

One-class Learning Towards Synthetic Voice Spoofing Detection

You Zhang, Fei Jiang, Zhiyao Duan

University of Rochester, USA

Y. Zhang, F. Jiang and Z. Duan, "One-Class Learning Towards Synthetic Voice Spoofing Detection," in *IEEE Signal Processing Letters*, vol. 28, pp. 937-941, 2021, doi: <u>10.1109/LSP.2021.3076358</u>.

Outline

1

UNIVERSITY of ROCHESTER You (Neil) Zhang

You (Neil) Zhang

UNIVERSITY of ROCHESTER

Anti-spoofing

UNIVERSITY of ROCHESTER

• Spoofing Countermeasure: Detect spoofing attacks

Research question

Motivation:

- The fast development of speech synthesis are posing increasingly more threat.
- The **distribution mismatch** between the training set and test set for the **spoofing** attacks class.
- How can the anti-spoofing system defend against unseen spoofing attacks?

(Generalization ability)

Outline

UNIVERSITY of ROCHESTER

You (Neil) Zhang you.z

Definition of one-class

 "In one-class classification, one of the classes (referred to as the positive class or target class) is well characterized by instances in the training data. For the other class (nontarget), it has either no instances at all, very few of them, or they do not form a statistically-representative sample of the negative concept."

Khan, Shehroz S., and Michael G. Madden. "A survey of recent trends in one class classification." *Irish Conference on Artificial Intelligence and Cognitive Science*. Springer, Berlin, Heidelberg, 2009.

One-class learning (OC-Softmax)

(a) Original Softmax (b) AM-Softmax (c) OC-Softmax (Proposed)

Fig. 1. Illustration of the original Softmax and AM-Softmax for binary classification, and our proposed OC-Softmax for one-class learning. (The embeddings and the weight vectors shown are non-normalized).

You (Neil) Zhang

One-Class Softmax (Proposed)

 $w_1 - w_0$

UNIVERSITY of ROCHESTER

-

 $w_1 - w_0$

Comparing loss

• Softmax

$$\mathcal{L}_{S} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{\boldsymbol{w}_{y_{i}}^{T} \boldsymbol{x}_{i}}}{e^{\boldsymbol{w}_{y_{i}}^{T} \boldsymbol{x}_{i}} + e^{\boldsymbol{w}_{1-y_{i}}^{T} \boldsymbol{x}_{i}}}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{(\boldsymbol{w}_{1-y_{i}} - \boldsymbol{w}_{y_{i}})^{T} \boldsymbol{x}_{i}}\right),$$

• AM-Softmax

$$\mathcal{L}_{AMS} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{\alpha(\hat{\boldsymbol{w}}_{y_i}^T \hat{\boldsymbol{x}}_i - m)}}{e^{\alpha(\hat{\boldsymbol{w}}_{y_i}^T \hat{\boldsymbol{x}}_i - m)} + e^{\alpha \hat{\boldsymbol{w}}_{1-y_i}^T \hat{\boldsymbol{x}}_i}} \\
= \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{\alpha \left(m - (\hat{\boldsymbol{w}}_{y_i} - \hat{\boldsymbol{w}}_{1-y_i})^T \hat{\boldsymbol{x}}_i \right)} \right),$$

OC-Softmax

UNIVERSITY of ROCHESTER

$$\mathcal{L}_{OCS} = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{\alpha (m_{y_i} - \hat{\boldsymbol{w}}_0 \hat{\boldsymbol{x}}_i)(-1)^{y_i}} \right).$$

You (Neil) Zhang

Outline

You (Neil) Zhang

Dataset

ASVspoof 2019 Logical Access (TTS + VC)

- Bona fide speech (VCTK dataset)
- 6 known attacks (appear in training set)
- 13 unknown attacks (only appear

in eval set)

·)	Bona fide	Spooted	
	# utterance	# utterance	attacks
Training	2,580	22,800	A01 - A06
Development	2,548	22,296	A01 - A06
Evaluation	7,533	63,882	A07 - A19

Evaluation of OC-Softmax

 Results on the development and evaluation sets of the ASVspoof 2019 LA scenario using different losses

Loss	Dev Set		Eval Set		
L055	EER (%)	t-DCF	EER (%)	t-DCF	
Softmax	0.35	0.010	4.69	0.125	
AM-Softmax	0.43	0.013	3.26	0.082	
Proposed	0.20	0.006	2.19	0.059	

• OC-Softmax performs the best on unseen attacks.

Feature Embedding Visualization

Comparison with single systems

System	EER (%)	min t-DCF
CQCC + GMM [3]	9.57	0.237
LFCC + GMM [3]	8.09	0.212
Chettri et al. [22]	7.66	0.179
Monterio et al. [14]	6.38	0.142
Gomez-Alanis et al. [16]	6.28	-
Aravind et al. [18]	5.32	0.151
Lavrentyeva et al. [21]	4.53	0.103
ResNet + OC-SVM	4.44	0.115
Wu et al. [17]	4.07	0.102
Tak et al. [19]	3.50	0.090
Chen et al. [15]	3.49	0.092
Proposed	2.19	0.059

UNIVERSITY of ROCHESTER

Results in the leader board

Ours 0.059 2.19

UNIVERSITY^o

ASVspoof 2019 LA scenario							
#	ID	t-DCF	EER	#	ID	t-DCF	EER
1	T05	0.0069	0.22	26	T57	0.2059	10.65
2	T45	0.0510	1.86	27	T42	0.2080	8.01
3	T60	0.0755	2.64	28	<i>B02</i>	0.2116	8.09
4	T24	0.0953	3.45	29	T17	0.2129	7.63
5	T50	0.1118	3.56	30	T23	0.2180	8.27
6	T41	0.1131	4.50	31	T53	0.2252	8.20
7	T39	0.1203	7.42	32	T59	0.2298	7.95
8	T32	0.1239	4.92	33	B 01	0.2366	9.57
9	T58	0.1333	6.14	34	T52	0.2366	9.25
10	T04	0.1404	5.74	35	T40	0.2417	8.82
11	T01	0.1409	6.01	36	T55	0.2681	10.88
12	T22	0.1545	6.20	37	T43	0.2720	13.35
13	T02	0.1552	6.34	38	T31	0.2788	15.11
14	T44	0.1554	6.70	39	T25	0.3025	23.21
15	T16	0.1569	6.02	40	T26	0.3036	15.09
16	T08	0.1583	6.38	41	T47	0.3049	18.34
17	T62	0.1628	6.74	42	T46	0.3214	12.59
18	T27	0.1648	6.84	43	T21	0.3393	19.01
19	T29	0.1677	6.76	44	T61	0.3437	15.66
20	T13	0.1778	6.57	45	T11	0.3742	18.15
21	T48	0.1791	9.08	46	T56	0.3856	15.32
22	T10	0.1829	6.81	47	T12	0.4088	18.27
23	T54	0.1852	7.71	48	T14	0.4143	20.60
24	T38	0.1940	7.51	49	T20	1.0000	92.36
25	T33	0.1960	8.93	50	T30	1.0000	49.60

- Could rank between the 2nd and 3rd
- Top systems all use model fusion, but we do not

Outline

UNIVERSITY of ROCHESTER

You (Neil) Zhang you

Takeaways

 One-class learning aims to compact the target class representation in the embedding space, set a tight classification boundary around it and push away non-target.

 The proposed OC-Softmax could improve the generalization ability of anti-spoofing system against unseen spoofing attacks.

Follow-up works

- Channel Robustness
 - You Zhang, Ge Zhu, Fei Jiang, and Zhiyao Duan, "An Empirical Study on Channel Effects for Synthetic Voice Spoofing Countermeasure Systems", in *Proc. Interspeech*, pp. 4309-4313, 2021. [link][code][video]
 - Xinhui Chen*, You Zhang*, Ge Zhu*, and Zhiyao Duan, "UR Channel-Robust Synthetic Speech Detection System for ASVspoof 2021", in *Proc. ASVspoof 2021 Workshop*, pp. 75-82, 2021. (* equal contribution) [link][code][video]
- Joint Optimization with ASV
 - You Zhang, Ge Zhu, and Zhiyao Duan, "A Probabilistic Fusion Framework for Spoofing Aware Speaker Verification", in *Proc. Odyssey*, 2022. [link][code]

Future directions

- Defend against diversified spoofing attacks
 - $_{\odot}$ TTS+VC, replay
 - $_{\odot}$ Partially spoofed
 - Adversarial attack
- Explainable anti-spoofing

 $_{\odot}$ Understanding the difference between synthetic vs. natural speech

- Visually-informed anti-spoofing
 - $_{\odot}$ Deepfake detection, multimedia forensics

UNIVERSITY of ROCHESTER

Thank you ! Q & A

You (Neil) Zhang

Resources

Full Paper

UNIVERSITY of ROCHESTER

Code

You (Neil) Zhang you.zhang@rochester.edu

Takeaways

 One-class learning aims to compact the target class representation in the embedding space, set a tight classification boundary around it and push away non-target.

• One-class learning could improve the **generalization ability** of anti-spoofing system against **unknown spoofing attacks**.

You (Neil) Zhang

You (Neil) Zhang

You (Neil) Zhang you.zhang

Voice Biometrics

UNIVERSITY of ROCHESTER

• Speaker Verification: Verify the identity of a speaker

You (Neil) Zhang

Spoofing attacks

Impersonation

-- twins and professional mimics, no database available

Replay

-- reuse pre-recorded audio, most accessible

- Text-to-speech (TTS)
 - -- convert written text into spoken words with speech synthesis
- Voice conversion (VC)
 - -- convert speech from source speaker to target speaker's voice

ASVspoof Challenge

Logical access (LA)
 Text-to-speech (TTS)
 Voice conversion (VC)
 TTS+VC

-- algorithm-related artifacts **dur current focus**

- Physical access (PA) -- pre-recorded, replay
 - -- device-related artifacts

UNIVERSITY of ROCHESTER

Softmax

AUDIO INFORMATION RESEARCH

~ 0

· · ·

• Training (Loss):

$$egin{split} \mathcal{L}_S &= -rac{1}{N}\sum_{i=1}^N\lograc{e^{oldsymbol{w}_{y_i}^Toldsymbol{x}_i}}{e^{oldsymbol{w}_{y_i}^Toldsymbol{x}_i}+e^{oldsymbol{w}_{1-y_i}^Toldsymbol{x}_i}} \ &= rac{1}{N}\sum_{i=1}^N\logig(1+e^{(oldsymbol{w}_{1-y_i}-oldsymbol{w}_{y_i})^Toldsymbol{x}_i}ig), \end{split}$$

• Inference (Score):

$$\mathcal{S}_{S} = rac{e^{oldsymbol{w}_{0}^{T}oldsymbol{x}_{i}}}{e^{oldsymbol{w}_{0}^{T}oldsymbol{x}_{i}} + e^{oldsymbol{w}_{1}^{T}oldsymbol{x}_{i}}}$$

you.zhang@rochester.edu

You (Neil) Zhang

Additive Margin Softmax

OC-Softmax output as probability

$$\begin{split} L_{OCS} &= \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{\alpha \left(m_{y_i} - \hat{\boldsymbol{w}}^T \hat{\boldsymbol{x}}_i \right) (-1)^{y_i}} \right) \\ &= \frac{1}{N} \left(\sum_{|\Omega|} \log \left(1 + e^{\alpha \left(m_0 - \hat{\boldsymbol{w}}^T \hat{\boldsymbol{x}}_i \right)} \right) + \sum_{|\overline{\Omega}|} \log \left(1 + e^{\alpha \left(\hat{\boldsymbol{w}}^T \hat{\boldsymbol{x}}_i - m_1 \right)} \right) \right) \\ &= -\frac{1}{N} \left(\sum_{|\Omega|} \log \frac{1}{1 + e^{\alpha \left(m_0 - \hat{\boldsymbol{w}}^T \hat{\boldsymbol{x}}_i \right)}} + \sum_{|\overline{\Omega}|} \log \frac{1}{1 + e^{\alpha \left(\hat{\boldsymbol{w}}^T \hat{\boldsymbol{x}}_i - m_1 \right)}} \right) \end{split}$$

You (Neil) Zhang

UNIVERSITY of ROCHESTER