
Online PLCA for Real-time Semi-supervised
Source Separation

Zhiyao Duan1⋆, Gautham J. Mysore2 and Paris Smaragdis2,3

1 EECS Department, Northwestern University,
2 Advanced Technology Labs, Adobe Systems Inc.,

3 University of Illinois at Urbana-Champaign

Abstract. Non-negative spectrogram factorization algorithms such as
probabilistic latent component analysis (PLCA) have been shown to be
quite powerful for source separation. When training data for all of the
sources are available, it is trivial to learn their dictionaries beforehand
and perform supervised source separation in an online fashion. However,
in many real-world scenarios (e.g. speech denoising), training data for one
of the sources can be hard to obtain beforehand (e.g. speech). In these
cases, we need to perform semi-supervised source separation and learn a
dictionary for that source during the separation process. Existing semi-
supervised separation approaches are generally offline, i.e. they need to
access the entire mixture when updating the dictionary. In this paper,
we propose an online approach to adaptively learn this dictionary and
separate the mixture over time. This enables us to perform online semi-
supervised separation for real-time applications. We demonstrate this
approach on real-time speech denoising.

1 Introduction

In recent years, non-negative matrix factorization (NMF) and its probabilistic
counterparts such as probabilistic latent component analysis (PLCA) have been
widely used for source separation [1]. The basic idea is to represent the magnitude
spectrum of each time frame of the mixture signal as a linear combination of
dictionary elements from source dictionaries. In the language of PLCA, for a
sound mixture of two sources, this can be written as:

Pt(f) ≈
∑

z∈S1

∪
S2

P (f |z)Pt(z) for t = 1, · · · , T (1)

where T is the total number of frames; Pt(f) is the normalized magnitude spec-
trum of the t-th frame of the mixture; P (f |z) for z ∈ S1 and z ∈ S2 represent the
elements (analogous to basis vectors) of the dictionaries of source 1 and source
2 respectively. Pt(z) represents the activation weights of the different dictionary
elements at time t. All these distributions are discrete and nonnegative.

⋆ This work was performed while interning at Adobe Systems Inc.

2 Zhiyao Duan, Gautham J. Mysore and Paris Smaragdis

Given a mixture spectrogram, we can estimate the dictionary elements and
activation weights using the expectation–maximization (EM) algorithm. The
source spectra in the t-th frame can then be reconstructed as

∑
z∈S1

P (f |z)Pt(z)
and

∑
z∈S2

P (f |z)Pt(z), respectively. This is unfortunately a highly undercon-
strained problem and rarely leads to useful parameter estimates. One way to
address this issue is to perform supervised source separation [1], in which we
first learn the dictionaries for both sources from their isolated training data.
Then in the separation stage, we fix these dictionaries and only the estimate the
activation weights, from which we can reconstruct the spectra of each source.

However, in a lot of real-world problems, training data for one source might be
hard to obtain beforehand. For example, in the application of speech denoising,
we want to separate speech from noise. It is relatively easy to obtain training data
for noise, but hard for speech. In these cases, we need to perform semi-supervised
source separation [1], where we first learn the dictionary for one source (e.g.
noise) from its training data beforehand, and then learn the dictionary for the
other source (e.g. speech) in addition to the activation weights of both sources
from the mixture. Finally, separation can be performed.

For supervised separation, the algorithm in [1] is intrinsically online, since
the activation weights in different frames are estimated independently. For semi-
supervised separation, however, the algorithm in [1] needs to access the entire
mixture to learn the dictionary for the un-pretrained source, hence is offline.

In recent years, researchers have proposed several online NMF algorithms for
dictionary learning in different applications (e.g. dictionary learning for image
databases [2], document clustering [3], audio reconstruction [4]). The idea is to
learn a dictionary to well explain the entire input data, after processing all the
inputs, in an online fashion. However, we argue that these algorithms are not
suitable for real-time semi-supervised source separation. The reason is that these
algorithms only care about the final learned dictionary, after processing all of the
input frames. They do not care about the intermediate estimates of the learned
dictionary during processing the input frames. Therefore, the dictionary learned
after receiving the current frame is not necessarily good enough to explain that
frame and to separate it. In fact, processing all of the input frames once is often
not enough and it has been shown that cycling over the input data set several
times and randomly permuting samples at each cycle [2–4] improves the results.

In this paper, we propose an online PLCA algorithm tailored for real-time
semi-supervised source separation. We learn the dictionary for the source that
does not have training data, from the mixture, and apply it to separate the
mixture, in an online fashion. When a new mixture frame comes in, the dictionary
is adaptively updated to explain the current frame instead of explaining the
entire mixture frames. In this way, we can use a much smaller-sized dictionary
compared to the offline PLCA. We show that the performance of the proposed
algorithm is almost as good as that of the offline PLCA algorithm (numerically
equivalent to offline NMF using KL divergence), but significantly better than an
existing online NMF algorithm for this application.

Online PLCA for Real-time Semi-supervised Source Separation 3

2 Proposed Algorithm

For the real-time source separation problem of two sources, assuming that some
isolated training excerpts of source 1 (S1) are available beforehand and are long
enough to capture S1’s characteristics, we can follow the semi-supervised source
separation paradigm presented in Section 1 4. We first learn a dictionary of S1

from the spectrogram of its training excerpts beforehand. Then during separa-
tion, as each incoming mixture frame arrives, we learn and update the dictionary
of S2 using the proposed online PLCA algorithm, with S1’s dictionary fixed.

2.1 Online Separation and Dictionary Learning

In order to separate the t-th frame of the mixture signal, we need to decompose
its magnitude spectrum using Eq. (1). Here, P (f |z) for z ∈ S1 is the pre-learned
dictionary of S1 from training excerpts, and is kept fixed in this decomposition.
We need to estimate the dictionary P (f |z) for z ∈ S2 and activation weights
Pt(z) for all z, such that the decomposition is as accurate as possible, i.e.

argmin
P (f |z) for z∈S2, Pt(z) for all z

dKL(Pt(f)||Qt(f)) (2)

where dKL is the KL divergence between two distributions. Pt(f) is the nor-
malized mixture spectrum at time t and Qt(f) is the reconstructed mixture
spectrum i.e. the LHS and RHS of Eq. (1).

However, this is a highly unconstrained problem, since the number of param-
eters to estimate is much more than the number of equations (i.e. the number of
frequency bins in Eq. (1)), even if there is only one element in S2’s dictionary.
A trivial solution that makes the KL divergence in Eq. (2) equal to zero is to
use only one dictionary element in S2, such that the dictionary element is the
same as the mixture and the corresponding activation weight equals to one (with
all other weights being zero). In practice, this trivial solution is almost always
achieved, essentially making the separated source 2, the same as the mixture.

We therefore need to constrain the dictionary of source 2 to avoid this over-
fitting. We do this by requiring S2’s dictionary to not only explain S2’s spectrum
in the current frame, but also those in a number of previous frames. We denote
this set of frames as B, representing a running buffer. We update S2’s dictionary
in every frame using B. We also set the size of S2’s dictionary to be much smaller
than the size of B. This avoids the overfitting because a compact dictionary will
now be used to explain a much larger number of frames.

Clearly these buffer frames need to contain S2’s spectra, otherwise the dictio-
nary will be incorrectly learned. We will describe how to determine if a mixture
frame contains S2’s spectrum or not in Section 2.2. Suppose we can identify the
previous mixture frames that contain S2’s spectra, we need to decide which ones

4 It is straightforward to extend this to N sources if isolated training excerpts for N-1
sources are available.

4 Zhiyao Duan, Gautham J. Mysore and Paris Smaragdis

to include in B. On one hand, S2’s spectra in the buffer frames need to be dif-
ferent from those in the current frame, so that the learned S2’s dictionary does
not overfit the mixture spectra in the current frame. On the other hand, we do
not want S2’s spectra in the buffer frames to be too different from those in the
current frame so that we have a more “localized” and compact dictionary. In
the real-time source separation problem, it is intuitive to use the L most recent
identified mixture frames to balance the tradeoff, as they are not the same as
the current frame but tend to be similar. Based on this, the objective becomes:

argmin
P (f |z) for z∈S2, Pt(z) for all z

dKL(Pt(f)||Qt(f)) +
α

L

∑
s∈B

dKL(Ps(f)||Qs(f)) (3)

where α is the tradeoff between the original objective (good reconstruction of the
current frame) and the added constraint (good reconstruction of buffer frames).

With this new objective, we learn S2’s dictionary and the current frame’s
activation weights. However, we fix the activation weights of the buffer frames
as the values learned when separating them. There are two advantages of fixing
them than updating them: First, it makes the algorithm faster. Second, it im-
poses a heavier constraint on S2’s dictionary that the newly learned dictionary
must not deviate from those learned in the buffer frames too much. We use the
EM algorithm to optimize Eq. (3), which is described in Algorithm 1.

Algorithm 1 Single Frame Dictionary Learning

Require: B (buffer frames set), Vfs for s ∈ B
∪
{t} (normalized magnitude spectra of

buffer frames and current frame, each frame becomes a probability distribution),
P (f |z) for z ∈ S1 (S1’s dictionary), P (f |z) for z ∈ S2 (initialization of S2’s dic-
tionary), Ps(z) for s ∈ B

∪
{t} and z ∈ S1

∪
S2 (input activation weights of buffer

frames and current frame), α (tradeoff between reconstruction of buffer frames and
current frame), M (number of EM iterations).

1: for i = 1 to M do
2: E Step:

Ps(z|f)←
Ps(z)P (f |z)∑

z∈S1
∪

S2
Ps(z)P (f |z) , for s ∈ B

∪
{t}. (4)

3: M Step:

ϕ(f |z)← VftPt(z|f) +
α

|B|
∑
s∈B

VfsPs(z|f), for z ∈ S2, (5)

ϕt(z)←
∑
f

VftPt(z|f), for z ∈ S1
∪
S2. (6)

Normalize ϕ(f |z) and ϕt(z) to get P (f |z) and Pt(z) respectively.
4: end for
5: return learned dictionary P (f |z) for z ∈ S2 and activation weights Pt(z) for

z ∈ S1
∪
S2 of the current frame t.

2.2 Mixture Frame Classification

The problem that has not been addressed in Section 2.1 is how to determine
whether a mixture frame contains S2’s spectrum or not. For a mixture of two

Online PLCA for Real-time Semi-supervised Source Separation 5

sound sources, we can address this by decomposing the magnitude spectrum of
the mixture frame using only the learned S1’s dictionary as follows:

Pt(f) ≈
∑
z∈S1

P (f |z)Pt(z) (7)

Since the dictionary is fixed, we learn only the activation weights. If the
KL divergence between Pt(f) and the RHS is smaller than a threshold θKL, it
means the mixture spectrum can be well explained by only using S1’s dictionary,
hence S2’s spectrum is not likely to be present. Otherwise, S1’s dictionary is not
enough to explain the spectrum, hence S2’s spectrum is likely to be present.

We learn the threshold θKL by decomposing S1’s training excerpts again, with
its pre-learned dictionary. We calculate the mean and standard deviation of the
KL divergences of all the frames, and set the threshold as θKL = mean+ std.

If the current frame is classified as not containing S2, then we do not include
it in the running buffer B. However, just in case there is some amount of S2 in
the frame, we still perform supervised separation on the frame using the pre-
learned dictionary of S1 and the previously updated dictionary of S2. If the
current frame is classified as containing S2, we run Algorithm 1 on it to update
S2’s dictionary and separate the frame. After separation, we include this frame
into the running buffer B for future use.

2.3 Algorithm Summary

The whole online semi-supervised source separation algorithm is summarized
in Algorithm 2. Note that in Line 6 we make a “warm” initialization of S2’s
dictionary using the one learned in the previous frame. This makes Algorithm 1
converge fast, as spectra in successive frames do not often change much.

3 Experiments

We test the proposed online semi-supervised source separation algorithm for
real-time speech denoising. The two sources are therefore noise and speech. We
learn the dictionary of noise from its training excerpts beforehand 5, and learn
and update the dictionary of speech during real-time separation.

We use clean speech files and clean noise files to construct a noisy speech
dataset for our experiments. For clean speech files, we use the full speech cor-
pus in the NOIZEUS dataset 6. This corpus has thirty short English sentences
(each about three seconds long) spoken by three female and three male speak-
ers. We concatenate sentences from the same speaker into one long sentence, and
therefore obtain six long sentences, each of which is about fifteen seconds long.

5 Training excerpts for noise is relatively easy to obtain in applications such as telecon-
ferencing, since a few seconds at the beginning in which no one is talking are likely
to be long enough to capture the noise characteristics throughout the teleconference.

6 http://www.utdallas.edu/~loizou/speech/noizeus/

6 Zhiyao Duan, Gautham J. Mysore and Paris Smaragdis

Algorithm 2 Online Semi-supervised Source Separation

Require: Vft for t = 1, · · · , T (magnitude spectra of the mixture signal), P (f |z)
for z ∈ S1 (S1’s dictionary), P (0)(f |z) for z ∈ S2 (random initialization of S2’s
dictionary), θKL (threshold to classify a mixture frame), B (buffer frames set).

1: for t = 1 to T do
2: Decompose normalized magnitude spectrum Pt(f) =

Vft∑
f Vft

by Eq. (7).

3: if dKL(Pt(f)||
∑

z∈S1
P (f |z)Pt(z)) < θKL then

4: Supervised separation using P (f |z) for z ∈ S1 and P (t−1)(f |z) for z ∈ S2 and
P (t)(f |z)← P (t−1)(f |z).

5: else
6: Learn S2’s dictionary P (t)(f |z) for z ∈ S2 and activation weights Pt(z) using

Algorithm 1, with P (t)(f |z) for z ∈ S2 initialized as P (t−1)(f |z).
7: Set S2’s magnitude spectrum as:

Vft

∑
z∈S2

P (t)(f |z)Pt(z)∑
z∈S1

P (f |z)Pt(z) +
∑

z∈S2
P (t)(f |z)Pt(z)

. (8)

8: Replace the oldest frame in B with the t-th frame.
9: end if
10: end for
11: return separated magnitude spectra of the current frame.

For clean noise files, we collected ten different types of noise, including birds,
casino, cicadas, computer keyboard, eating chips, frogs, jungle, machine guns,
motorcycles and ocean. Each noise file is at least one minute long. The first
twenty seconds are used to learn the noise dictionary. The rest are used to
construct the noisy speech files.

We generate a noisy speech file by adding a clean speech file and a random
portion of a clean noise file with one of the following signal-to-noise ratios (SNR):
-10dB, -5dB, 0dB, 5dB and 10dB. By exploring all combinations of speech, noise
and SNRs, we generate a total of 300 noisy speech files, each of which is about
fifteen seconds long. The sampling rate of all the files is 16kHz.

For comparison, we run offline semi-supervised PLCA [1] (denoted as “PLCA”)
on this dataset. We segment the mixture into frames of 64ms long and 48ms
overlap. We set the speech dictionary size as 20, since we find it is enough to
get a perceptually good reconstruction of the clean speech files. We use differ-
ent sizes of the noise dictionary for different noise types, due to their different
characteristics and inherent complexities. We set this value by choosing from
{1, 2, 5, 10, 20, 50, 100, 200} the size that achieves the best denoising results in
the condition of SNR of 0dB. The number of EM iterations is set to 100 as it
always converged in that many iterations in our experiments.

We also implement an existing online NMF algorithm [4] (denoted as “O-IS-
NMF”), which is designed for audio reconstruction. We apply it to this dataset
in the semi-supervised paradigm. We use the same frame sizes and dictionary

Online PLCA for Real-time Semi-supervised Source Separation 7

sizes as PLCA. As suggested in [4], we set the mini-batch parameter β to 1 to
avoid inherent delay, and the scaling factor ρ to 1 to match β.

For the proposed algorithm, we use the same frame sizes and noise dictionary
sizes as PLCA. We set the buffer size L as 60, which is about one second long.
Since the speech dictionary is only supposed to explain the speech spectra in
the current frame and buffer frames, we can use a much smaller size of speech
dictionary. We set this value to 7 (opposed to 20 in PLCA), since we find that the
average KL divergence in decomposing one second of speech spectra with seven
dictionary elements is about the same as that of the average KL divergence in
decomposing fifteen seconds of speech spectra with twenty dictionary elements.
We choose the tradeoff factor α for each different noise, from the set {1, 2, · · · , 20}
as the one that achieves the best denoising results in the condition of SNR of 0dB.
We run only 20 EM iterations in processing each frame, which we find almost
assures convergence due to the “warm” initialization as described in Section 2.3.

−10 −5 0 5 10
0

10

20

30

SNR conditions (dB)

S
IR

 (
dB

)

−10 −5 0 5 10
−5

0

5

10

15

SNR conditions (dB)

S
A

R
 (

dB
)

−10 −5 0 5 10
−20

−10

0

10

20

SNR conditions (dB)

S
D

R
 (

dB
)

Fig. 1. Average performances on all types of noise of PLCA [1] (blue solid line), O-IS-
NMF [4] (black dotted line) and the proposed algorithm (red dash line).

We use the BSS-EVAL metrics [5] to evaluate the separated speech files.
Figure 1 shows the average results over all noise types and speakers, for each
algorithm and SNR condition. Source-to-interference ratio (SIR) reflects noise
suppression, source-to-artifacts ratio (SAR) reflects the artifacts introduced by
the separation process, and source-to-distortion ratio (SDR) reflects the overall
separation performance. It can be seen that for all the three metrics, the pro-
posed algorithms achieves almost as good of a performance as PLCA. This is a
promising result, since the proposed algorithm is an online algorithm and it uses
a much smaller speech dictionary than PLCA. The performance of O-IS-NMF is
significantly worse than PLCA and the proposed algorithm. As argued in Section
1, we think this algorithm is not suitable for real-time source separation.

Table 1 presents the performances of PLCA and the proposed algorithm for
different noise types in the SNR condition of 0dB. The noise-specific parameters
for the two algorithms are also presented. It can be seen that for different noise
types, the results vary significantly. This is due to the inherent complexity of
the noise and whether the training data can cover the noise characteristics or
not. For some noise, like birds, cicadas and frogs, the performance of PLCA is

8 Zhiyao Duan, Gautham J. Mysore and Paris Smaragdis

Table 1. Performances and noise-specific parameters for different noise types in the
SNR condition of 0dB. Kn is the noise dictionary size and α is the tradeoff factor.

SIR SAR SDR
Noise type PLCA Proposed PLCA Proposed PLCA Proposed Kn α

birds 20.0 18.4 10.7 8.9 10.1 8.3 20 14
casino 5.3 7.5 8.6 7.2 3.2 3.9 10 13
cicadas 29.9 18.1 14.8 10.5 14.7 9.7 200 12

computer keyboard 18.5 12.2 8.9 10.2 8.3 7.9 20 3
eating chips 14.0 13.3 8.9 7.0 7.3 5.7 20 13

frogs 11.9 10.9 9.3 7.2 7.1 5.0 10 13
jungle 8.5 5.3 5.6 7.0 3.2 2.5 20 8

machine guns 19.3 16.0 11.8 11.5 10.9 10.0 10 2
motorcycles 10.2 8.0 7.9 7.0 5.6 4.5 10 10

ocean 6.8 7.4 8.8 8.0 4.3 4.3 10 10

significantly better than the proposed algorithm. For other noise like casino,
computer keyboard, machine guns and ocean, the proposed algorithm achieves
similar results to PLCA. The Kn parameter does not change much, except for
the cicada noise. The α parameter is usually around 12, with the exception of
computer keyboard and machine gun noise. Since these two noises are pulse-like
noise with relatively simple spectra, the optimal α values are much smaller to
have a weaker constraint.

The Matlab implementation of the proposed algorithms takes about 25 sec-
onds to denoise each noisy speech file (which is about 15 seconds long), in a
modern laptop computer with a 4-core 2.13GHz CPU. It would be easy to make
it work in real-time in a C++ implementation or in a more advanced computer.

4 Conclusions

In this paper, we presented an online PLCA algorithm for real-time semi-supervised
source separation. For the real-time speech denoising application, we showed that
it achieves almost as good results as offline PLCA and significantly better results
than an existing online NMF algorithm.

References

1. Smaragdis, P., Raj, B., Shashanka, M.V.: Supervised and Semi-Supervised Separa-
tion of Sounds from Single-Channel Mixtures. ICA (2007)

2. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online Learning for Matrix Factorization
and Sparse Coding. J. Machine Learning Research 11, 19–60 (2010)

3. Wang, F., Tan, C., König, A.C., Li, P.: Efficient Document Clustering via Online
Nonnegative Matrix Factorizations. SDM (2011)

4. Lefèvre, A., Bach, F., Févotte, C.: Online Algorithms for Nonnegative Matrix Fac-
torization with the Itakura-Saito Divergence. WASPAA (2011)

5. Vincent, E., Fevotte, C., Gribonval, R.: Performance Measurement in Blind Audio
Source Separation, IEEE Trans. on Audio Speech Lang. Process. 14, 4, 1462–1469
(2006)

