A later review of eigenmodes and a strategy for using multiple frequencies simultaneously (called “chords”) was given in [27].

In 1994 a vibration amplitude analytical model was created [28]. This model used a sonoelastic Born approximation to solve the wave equations in an inhomogeneous, isotropic medium. The total wave field inside the medium can be expressed as:

$$\Phi_{\text{tot}} = \Phi_i + \Phi_s$$

where Φ_i is the homogeneous or incident field, and Φ_s is the field scattered by the inhomogeneity. They satisfy, respectively:

$$(\nabla^2 + k) \Phi_i = 0$$

$$(\nabla^2 + k) \Phi_s = \delta(x)$$

where $\delta(x)$ is a function of the properties of inhomogeneity. The theory accurately describes how a hard or a soft lesion appear as disturbances in a vibration pattern. Fig. (3) summarizes the theoretical and experimental trends.

Signal processing estimators were also developed in the study of vibration amplitude sonoelastography. A method to estimate β from the spectral spread was suggested by Huang et al. [29], where β is proportional to the vibration amplitude of the target. They found a simple correlation between β and the Doppler spectral spread σ_w:

$$\beta = \sqrt{2}(\sigma_w/\omega_t).$$

where ω_t is the vibration frequency of the vibrating target. This is an uncomplicated but very useful property of the Bessel Doppler function. The effect of noise, sampling and nonlinearity on the estimation was also considered. In their later work, they studied real-time estimators of vibration amplitude, phase, and frequency that could be used for a variety of vibration sonoelastography techniques [30].
2.3. Clinical Applications

By implementing various time and frequency estimators, this technique became a real-time diagnostic tool with applications for both deep and superficial organs. The liver, kidney, prostate and breast were imaged using vibration sonoelastography to characterize typical patterns and frequency ranges [23, 32, 33, 34]. Vibration amplitude sonoelastography was shown to have better sensitivity and predictive value than B-scan imaging alone in a 1994 study [33] of ex-vivo prostate cancer.

A more recent example of sonoelastoty imaging of a whole prostate surgery specimen is given in Fig. (4).

Muscle tissue was studied to demonstrate the relationship between Young's modulus of in-vivo muscle and applied load or exercise regimens [35, 36, 37, 38]. An unusual application of sonoelastoty is the measurement of intra-ocular pressure to test for glaucoma, via the resonance of the human eye in-vivo [39].

Another important application of elastography imaging is the precise delineation of thermal lesions produced intentionally by either microwaves, RF or HIFU. A series of pig liver lesions created by multiple methods were imaged by
sonoeastrography and a high correlation was found between the lesion dimensions found by imaging and later measurements from gross pathology [40, 41], both in-vivo and ex-vivo.

2.4. Three-Dimensional Prostate Cancer Detection

Given the high incidence of prostate cancer in older males, and the poor sensitivity of conventional imaging modalities for detecting low contrast cancers of the prostate, there is a pressing need for improved imaging, detection and biopsy guidance. Vibration elastography appeared to be promising for prostate cancer detection from the earliest studies [32, 33]. However, the most rigorous approach would require 3D imaging of the prostate in B-scan - in sonoeastography - and for a gold standard, in sequential pathology slices demarcated by a pathologist for cancer, BPH (benign prostatic hyperplasia), and other abnormalities. We employed GE scanners with special Doppler Variance maps for imaging the vibration fields, along with an embedded 3D position sensor to recreate the images in both in-vivo scans and ex-vivo following radical prostatectomy. Special co-registration techniques were developed to fuse the ultrasound and pathology images. This requires careful consideration due to the shrinkage and warping of the tissue during preparation for obtaining sequential pathology slices (Fig 5).

![Diagram of 3D prostate imaging protocol](image)

Fig. (5). 3D prostate imaging protocol. Courtesy of Prof. B. Castaneda.

The results demonstrated an increase in sensitivity and specificity on cancer detection into the mid 80% level [27, 42, 43, 44, 45, 46, 47, 48]. This represents an advance over conventional radiology and ultrasound, and increases the ability to localize suspicious regions for biopsy. However, the results at this point are not accurate enough to eliminate biopsy, and the role of BPH in creating false positives requires further study. There are a number of improvements in techniques that could lead to a further increase in sensitivity and specificity of sonoeastography for prostate cancer.

2.5. Vibration Phase Gradient Sonoeastography

In parallel to the early work at the University of Rochester, a vibration phase gradient approach to sonoeastography was developed by Professor Sato in the late 1980s at the University of Tokyo [49]. The amplitude and the phase of low-frequency wave propagation inside tissue were mapped. Wave propagation velocity and dispersion properties - which are directly linked to the elastic and viscous characteristics of tissue - were derived from this mapping.

The phase modulated (PM) Doppler spectrum of the signal returned from sinusoidally-oscillating objects approximates that of a pure-tone frequency modulation (FM) process. This similarity indicates that the tissue vibration amplitude and phase of tissue motion may be estimated from the ratios of adjacent harmonics.

The amplitude ratio between contiguous Bessel bands of the spectral signal is:

\[A_{n+1}/A_n = |J_{n+1}(\beta)| / |J_n(\beta)| \]

where \(A_n \) is the amplitude at the \(n \)th harmonic, \(\beta \) is the unknown amplitude of vibration in the tissue, and \(J_n(\cdot) \) is an \(n \)th order Bessel function. \(\beta \) can be estimated from the experimental data if \(A_{n+1}/A_n \) is calculated as a function of \(\beta \) beforehand. The phase of the vibration was calculated from the quadrature signals.

The display of wave propagation as a moving image is permitted by constructing phase and amplitude maps (Fig. (6)) as a function of time.

The use of a minimum squared error algorithm to estimate the direction of wave propagation and to calculate phase and amplitude gradients in this direction allows images of amplitude and phase to be computed offline. Assuming that the shear viscosity effect is negligible at low frequencies, preliminary in vivo results were demonstrated [49].

Sato's technique [49] was used and refined by Levinson [36]. A more general model of tissue viscoelasticity and a linear recursive filtering algorithm based on cubic B-spline functions were used. Levinson took the Fourier transform of the wave equation and derived the frequency domain displacement equation for a linear, homogeneous, isotropic viscoelastic material. From this, equations that relate the shear modulus of elasticity and viscosity to the wave number and the attenuation coefficient of the wave can be derived.

In 1995, Levinson et al. [36] conducted a series of experiments on the quadriceps muscle group in human thighs. It was assumed that shear waves dominate and that viscosity at low frequencies is negligible. Phase gradient images of the subjects' thighs under conditions of active muscle contraction enabled the calculation of Young's modulus of elasticity. The tension applied to the muscle was con-
2.6. Crawling Waves

A fascinating extension of vibration sonoelastography is the use of an interference pattern formed by two parallel shear wave sources. The interference patterns reveal the underlying local elastic modulus of the tissue. The term “crawling waves” comes from the useful fact that by implementing a slight frequency or progressive phase difference between the two parallel sources, the interference pattern will move across the imaging plane at a speed controlled by the sources [50]. Thus, the crawling waves are readily visualized by conventional Doppler imaging scanners at typical Doppler frame rates; there is no need for ultrafast scanning. Other advantages of crawling waves include: the large region of interest excited between the two sources; most of the energy in the crawling waves is aligned in the Doppler (axial) direction, and a number of analysis or estimation schemes can be applied in a straightforward manner to derive the quantitative estimate of local shear wave velocity and Young’s modulus. Crawling waves can also be implemented by a number of techniques including mechanical line sources, surface applicators, or radiation force excitations of parallel beams.

The use of crawling waves was first described in [50] by Wu et al at the University of Rochester. It was shown that crawling waves could be used to accurately derive the Young’s modulus of materials and to delineate stiff inclusions [51, 52, 53, 54]. Estimators of shear wave speed and Young’s modulus and the shear wave attenuation are derived in [55, 56, 57, 58]. Applications of crawling waves include the ex-vivo prostate [47, 59, 60], in-vivo muscle [38], and ex-vivo liver [53]. An example from ex-vivo prostate is given in Fig. (7a) and (7b).

Implementation into scanning probes can be accomplished by utilizing radiation force excitation along parallel beams [61, 62, 63].

2.7. Biomechanical Studies of Normal Tissue and Lesions

The entire field of imaging the elastic properties of tissues rests on the presumption that a meaningful elastic contrast exists between normal and diseased tissues, and this presumption is largely based on physical examination of tissues. Surprisingly, there is a paucity of data where elastography studies are compared against a rigorous gold standard of stress-strain measurements. However, utilizing the available tools of vibration elastography and crawling waves, a number of studies have been conducted that include reference measurements. A four-way agreement of i) shear wave time-of-flight measurements, ii) crawling wave measurements, iii) the Kelvin-Voight Fractional Derivative Model (KVFD), and iv) mechanical stress-strain measurement were described by Zhang et al. [53]. They demonstrated that the frequency dependent properties of viscoelastic tissues, including ex-vivo prostate and cancerous prostate tissues, liver, and others, could be derived from crawling wave experiments at discrete frequencies, or alternatively by mechanical stress strain measurements linked to the KVDF model of tissue viscoelasticity.

In other papers, utilizing these methods, the Rochester group measured an Elastic Contrast Ratio of 2.61 between cancerous and non-cancerous ex-vivo prostate tissues, at 150Hz [64]. Much higher contrast was found for thermally ablated liver tissue compared to normal liver tissue [40]. In-vivo skeletal muscle properties under different conditions were also determined using these methods [38]. The change in contrast between two dissimilar media as a function of frequency was demonstrated and explained in [65]. Overall, the combination of crawling waves measurements over a frequency range, combined with the KVDF model, has proven to be a useful imaging method for estimating the viscoelastic properties of tissues, in-vivo and ex-vivo. Furthermore, the crawling waves analysis closely corresponds to conventional mechanical measurements using stress and strain applied directly to cylindrical sections of tissue. Of course, the imaging techniques utilizing crawling waves do not require any excisions, and can be performed across the overlying skin and fat.
3. CONCLUSION

Vibration sonoelastography has seen steady developments across experimental, theoretical, clinical and biomechanical fronts for about 20 years. Benchmark developments at Rochester include the first known image of relative hardness of tissues presented in 1987, the development of real time Doppler vibration imaging techniques, the development of the Born-elastic theoretical formulation, applications to clinical problems, and the invention of crawling waves which provide another level of quantitative estimates while being compatible with conventional Doppler scanners. The early developments, along with Dr. Sato’s work in Japan, set the stage for a remarkable proliferation of approaches and techniques to imaging the elastic properties of tissues [66].

ACKNOWLEDGEMENTS

The tremendous insights provided by Dr. Lerner, Dr. Rubens and co-authors of previous works are gratefully acknowledged. Support from and collaboration with superb colleagues at GE were essential parts of this research. The work presented was supported by NIH Grant 5R01AG02980-04.
REFERENCES

Material may be protected by copyright law (Title 17, U.S. Code)
The Evolution of Vibration Sonoeastography

Current Medical Imaging Reviews, 2011, Vol. 7, No. 4 291

