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Abstract
Recent advances have enabled a new wave of biomechanics measurements, 
and have renewed interest in selecting appropriate rheological models for soft 
tissues such as the liver, thyroid, and prostate. The microchannel flow model 
was recently introduced to describe the linear response of tissue to stimuli 
such as stress relaxation or shear wave propagation. This model postulates 
a power law relaxation spectrum that results from a branching distribution 
of vessels and channels in normal soft tissue such as liver. In this work, the 
derivation is extended to determine the explicit link between the distribution 
of vessels and the relaxation spectrum. In addition, liver tissue is modified 
by temperature or salinity, and the resulting changes in tissue responses (by 
factors of 1.5 or greater) are reasonably predicted from the microchannel flow 
model, simply by considering the changes in fluid flow through the modified 
samples. The 2 and 4 parameter versions of the model are considered, and it 
is shown that in some cases the maximum time constant (corresponding to the 
minimum vessel diameters), could be altered in a way that has major impact 
on the observed tissue response. This could explain why an inflamed region is 
palpated as a harder bump compared to surrounding normal tissue.

Keywords: biomechanics, viscoelasticity, shear waves, dispersion

(Some figures may appear in colour only in the online journal)

1. Introduction

An impressive number of techniques for estimating the elastic properties of tissues have been 
integrated into imaging systems in recent years (Parker et al 2011, Doyley 2012). These devel-
opments have spurred renewed interest in the identification of the most appropriate physical 
or mathematical models to predict and parameterize the behavior of tissues in shear wave 
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experiments (Klatt et al 2007) or stress relaxation (SR) measurements (Zhang et al 2007). 
Since there are many types of tissues and a great wealth of models from materials research 
(Fung 1981a, Delingette 1998, Liu and Bilston 2000, Walker et al 2000, Humphrey 2003, 
Bercoff et al 2004, Catheline et al 2004, Chen et al 2004, 2009, 2013a, 2013b, Gennisson  
et al 2006, Samani et al 2007, Giannoula and Cobbold 2009), there are numerous possibilities 
to evaluate. Some major categories include the traditional spring and dashpot models (Fung 
1981a), the power law and fractional derivative models (Caputo 1967, Bagley and Torvik 1983, 
Suki et al 1994, Taylor et al 2001, Kiss et al 2004, Robert et al 2006, Zhang et al 2007, Holm 
et al 2013, Holm and Nasholm 2014), poroelastic models (Biot 1941, 1962, Mow et al 1980, 
1984, Mak 1986, Miller and Chinzei 1997, Ehlers and Markert 2001, Konofagou et al 2001, 
Righetti et al 2004, 2007, Berry et al 2006, Cheng and Bilston 2007, Swartz and Fleury 2007, 
Perrinez et al 2009 2010), the linear hysteretic models (Carstensen and Parker 2014, Parker 
2014b, at press), polymeric models (Ferry 1970a) and compartmental models (Carstensen and 
Parker 2014). Recently, the microchannel flow model was introduced to explicitly account for 
the behavior of tissue as a result of fluid outflow under stress (Parker 2014a). A distribution of 
vessels and channels leads to a distribution of time constants and an overall relaxation spec-
trum characterized by a power law parameter. This single parameter then is shown to charac-
terize the frequency distribution of the complex modulus, or stiffness of tissue as a function 
of frequency. Additional parameters can be introduced to delimit the upper and lower bounds 
on the distribution of time constants and vessel sizes. This paper extends the previous work 
by explicitly deriving the mapping function between the branching vasculature and channels, 
and the relaxation spectrum of the material under uniaxial loading. Then, experimental results 
from altered samples are compared with predictions from theory. It is found that the resulting 
changes in tissue responses are reasonably predicted from the microchannel flow model, by 
considering the changes in fluid flow through the modified samples, and the resulting change 
in the relaxation spectrum.

The paper is organized as follows: the microchannel flow model is summarized, and then 
the theory is extended to explicitly account for the mapping function between the channels 
and the relaxation spectrum. In the results section, the fluid flow properties are modified by 
temperature and by swelling the tissue. The resulting changes in liver SR responses are found 
to be close to those predicted from the microchannel flow model. Finally, implications of this 
study and limitations are discussed.

2. Theory

2.1. Review of theory

The microchannel flow model (Parker 2014a) begins with consideration of a block of liver 
tissue, comprised of a fine-scale interlocking of hepatic cells, connective tissue, and a variety 
of fluid channels including billary, capillary, and lymphatic. The hepatocytes and connective 
tissue are assumed to behave as a homogeneous medium. As a structural element, a cube of 
tissue is supported at the base and subjected it to uniaxial loading in the x-direction (figure 1).

Using conventional notation, σx is the stress and εx the engineering strain in the x-direction. 
If a steady force F is applied to the upper surface of area A, then σ = F A/x . We assume that 
the idealized tissue block has an elastic component E and that stress is approximately uniform 
over the element. Next we consider the inclusion of a small fluid microchannel. If the fluid 
within a microvessel of length L experiences a pressure drop ΔP, then under Poiseuille’s Law 
for incompressible fluids in pipes, a volumetric flow rate Q will result (Sutera 1993).
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where r is the radius of the microvessel, η is the viscosity of the fluid, and L is the length of 
the vessel segment. We then assume that the pressure Pin within the sample and microchan-
nel interior is proportional to σx and is zero outside the sample. Then the pressure drop ΔP is 
simply proportional to the applied stress and thus:
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where C incorporates all previous constants. Here we assume the fluid exits the free boundary 
shown in figure 1. The loss of fluid volume will result in a loss of volume in of the original 
cube, and this can be related to the change in height of the block under compression. Assuming 
negligible change in cross section A, the volume change from the loss of fluid from the sample 
must be accounted for by a decrease in the x-dimension, or strain ε. Thus,
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resembling the equation for a simple dashpot. Now combining elastic and fluid outflow strains 
as additive leads to a Maxwell model of a series spring and dashpot, therefore the SR curve is 
a simple exponential decay. If ε ε=t U t( ) ( )0 , where U(t) is the unit step function, then

σ ε( ) = ≥τ−t E te   for   0,t
SR 0

/ (5a)

where the time constant τ is:

τ η= Ax

ECr
.0

4 (5b)

Next, we assume there are multiple microchannels of unequal radius rn and therefore une-
qual flow rates Qn. In this case, if each contributes to the SR at their respective time constant 
τn, then the simplest model for this looks like a parallel set of Maxwell elements (figure 2).

Figure 1. Model of applied stress creating out-flow on an idealized cube of soft tissue 
with a single vessel.
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This configuration of multiple parallel elements and an optional single spring element is 
the generalized Maxwell-Weichert model (Fung 1981a, Ferry 1970b), and in this case it fol-
lows directly from the developments of equations  (1)–(4). Generally, we can write the SR 
solution for N Maxwell elements as a Prony series (Lakes 1999), the sum of components with 
characteristic relaxation time constant τN. In the limit, as we allow a continuous distribution 
of time constants τ, the summation becomes an integral and A(τ) is the relaxation spectrum, 
which can be either discrete or continuous, depending on the particular medium under study 
(Fung 1981a). Given a material’s A(τ), we can write:

∫σ τ τ( ) = ( ) τ
∞

−t A e d .t
SR

0

/ (6)

Now consider a specific power law distribution:

τ τ= < <−A A b( ) ; 1 2.b
0 (7)

The power law distribution is naturally occurring in many natural structures including nor-
mal and pathological circulatory systems (West et al 1997, Risser et al 2007). Substituting 
equation (7) into (6) and solving yields the solution:

σ = ⋅ Γ − < < >−t t b b t( )  A [ 1]   for   1 2,     0,b
SR 0

1 (8)

where Γ is the Gamma function. The SR response is characterized by 1 / tb−1 decay for t  >  0. 
For values of 1  <  b  <  2 this tends to have a sharp initial drop and then a slow asymptomatic 
decay. The derivative of the step response yields the impulse response, which defines the basic 
elastic transfer function for the material. If ε ε δ=t t( ) ( )0 , then

σ ε= Γ − − < < >−t b b t b t( ) A [ 1][(1 ) ]   for   1 2,     0.i
b

0 0 (9)

For simplicity, let a = b  −  1 and given the restriction on 1  <  b  <  2, then 0  <  a  <  1. The 
impulse response normalized by ε0 is

σ = Γ >+t a a t t( ) A [ ][ / ]   for    0.i
a

0
( 1) (10)

The Fourier transform of equation (10) gives the frequency dependence of the complex 
modulus:
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Figure 2. Parallel elements. Each dashpot corresponds to a fluid-filled vessel or 
channel.
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where = −j 1 . This response is dominated by the steady increase with frequency to the 
power of a.

In practical cases it might be realistic to place limits on the range of τ for a material, reflect-
ing the longest and shortest time constraints that pertain to the smallest to largest vessels and 
microchannels. In this case, the integration of equation (6) has limits τmin and τmax and

∫σ τ τ( ) = ( )
τ

τ
τ−t A e d ,t

SR
/

min

max

 (12)

and assuming the power law form of equation (7), then
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where τΓ a t[ , / ] is the incomplete Gamma function (upper-tailed). This version of the micro-
channel flow model is a four parameter model since τmax and τmin must be determined as 
material-specific parameters in addition to a and A0. A different closed form solution exists 
for cases where ≤a 1.

In summary, if a tissue has a power law relaxation spectrum τ τ= −A( ) b, then the SR 
response will show a σ ≅ =−t t1/b a

SR
1  response. The tissue stress-strain transfer function in 

the frequency domain is ω ω≅E( ) a. In prostate and liver (Zhang et al 2007, Parker 2014a), 
0  <  a  <  1/4 for many normal specimens.

For a lossless plane shear wave in a homogeneous, nearly incompressible elastic medium, 
it can be shown that ρ=c E /ph  where ρ is density (Graff 1975, Carstensen and Parker 2014), 
and in this simple case the speed is constant over any frequency band. More generally, when 
E is frequency dependent and complex, the complex wave number k̂ is given by (Blackstock 
2000, Carstensen and Parker 2014):

ω
ω ρ

β α β ω=
( )

= − =k
E

j
c

ˆ
/

,  where  ,
ph

 (14)

and α is the attenuation, taken from the real and imaginary parts of the ω ω ρE/ ( )/  term, 
respectively. For the microchannel flow model, if ω ω∝ −E( ) b 1, then ω ω∝ −c ( ) b

ph
2 1 also. This 

was the experimental observation of Zhang et al (2007).

2.2. Mapping functions from r to τ

It may seem unlikely that a parallel set of Maxwell elements with uniform values of E as 
shown in figure 2 can create an A(τ) in liver of the form τ1/ 1.25. To illustrate this transforma-
tion, consider a tissue block with a discrete set of vessels, one each of r = 0.2, 0.25...1.0 mm. 
According to equations (4)–(5b), the A(τ) will in that case be discrete and of equal strength but 
with samples at intervals related to τ = c r/ 4 from Poiseuille’s law and equation (5b). Figure 3 
shows this kind of distribution. One can see that the local density A(τ) is related to N(r), the 
relative number of vessels at each radius (N(r) is discrete and uniform in the example of  
figure 3) and is also dependent on the 1 / r4 mapping function.

It has long been known that the branching vasculature in soft tissue develops increasing 
numbers of branches and increasing total cross-sectional area, along the circulation path from 
major arteries to arterioles then capillaries (Guyton 1971). For branching vasculature, the 
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relative number or density function N(r) has been also related to the fractal dimension (Gazit 
et al 1997, West et al 1999, Risser et al 2007).

Thus, for normal soft tissues such as liver, we can model the general relationship as

=N r
K

r
( ) ,

f (15)

where K is some constant and f is typically less than 3 (Gaudio et al 2005), and characterizes 
the branching nature of the vasculature.

To map this distribution of K / r f  to the relaxation spectrum function A(τ), we use the 
general transformation rule from probability theory (Papoulis 1987). Given a monotonic dis-
tribution N(r) and a transformation τ = =g r c r( ) / 4 from equation (5b), then the transformed 
density function is given by:

τ =A
N r

g r r
( )

( )

d ( )/d
. (16)

Substituting equation (15) and taking the derivative of c / r4, we have
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where A0 = K / 4c. Thus, comparing with equation (7), the ‘master’ power law parameter b of 
the relaxation spectrum is driven by the vascular f parameter and the Poiseuille’s law trans-
formations so that b = (5 – f ) / 4. Note that for values of f near 1 (i.e. when ≈N r K r( ) / 1), then 
A(τ) approaches τ1/ 1. This represents the limit of convergence of equations (6)–(8), but also 
represents a zone where the phenomenon of ‘linear hysteresis’ would be observed (Parker,  
2015). This can be seen in equation (11) when the related parameter ε→a  then the complex 

Figure 3. Illustration of how a uniform distribution of vessel radii are transformed 
to a non-uniform distribution of the relaxation spectrum by a mapping function. The 
vertical axis is the magnitude of the relaxation spectrum, and the horizontal axis is the 
time constant τ in seconds. Here the mapping function is related to Poiseuille’s law 
and so the time constant τ in the relaxation spectrum is proportional to 1 / r4 where r 
is the radius. In this example, a uniform and discrete set of vessels of radii from 0.2 to 
1.0 mm in increments of 0.05 mm are mapped by a 1 / r4 function to produce the discrete 
relaxation spectrum which has a much higher local density for small time constants. In 
the continuous limit, the relaxation spectrum depends on the original distribution of 
vessels and microchannels, and the mapping function 1 / r4.
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modulus is nearly independent of frequency which is the hallmark of ‘linear hysteresis.’ For 
larger values of f the limited form of the integral is required for convergence, implying the use 
of equation (12) and its explicit solutions for b  <  1.

3. Methods

Experimental tests of the microchannel flow model were made on liver samples where changes 
in salinity or temperature were found to change the SR curves.

Whole fresh veal (bovine) livers were obtained from a slaughterhouse and were place on 
ice for transport to our laboratories. Cylindrical cores (approximately 25 mm in diameter and 
60 mm in length) were acquired from the livers using a custom-made coring knife as shown 
in figure 4.

Nine cylindrical samples of approximately 16 mm in length were cut from the cores and 
carefully selected to avoid large scale vessels or ligaments. These were divided into three 
groups of three each, stored at 4 °C for 24 h in either hypotonic (0.65%) saline, normal (0.9%) 
saline, or hypertonic (1.15%) saline. The osmotic pressure difference can cause swelling or 
shrinking, and the general effect of hypotonic swelling is depicted in figure 5.

A 1/S mechanical device (MTS Systems Co., Eden Prairie, MN, USA) with a 5 Newton 
load cell was used to test the core samples. The upper and lower plates were coated with vege-
table oil before testing. The core samples were put on the center of the lower testing plate. The 
top plate was used as a compressor and carefully positioned to fully contact the sample. After 
two minutes for tissue recovery, the uniaxial unconfined compression controlled by TestWorks 
3.10 software (Software Research, Inc., San Francisco, CA, USA) was conducted to measure 
the time domain SR data at room temperature. Throughout the test, the stress required to 
maintain the compression was recorded over time, approximately 700 s. The resulting data 
consisted of a plot of the stress versus time under 10% strain.

The SR curve of each sample during the hold period was fitted to the microchannel flow 
model using the MATLAB (The MathWorks, Inc., Natick, MA, USA) curve fitting toolkit. 
The trust-region method for nonlinear least squares fitting was applied on each curve.

Figure 4. (a) Cylindrical metal tool that is used to cut tissue and cores. (b) Sample of 
beef liver tissue soaked overnight in 0.9% saline.

K J Parker Phys. Med. Biol. 60 (2015) 4227
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4. Results

4.1. Modifications from hyper- or hypotonic storage

Figure 6 shows the raw and fitted curve of an average of three beef liver specimens that were 
soaked overnight at 0.65% (hypotonic) saline concentration. Figure 6(a) represents the graph 
obtained by using a three parameter Kelvin–Voigt fractional derivative (KVFD) model where 
the higher curve (at 50 s) represents the SR of raw data and the lower curve (at 50 s) is the fitted 
curve approximated by the KVFD model. Likewise, figure 6(b) shows the raw data and fitted 
curve using a microchannel flow model with four parameters, equation (13). The result shows 
that the four parameter model provides us with a closer curve fit for the beef liver tissues 
compared to the KVFD model. However, it should be understood that in general the addition 
of a fourth parameter adds a degree of freedom and therefore would be expected to improve 
curve fitting.

The summary of the four parameters microchannel flow model of the beef liver tissues in 
different saline concentrations is illustrated in figure 7.

In the four parameter model parameters, the amplitude A has a distinct trend as its value is 
decreasing from 0.65% saline (highest) to 1.15% saline (lowest). τmin is the lower limit of the 
relaxation spectrum and it seems τmin values are similar for 0.65% and 1.15% saline concentra-
tion. τmax is the upper limit of the spectrum amplitude. Numerical values are given in table 1. 
All parameters should be considered to be approximate, as will be detailed in the Discussion.

A theoretical perspective on these results is given in appendix 2.

4.2. Viscosity/temperature

As an independent experimental test of the microchannel flow model, liver specimens’ shear 
wave velocities were measured using the ‘crawling wave’ methods (Wu et al 2006, Barry  
et al 2012, Barry et al 2014) over a range of temperatures from 7 to 17 °C. Temperature 
changes the fluid viscosity in a monotonic relationship. The shear wave measurements are 

Figure 5. Schematic of liver tissue, illustrating a core sample with vessels in normal 
state after storage and refrigeration in normal saline, and alternatively the liver sample 
in a ‘swollen’ state after storage in hypotonic saline. The swelling of hepatocytes results 
in a reduction in the radii of the smaller vasculature and microchannels. This has major 
effects on the SR response of the tissue core samples.

K J Parker Phys. Med. Biol. 60 (2015) 4227
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shown in figure 8. Theoretically, the SR time constant is linked to the fluid viscosity by equa-
tions (4) and (5b). Furthermore, if the viscosity of the fluid is increased by a factor of m, then 
the resulting stiffness will increase as mb, as demonstrated in appendix 1.

Assuming in our case that the liver specimens’ fluids at 7 °C have a viscosity near 6 cp, 
while the liver fluids at 17 °C are approximately 4.3 cp based on values of saline and blood 

Figure 6. Hypotonic liver SR curves. (a) The higher curve (at 50 s) shows the SR 
curve of beef liver tissue and the lower curve (at 50 s) shows the curve fitting using 
KVFD model. (b) Curve-fitting using microchannel flow model. The raw data of SR 
and the curve-fitting using four parameters model are both shown; however they overlap 
substantially and appear as a single curve.

Figure 7. The value of SR curve fit parameters of beef liver tissue in different saline 
concentrations, 0.65% saline, 0.9% saline, and 1.15% saline. After storage in hypotonic 
saline, the swollen livers appear more ‘stiff’ than the other groups, as shown by the left 
set of bars representing the overall magnitude ‘A’. The parameters A and a have been 
scaled, while  −log(τmin) and log(τmax) are shown so that all parameters fall within a 
common scale.

K J Parker Phys. Med. Biol. 60 (2015) 4227
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from Stammers et al (2003) and Ozbek (1971), then the colder specimens should appear stiffer 
by a factor of (6 / 4.3)b or roughly (6 / 4.3)1.25 = 1.5.

The ratio of shear waves (squared to convert to E) is from figure 3: (1.96 / 1.53)2 = 1.6. 
The ratio of 1.6 is consistent with the hypothesis of the effects of increasing fluid viscosity on 
tissue stiffness using the microchannel flow model. Furthermore, it was found that the power 
law a (related to the dispersion of crawling waves) remained near 0.24 as would be predicted 
by consideration of the equations  in appendix 1. It is possible that the estimated viscosity 
values are not accurate, and that the elastic polymers in tissue by themselves exhibit a similar 
temperature dependence. Other complicating factors are discussed in the next section.

5. Discussion

5.1. The distribution of microchannels and resulting dispersion.

In the derivation of the microchannel flow model, the parameter f that describes the num-
ber density of the vasculature and channels, ultimately sets the relaxation spectrum A(τ) 
(see equation  (17)) and therefore the frequency dependent term of the modulus: ωa where 

= − −a f1 (5 )/4. This implies that the frequency dependent modulus can never increase 

Table 1. Four parameter model estimates for beef liver soaked in different % of saline: average of three 
samples.

Beef liver 
saline %

A (magnitude 
Pa·sa)

a (power law 
dimension)

τmin (lower 
limit ms)

τmax (upper 
limit seconds)

Average 
length 
(mm)

Average 
diameter 
(mm)

0.65 4.1   ×   103 0.11 6.7 1.8   ×   104 15.2 27.4
0.9 2.5   ×   103 0.14 17 2.7   ×   104 17.7 26.6
1.15 1.4   ×   103 0.11 11 4.9   ×   104 18 25.9

Figure 8. Shear wave speed in ex vivo liver versus temperature. Data are derived from 
shear wave propagation experiments taken at mid-band, 172 Hz shear wave frequency. 
The solid line represents a second order polynomial fit where speed c (m s−1) is a 
function of temperature T (°C): = + −c T T T( ) 2.05 0.0012 0.0019 2.

K J Parker Phys. Med. Biol. 60 (2015) 4227



4237

faster than ω0.25 unless either f is negative or the strict assumptions of the derivation, including 
Poiseuille’s law, are violated below some characteristic dimension. For example, the single 
parameter f may be appropriate for describing the branching vasculature; however the liver 
has many microchannel systems and fluid-filled gaps at smaller dimensions. These include 
the space of Mall, the space of Disse, and the intercellular bile canaliculi which are less than a 
micron in diameter (Clearfield 1965). Thus it is possible that the single f parameter would, in 
practice, need to be modified to encompass the smallest level of microchannels, corresponding 
to the longest time constants.

Another possibility not considered in the microchannel flow model is the addition of highly 
viscous material to the liver tissue, as could be found in the development of simple steatosis 
(Barry et al 2015, at press). In this case an additional ‘dashpot’ or lossy mechanism would be 
required to model the additional component not accounted for in the derivation of the micro-
channel flow model.

5.2. Predictions for changes in tissue response

The microchannel flow model predicts a number of ways in which a sample of normal soft 
tissue such as liver can be modified so as to be perceived as less compliant, or hardened. 
First, any increase in the underlying elastic response characterized by E in figure 2 would 
increase the overall amplitude of the SR response, according to equations (5a)–(6). However, 
the time constants in the relaxation spectrum would be shifted to the left (shorter time con-
stants) according to equation  (5b), so the overall change would be most dramatic early in 
the SR curve. An increase in E may, for example, be achieved by soaking the specimens in 
formalin, which is known to harden and preserve samples. A second way to harden a sample 
is less intuitive. As the viscosity of the fluids in the microchannels increases, the resulting SR 
forces will increase according to the derivation of appendix 1. This could apply to experiments 
where the temperature is changed (within limits of avoiding chemical or phase changes), or 
where the fluid is replaced by blood substitutes. Finally, and even less obvious is the harden-
ing caused by constriction of the smallest microchannels. This has a double effect in modify-
ing the relaxation spectrum, and shifting it to the right (longer time constants) according to 
the derivation of appendix 2. The net result is a modification that makes the specimen feel 
more resistant or harder, over long time intervals. This was experimentally approximated with 
swelling from hypotonic saline; however in vivo this could be the net effect of inflammatory 
responses or edema. This could explain, for example, why inflamed regions of skin feel harder 
than the surrounding normal tissue.

5.3. Relation to other models

It should be noted that the power law behavior exhibited by equation (11) has been noted in 
different materials (Lakes 1999), and can be modeled by a number of theoretical approaches. 
A key element is the concept of multiple mechanisms operating across a range of scales or 
time constants (Fung 1981b, Liu and Bilston 2000). Multi-scale ladders or mechanisms can 
be modeled by the fractional derivative operators (Sokolov et al 2002), and the microchannel 
flow two-parameter model resembles the KVFD model with E0 = 0 (Parker 2014a). Other 
models have been derived from the application of fractional derivative operators (Holm and 
Nasholm 2014) in the wave equation. Alternatively, the power law behavior of viscoelastic 
tissues were recently linked to the architecture of tissue, particularly cross-linked or entan-
gled microstructures (Guo et al 2012, Sack et al 2013). For any particular tissue, especially 
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pathological tissues, careful determination will be required to identify the dominant mecha-
nisms that contribute to observed behavior.

5.4. Limitations of the model and study

The derivation of the microchannel flow model includes a number of assumptions that may 
not be rigorously true in normal soft tissues. All constants from equations (1)–(8), and then the 
branching vasculature or fluid channel parameter f are assumed to be strictly constant across 
all radii, including the fundamental 1 / r4 proportionality imposed by Poiseuille’s law. These 
may in practice require some adjustment especially at smaller scales down to channels of only 
a few microns. Furthermore, there are no dynamic or inertial terms in the derivation. This 
could be required, for example, in higher frequency shear wave propagation, where eventu-
ally an ω2 term would be required to fully account for fluid acceleration in the microchannels. 
Further research is necessary to better define this transition.

A practical limitation of the four channel model is the lack of accuracy and uniqueness of 
estimated parameters from limited data. For example, experimental SR data from one to 500 s 
can be curve fit to the four parameter model, equation (13), to obtain estimated parameters 
(A, a, τmin, and τmax) such as those shown in table 1. However, the data will include noise and 
imperfections such as drift, temperature fluctuations, and shape distortions from cutting the 
sample. This creates uncertainties in the estimations as in all parameter estimation schemes. 
As a specific example, consider an ideal specimen described perfectly by the parameters: 
(1000, 0.2, 1/333, 71 000). It can easily be shown that the SR curve between 10 and 500 s for 
another specimen defined by (1050, 0.2, 1/333, 50 000) is very similar to the first specimen, 
differing by less than 4% over the curves from 10 to 500 s. Here the first parameter (overall 
magnitude A) and the last parameter (τmax) are seen to ‘trade off’, at least over some limited 
period of observation of the responses. Thus, given the presence of noise and imperfections, 
our ability to precisely determine the four parameters is limited. However, the parameters still 
can serve a useful purpose in providing an analytical model for soft tissue and their rough 
estimates provide useful predictions of behavior across a range of practical circumstances.

6. Conclusion

The microchannel flow model focuses on fluid flow in tissues through a range of channels in 
response to applied stress. A power law relation of branching vasculature and channels versus 
size is transformed by Poiseuille’s law into a power law relaxation spectrum. This leads to a 
SR response of tissue that is dominated by a power law function of time, which can also be 
modified by terms relating to the maximum and minimum time constants that are present in 
the tissue. Experimental tests of normal liver tissue subjected to hypo- or hypertonic solutions 
or alternatively to temperature variations demonstrate the resulting changes in tissue stiffness 
can be reasonably predicted by application of the microchannel flow model. In addition, the 
model illustrates a potentially important effect whereby constriction of the smallest channels 
due to tissue edema can strongly increase the maximum time constant τmax, and that directly 
increases the SR response, and the perceived stiffness or hardness of the affected tissue.
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Appendix 1

The dependence of a sample on viscosity can be shown by examining the basic equations (4)–
(8). If we assume that A(τ1) of tissue specimen ‘1’ is related to the distribution and geometry 
of the microchannels, then replace the specimen’s fluids with a substitute of higher viscosity 
η η= ⋅m2 1 where m  >  1; then the new relaxation spectrum is A(τ2 / m). For example, if m = 3, 
then the original value of τ =A( 1)1  now corresponds to the relaxation spectrum value at τ = 32  
in the sample ‘2’ with the higher viscosity substitute. Accordingly, if, following equations (6) 
and (7), we substitute:
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In other words, the sample with higher viscosity fluid would appear stiffer by a factor of mb 
but would have the same power law time constant.

Appendix 2

In this derivation we examine the change in SR due to change in vessel and microchannel 
radius. Assume that a 24 h soak in hypotonic (0.65%) saline creates a swelling and therefore 
a strain ε of hepatocytes in an ex vivo specimen, as shown in figure 4. We assume the speci-
men’s initial relaxation spectrum is τ τ=A A( ) / b

0  and it has a vessel distribution of N0(r). After 
swelling, we further assume a simplified model of the effect, where all radii after hypotonic 
swelling, r2, are reduced by

= − Δr r r.2 (A.2)

Given =N r K r( ) / f
0 0 , and = + ΔN r K r r( ) /( ) f

2 2 0 2 , and from equations (16) and (17):
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So the new relaxation spectrum A2(τ) is based on the original tissue’s A(τ); modified and 
somewhat diminished by a factor, the final term in equation (A.4). However, the limits of integra-
tion over the time constants in equation (12) must also change. The original tissue limits, τmin to 
τmax are now modified since rmax is now − Δr rmax  in the swollen tissue and rmin is now − Δr rmin . 
In some cases, the small change in rmax is insignificant, so τmin remains approximately the same. 
However, when Δ ≈r rmin (which can be on a micron scale), then as − Δ →r r 0min , the maximum 
time constant τ → ∞max , and this results in a major shift in the behavior of the material.

As an example of this phenomenon, figure 9 demonstrates SR curves for a set of parameters 
consistent with the liver values of table 1, where the lower curve represents a normal liver 
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and the upper (thick) curve represents the specimen after some constriction of the micro-
channels due to swelling of the parenchymal cells. In this example, A0 = 7000 Pa·s, f = 0.2, 
c = 10−14 m4 s, and Δ =r 35 µm. Numerical integration was performed of equation (12) using 
equation (17) for the normal tissue and τ = 0.01min  and τ = 4000max  s. For the second case, 
numerical integration was performed using equation (A.4), but with τ = ×1.6 10max

7 s, cor-
responding to a reduction in minimum channel to 5 µm. The slight reduction in the relaxation 
spectrum is more than compensated for by the extended upper limit of integration over τ, and 
the result is a higher net SR response. In this case, the second sample would be perceived as 
the harder material.
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