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ABSTRACT

This paper proposes a method for the multi-pitch estimation
of polyphonic music signals. Instead of on the frame level, the
estimation is based on the Partial Event, which is defined like
the note event in MIDI. All partial events in a piece of music
are extracted dynamically in the process of the frame by frame
Short Time Fourier Transform (STFT). For each event, Net
Support degree received from other events is calculated and
the events with the highest support degrees are selected to be
the fundamental frequency (F0) events. From another point
of view, the support is transferred from higher frequency par-
tial events to lower ones and finally concentrated on the F0
events. This method can estimate the number of concurrent
sounds, the onset and offset times of the notes. Experiments
on both randomly mixed chord signals and synthesized en-
semble music signals in “wav” format are conducted and the
results are promising.

1. INTRODUCTION

Muti-pitch estimation (MPE) of several concurrent sounds in
polyphonic music signals has been generally considered as
one of the central problem in many music signal processing
applications, including automatic transcription, music infor-
mation retrieval and music content analysis.

Contrary to its importance, however, numerous conven-
tional methods have fallen clearly behind human’s ability in
both accuracy and flexibility. In recent years, several new
methods have been proposed. Kashino and Murase [1] ap-
plied a Bayesian probability network to integrate musical con-
text to address this problem. Goto [2], Davy and Godsill [3],
and Kameoka [4] employed parametric signal models and sta-
tistical methods. Klapuri [5, 6] proposed methods based on
human auditory system. Saito and Kameoka [7] proposed the
specmurt analysis which is similar to a deconvolution process
to estimate fundamental frequencies (F0s). Poliner and Ellis
[8] viewed the polyphonic piano transcription as a classifica-
tion problem.
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All these methods share a common characteristic: F0s are
estimated at the frame level. However, this is not the case
when human perception is concerned. To some extent, MPE
can be viewed as a process of grouping partials to notes. Breg-
man [9] pointed out that synchronous changes in the param-
eters of the components was one of the perceptual cues for
grouping of time-frequency components. Note that this cue
cannot be embedded in the frame level estimation, which may
be also influenced severely by noise, therefore, several meth-
ods employed postprocesses to alleviate this problem [2, 8].

In this paper, we propose a method for estimating F0s on
partial events rather than on the frame level. The concept of
the partial event is borrowed from that of the note event in
MIDI. A partial event ei is defined as

ei = (fi, Ai, tia, tib) (1)

where fi is its average frequency, Ai is its average logarithm
amplitude, tia is its onset time and tib is its offset time.

All the partial events in a piece of music are extracted and
each of them is a F0 event candidate. They compete with each
other to receive enough net support from other events to be-
come to a F0 event. Finally several partial events with the
highest degrees are selected to be F0 events. Experiments are
conducted on both randomly mixed chord data and synthe-
sized ensemble music data. The results are promising.

The rest of the paper is organized as follows. The pro-
posed method is described in Section 2 and experimental re-
sults are presented in Section 3. Section 4 is the conclusion.

2. THE PROPOSED METHOD

2.1. Partial Event Extraction

For a particular piece of music, partial events are extracted
from the Short Time Fourier Transform (STFT) spectrums of
a series of frames. In each spectrum, significant peaks are
detected. Peaks with approximately the same frequency of
consecutive frames form a partial event.

Figure 1 illustrates how the peaks in the (k+1)th frame af-
fects the generation process of partial events, with the events
in the first k frames having been already extracted. For each
extracted event that still exists in the kth frame, we try to find
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Fig. 1. Illustration of the partial events extraction process.
The left part is the time-frequency plane up to the kth frame,
each event is depicted as a horizontal line. The right part is
the spectrum of the (k + 1)th frame, with peaks labeled.

a corresponding peak in the spectrum of the (k + 1)th frame,
according to the minimal frequency difference principle. This
correspondence is established when the frequency difference
is within half of the seminote range. Note that an event can
correspond to at most one peak in this frame, and vice versa.

If a partial event has found a corresponding peak, then the
parameters of this event are updated as follows:

fi(k + 1) =
lk · fi(k) + fpi

lk + 1
, Ai(k + 1) =

lk · Ai(k) + Api

lk + 1
(2)

where lk is the current length of ei, fpi and Api are the fre-
quency and amplitude of the peak, respectively. In Figure 1,
peaks labeled 2, 4, 5, 6 and 8 hold this situation.

For the partial event that has not found a corresponding
peak, it is terminated, with the offset time being set to the
time of the kth frame. In Figure 1, events marked with ’×’
are terminated in the kth frame.

For the peak that has not found the corresponding partial
event, it is used to generate a new event. The onset time of
this event is set to the time of the (k + 1)th frame, and the
initial average frequency and average amplitude is set to that
of the peak. In Figure 1, peak 1, 3 and 7 are in this case.

After all frames having been processed, the generation
of partial events on the time-frequency plane is completed.
On this plane, some noise events exist, including short events
caused by the detection of fake peaks, and some fragmentized
events caused by the frequency fluctuation of notes. We em-
ploy two morphological operations (a close operation and an
open operation) on the plane to get a clearer one, see Figure
2. On this plane, each horizontal line refers to a partial event
(the average amplitude of each event is not depicted). All the
events compose the whole partial events set

E = {ei|i = 1, 2, ..., N} (3)

where N is the number of partial events. The following anal-
ysis will be based on this set.
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Fig. 2. Time-frequency plane after all frames have been pro-
cessed , where each horizontal line refers to a partial event.

2.2. Support Degree Calculation

Each partial event in the events set is treated as a F0 event
candidate and the following work is to determine which can-
didates are the true F0 events. Just like in the voting process,
a man who wants to be a leader must receive enough support
from others, each F0 event candidate must receive enough
support from the other events to be selected as a F0 event.
The support degree is defined as follows.

Firstly, for each partial event ei in E , consider a subset Ei

whose elements have the onset times near that of ei, and the
average frequencies larger than fi, i.e. the frequency of ei.

Ei = {ek|fk > fi, |tka − tia| < θ, k = 1, 2, ..., N} (4)

where θ is set to 150ms typically.
Then suppose the exact frequency of ei is f ′

i , since its
average frequency fi may not be precise due to the resolution
in the frequency domain. The support degree that ei receives
from another event ej is defined as

sij(f ′
i) =

{
Rij · Pf ′

i
· Qf ′

ifj
· Ai · Aj ej ∈ Ei

0 ej /∈ Ei
(5)

where

Rij =
min(tib, tjb) − max(tia, tja)

tib − tia
(6)

Pf ′
i

= exp(−
( f ′

i

fi
− 1)2

σ2
) (7)

Qf ′
ifj

= exp(−
( fj

f ′
i
− [ fj

f ′
i
])2

σ2
) (8)

where [·] denotes rounding to the nearest integer. Rij rep-
resents the overlap ratio between ei and ej . Pf ′

i
defines the

proximity between the average frequency fi and the supposed
exact frequency f ′

i . Qf ′
ifj

represents the weight caused by the
harmonic relationship between f ′

i and fj . σ is set to 0.015 to
prevent the difference between fi and f ′

i being larger than a



seminote range in Eq.(7) and to ensure the harmonic relation-
ship between ei and ej in Eq.(8).

For the supposed frequency f ′
i , the support degree of ei

received from all the other partial events is

Si(f ′
i) =

∑N

j=1
sij(f ′

i) (9)

Then we search for f ′
i in the semitone interval of fi to get the

maximum of Eq.(9).

Ŝi = max(Si(f ′
i)) (10)

Suppose the maximum is achieved when f ′
i = f0

i , then the
exact average frequency of ei is set to f0

i . For the partial event
ei, the actual support it receives from ej is ŝij = sij(f0

i ).
It is noticed that when a partial event receives support

from other events, it usually also gives out support. So we
should consider the Net Support NSi that ei receives:

NSi =
∑N

j=1
ŝij − α

∑N

k=1
ŝki (11)

where α is the tradeoff between received and given support.
In monophonic case, α tends to be set large enough to en-

sure F0 events to be selected, since partial events of a note
give support to the corresponding F0 event while the F0 event
never give support to any others. However, in polyphonic
case, the F0 event of a note may give support to partial events
of other concurrent notes octaves lower. Therefore, α should
be set properly to prevent this kind of F0 events being ne-
glected. In our experiment, we find that α = 2 is proper for
the polyphony number ranging from 1 to 6.

Finally, the net support NSi is normalized to [0,1]. All
the events whose NSi are larger than τ are selected to be F0
events. τ is set as

τ = mean(NSi) + β · std(NSi) (12)

where β is set to 1.2 typically. It’s better to adjust the value
between [0.85,1.7] for polyphony number from 6 to 2, to
make the precision and recall close (Eq.(13)).

Let us reconsider the calculation of the support degree
from another point of view. Each partial event can only re-
ceive support from the events whose frequencies are higher
and give support to the events whose frequencies are lower.
Therefore support is transferred from higher partial events to
lower ones. This transfer ends at the F0 events.

3. EXPERIMENTAL RESULTS

We applied the proposed method on both randomly mixed
chord signals and synthesized ensemble music signals in “wav”
format. The STFT frame was 100ms long with 30 ms step.
The structure elements of close operation and open operation
were 90 ms and 210 ms long horizontal lines, respectively.
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Fig. 3. MPE results for randomly mixed chord signals.
Predominant-F0 (white) and Multiple-F0 (black and gray).
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Fig. 4. Histograms of polyphony estimates. The asterisks
indicate the true polyphony(1,2,4 and 6, from left to right)

3.1. Randomly Mixed Chords

The acoustic material consisted of note samples from the Uni-
versity of Iowa website [10]. There were altogether 369 note
samples of dynamic “ff” from 14 wind instruments with pitch
ranging from C3 (131Hz) to B6 (1976Hz). Randomly mixed
chords were generated by mixing the samples with equal mean-
square levels and no duplication in pitch. 100 mixtures of one,
500 mixtures of two, three, four, and six sounds were gener-
ated, totalling 2600 test cases.

The results are illustrated in Figure 3 and Figure 4. The
left panel of Figure 3 is the error rate of the F0 estimation.
In Predominant-F0 estimation (white bars), it is defined to be
correct if the event with the highest support degree matches
the F0 of any of the component sounds [2]. Multiple-F0 esti-
mation is presented with two indices, Recall (black bars) and
Precision (gray bars):

Recall =
c(cor)
c(ref)

, Precision =
c(cor)

c(trans)
(13)

where c(ref) is the number of reference notes, c(trans) is
the number of transcribed notes, and c(cor) is the number of
correctly transcribed notes [11].

For correctly transcribed notes (both Predominant-F0 and
Multiple-F0), in the right panel of Figure 3, Average Overlap
Ratio(AOR) is calculated as

AOR = mean(
min(offsets) − max(onsets)
max(offsets) − min(onsets)

) (14)

where“onsets” refers to the onset times of both the reference
and the corresponding transcribed note, and“offsets” accord-
ingly to the offset times [11].

In Figure 3, the Predominant-F0 estimation is robust, be-
cause the error rates are all around 5% and do not increase
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Fig. 5. Pianorolls of synthesized music (left) and the tran-
scribed result (right). The horizontal axis refer to beat.

with the polyphony number. The error rates of Multiple-F0
are much higher, and increase with the polyphony number
significantly, however, this result is promising as well, be-
cause all the error rates are estimated without the polyphony
information. Moreover, from the right panel, it can be seen
that AORs are around 90%. This indicates that the estimation
of onset and offset times are accurate.

Figure 4 shows the histograms of polyphony estimation.
The asterisk indicates the true polyphony in each panel. We
can see that this method can estimate the polyphony num-
ber approximately while the result becomes worse when the
polyphony number is large. This indicates the adjustment of
the threshold τ in Eq. (12) should be investigated further.

3.2. Synthesized Music Piece

A piece of synthesized ensemble music data was also tested
for the proposed algorithm. It was a four part chamber music
played by flute, oboe, clarinet and bassoon respectively.

Figure 5 are the pianorolls of the original music and the
transcribed result. Note that the transcribed pianoroll is ex-
actly the same as the original one in the 3rd, 4th, 5th and
7th beats. In the 1st and 2nd beats, the note F5 is missing,
since it probably gives overmuch support to the note F4 and
is regarded as the second partial of F4. In the 6th, 10th, 11th
and 12th beats, fake notes are detected which are partials of
the true notes. Note that these octave mistakes are common
in the MPE problem and do not affect the quality of the re-
synthesize audio severely. Re-synthesized audio examples are
available at http://mperesult.googlepages.com.

3.3. Discussions

Compared with other algorithms, our method has the follow-
ing advantages. (1) The estimation of F0s uses time infor-
mation since it is operated on the events rather than a single
frame. The process is more like the perceptual grouping pro-
cess of human. (2) The output of this algorithm is note events,
including not only fundamental frequencies but also onset and
offset times of them (Figure 3). This information can be di-
rectly used in the Automatic Transcription task (Figure 5). (3)
Our method does not need to be fed the number of concurrent
sound. It is noticed that many other methods can not handle
the MPE problem well without the polyphony information.

Like other MPE algorithms, the proposed method also
has some limitations. (1) Significant changes of frequencies
caused by vibrato and glissando may deteriorate the perfor-
mance of the partial events extraction phase. (2) Eq.(8) limits
the algorithm in harmonic instruments. Fortunately, most in-
strument sounds are harmonic. (3) The case of “missing F0”
can not be handled, since the missing F0 events are not con-
tained in the partial events set where F0s are chosen from.
Note that all these limitations pose great challenges to all the
existing algorithms.

4. CONCLUSIONS

In this paper, we propose a new MPE method which is based
on the partial events rather than the frame level. This method
can also estimate the number of concurrent sounds, the onset
and offset times of the notes. It shows good performance on
both randomly mixed chord signals and synthesized ensemble
music. There are still some questions remaining unanswered
such as the adjustment of the threshold τ and the risks in the
extraction of partial events.
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