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ABSTRACT
Cross-modal audio-visual perception has been a long-lasting topic
in psychology and neurology, and various studies have discovered
strong correlations in human perception of auditory and visual
stimuli. Despite work on computational multimodal modeling, the
problem of cross-modal audio-visual generation has not been sys-
tematically studied in the literature. In this paper, we make the first
attempt to solve this cross-modal generation problem leveraging the
power of deep generative adversarial training. Specifically, we use
conditional generative adversarial networks to achieve cross-modal
audio-visual generation of musical performances. We explore dif-
ferent encoding methods for audio and visual signals, and work on
two scenarios: instrument-oriented generation and pose-oriented
generation. Being the first to explore this new problem, we com-
pose two new datasets with pairs of images and sounds of musical
performances of different instruments. Our experiments using both
classification and human evaluation demonstrate that our model
has the ability to generate one modality, i.e., audio/visual, from the
other modality, i.e., visual/audio, to a good extent. Our experiments
on various design choices along with the datasets will facilitate
future research in this new problem space.
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1 INTRODUCTION
Cross-modal perception, or intersensory phenomenon, has been
a long-lasting research topic in numerous disciplines such as psy-
chology [3, 28, 30, 31] , neurology [27], and human-computer in-
teraction [14, 29], and recently gained attention in computer vi-
sion [17], audition [10] and multimedia analysis [6, 19]. In this
paper, we focus on the problem of cross-modal audio-visual gener-
ation. Our system is trained with pairs of visual and audio signals,
which are typically contained in videos, and is able to generate one
modality (visual/audio) given observations from the other modality
(audio/visual). Fig. 1 shows results generated by our system on a
musical performance video dataset.

Learning from multimodal input is challenging—despite the
many works in cross-modal analysis, a large portion of the ef-
fort, e.g., [6, 19, 21, 32], has been focused on indexing and retrieval
instead of generation. Although joint representations of multiple
modalities and their correlations are explored, these methods only
need to retrieve samples that exist in a database. They do not, for
example, need to model the details of the samples, which is required
in data generation. On the contrary, the generation task requires
generating novel images and sounds that are unseen or unheard,
and is of great interest to many applications, such as creating art
works [8, 33] and zero-shot learning [2]. It requires learning a com-
plex generative function that produces meaningful outputs. In the
case of cross-modality generation, this function has to map from
onemodality space to the other modality space, making the problem
even more challenging and interesting.

Generative Adversarial Networks (GANs) [7] have become an
emerging topic in deep generative models. Inspired by Reed et al.’s
work on generating images conditioned on text captions [23], we
design conditional GANs for cross-modal audio-visual generation.
Different from their work, we make the networks to handle inter-
sensory generation—generate images conditioned on sounds and
generate sounds conditioned on images. We explore two different
tasks when generating images: instrument-oriented generation (see
Fig. 1) and pose-oriented generation (see Fig. 10), where the latter
task is treated as fine-grained generation comparing to the former.

Another key aspect to the success of cross-modal generation is
being able to effectively encode and decode information contained
in different modalities. For images, Convolutional Neural Networks
(CNNs) are known to perform well in various tasks. Therefore, we
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Figure 1: Generated outputs using our cross-modal audio-visual generation models. Top three rows are musical performance
images generated by our Sound-to-Image (S2I) networks from audio recordings. S2I-C is our main model. S2I-A and S2I-N are
variations of our main model. Bottom row contains the log-mel spectrograms of generated audio of different instruments
from musical performance images using our Image-to-Sound (I2S) network. Each column represents one instrument type.

train a CNN, use the output of the fully connected layer before
softmax as the image encoder and use several deconvolution layers
as the decoder/generator. For sounds, we also use CNNs to encode
and decode. The input to the networks, however, cannot be the
raw waveforms. Instead, we first transform the time-domain signal
into the time-frequency or time-quefrency domain. We explore five
different transformations and find that the log-mel spectrogram
gives the best result.

To explore this new problem space, we compose two datasets,
e.g., Sub-URMP and INIS. The Sub-URMP dataset consists of paired
images and sounds extracted from 72 single-instrument musical
performance videos of 13 kinds of instruments in the University of
Rochester Multimodal Musical Performance (URMP) dataset [11].
In total 80,805 images are extracted and each image is paired with a
half-second long sound clip. The INIS dataset contains ImageNet [4]
images of five musical instruments, e.g., drum, saxophone, piano,
guitar and violin. We pair each image with a short sound clip of
a solo performance of the corresponding instrument. We conduct
experiments to evaluate the quality of our generated images and
sound spectrograms using both classification and human evaluation.
Our experiments demonstrate that our conditional GANs can, in-
deed, generate one modality (visual/audio) from the other modality
(audio/visual) to a good extent at both the instrument-level and the
pose-level. We also compare and evaluate various design choices
in our experiments.

The contributions are three-fold. First, to our best knowledge, we
introduce the problem of cross-modal audio-visual generation and
are the first to use GANs on intersensory generation. Second, we
propose new network structures and adversarial training strategies
for cross-modal GANs. Third, we compose two datasets that will
be released to facilitate future research in this new problem space.

The paper is organized as follows. We discuss related work and
background in Sec. 2. We introduce our network structure, training
strategies and encoding methods in Sec. 3. We present our datasets

in Sec. 4 and experiments in Sec. 5. Finally, we conclude our paper
in Sec. 6.

2 RELATEDWORK
Our work differs from other various work in cross-modal retrieval
[6, 19, 21, 32] as stated in Sec. 1. In this section, we further distin-
guish our work from that in multimodal representation learning.
Ngiam et al. [16] learn a shared representation between audio-visual
modalities by training a stacked multimodal autoencoder. Srivas-
tava and Salakhutdinov [26] propose a multimodal deep Boltzmann
machine to learn a joint representation of images and their text
tags. Kumar et al. [9] learn an audio-visual bimodal compositional
model using sparse coding. Our work differs from them by using
the adversarial training framework that allows us to learn a much
deeper representation for the generator.

Adversarial training has recently received a significant amount
of attention [1, 5, 7, 13, 20, 23, 24]. It has been shown to be effective
in various tasks, such as generating semantic segmentations [12, 25],
improving object localization [1], image-to-image translation [8]
and enhancing speech [18]. We also use adversarial training but
on a novel problem of cross-modal audio-visual generation with
music instruments and human poses that differs from other works.

2.1 Background
Generative Adversarial Networks (GANs) are introduced in the
seminal work of Goodfellow et al. [7], and consist of a generator
network G and a discriminator network D. Given a distribution,
G is trained to generate samples that are resembled from this dis-
tribution, while D is trained to distinguish whether the sample
is genuine. They are trained in an adversarial fashion playing a
min-max game against each other:

min
G

max
D

V (D,G) =Ex∼pdata (x )[logD(x)]+ (1)

Ex∼pz (z)[log(1 − D(G(z)))] ,
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Figure 2: The overall diagram of our model. This figure consists of (a) an S2I GAN network and (b) an I2S GAN network. Each
network contains an encoder, a generator and a discriminator, respectively.

where pdata is the target data distribution and z is drawn from a
random noise distribution pz .

Conditional GANs [5, 15] are variants of GANs, where one is in-
terested in directing the generation conditioned on some variables,
e.g., labels in a dataset. It has the following form:

min
G

max
D

V (D,G) =Ex∼pdata (x )[logD(x |y)]+ (2)

Ex∼pz (z)[log(1 − D(G(z |y)))] ,

where the only difference from GANs is the introduction of y that
represents the condition variable. This condition is passed to both
the generator and the discriminator networks. One particular ex-
ample is [23], where they use conditional GANs to generate images
conditioned on text captions. The text captions are encoded through
a recurrent neural network as in [22]. In this paper, we use condi-
tional GANs for cross-modal audio-visual generation.

3 CROSS-MODAL GENERATION MODEL
The overall diagram of our model is shown in Fig. 2, where we have
separate networks for Sound-to-Image (S2I) and Image-to-Sound
(I2S) generation. Each of them consists of three parts: an encoder
network, a generator network, and a discriminator network. We
describe the generator and discriminator networks in Sec. 3.1, and
their training strategies in Sec. 3.2.We present the encoder networks
for sound and image in Sec. 3.3 and Sec. 3.4, respectively.

3.1 Generator and Discriminator Networks
S2I Generator The S2I generator network is denoted as:GS 7→I :
R |φ(A) | × RZ 7→ RI . The sound encoding vector of size 128 is
first compressed to a vector of size 64 via a fully connected layer
followed by a leaky ReLU, which is denoted as φ(A). Then it is
concatenated with a random noise vector z ∈ RZ . The generator
takes this concatenated vector and produces a synthetic image
x̂I ← GS 7→I (z,φ(A)) of size 64x64x3.
S2I Discriminator The S2I discriminator network is denoted as:
DS 7→I : RI × R |φ(A) | 7→ [0, 1]. It takes an image and a compressed
sound encoding vector and produces a score for this pair being a
genuine pair of image and sound.
I2S Generator Similarly, the I2S generator network is denoted
as: GI 7→S : R |ϕ(I ) | × RZ 7→ RA. The image encoding vector of size
128 is compressed to size 64 via a fully connected layer followed
by a leaky ReLU, denoted as ϕ(I ), and concatenated with a noise z.
The generator takes it and do a forward pass to produce a synthetic
sound spectrogram x̂A ← GI 7→S (z,ϕ(I )) of size 128x34.
I2S Discriminator The I2S discriminator network is denoted
as: DI 7→S : RA ×R |ϕ(I ) | 7→ [0, 1]. It takes a sound spectrogram and
a compressed image encoding vector and produces a score for this
pair being a genuine pair of sound and image.

Our implementation is based on the GAN-CLS by Reed et al. [23].
We extend it to handle the challenges in operating sound spectro-
grams which have a rectangular size. For the I2S generator network,
after getting a 32x32x128 feature map, we apply two successive
deconvolution layers, where each has a kernel of size 4x4 with
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stride 2x1 and 1x1 zero-padding, and obtain a matrix of size 128x34.
The I2S discriminator network takes sound spectrograms of size
128x34. To handle ground-truth spectrograms, we use the numpy
resize function to resize them from 128x44 to 128x34. We apply
two successive convolution layers, where each has a kernel of size
4x4 with stride 2x1 and 1x1 zero-padding. This results in a 32x32
square feature map. In practice, we have observed that adding more
convolution layers in the I2S networks helps get better output in
fewer epochs. We add two layers to the generator network and 12
layers to the discriminator network. During evaluation, we use the
numpy resize function to get a matrix of size 128x44 for comparing
with ground-truth spectrograms.

3.2 Adversarial Training Strategies
Without loss of generality, we assume that the training set contains
pairs of images and sounds {(I ji ,A

j
i )}, where I

j
i represents the jth

image of the ith instrument category in our dataset and Aj
i repre-

sents the corresponding sound. Here, i ∈ {1, 2, 3 . . . , 13} represents
the index to one of the musical instruments in our dataset, e.g.,
cello or violin. Note that even images and sounds within the same
musical instrument category differ in terms of the player, pose,
and musical note. We use I−i to represent the set of all images of
instruments of all the categories except the ith category, and use
I−ji to represent the set of all images in the ith instrument category
except the jth image. The sound counterparts, A−i and A−ji , are
defined likewise.

Based on the input, we define three kinds of discriminator out-
puts: Sr , Sf and Sw . Here, Sr is the score for a true pair of image
and sound that is contained in our training set, and Sf is the score
for the pair where one modality is generated based on the other
modality, and Sw is the score for the wrong pair of image and sound.
Wrong pairs are sampled from the training dataset. The generator
network is trained to maximize

log(Sf ) , (3)

and the discriminator is trained to maximize

log(Sr ) + (log(1 − Sw ) + log(1 − Sf ))/2 . (4)

Note that by using different types of wrong pairs, we can eventually
guide the generator to solve various tasks.
S2I Generation (Instrument-Oriented) We train a single S2I
model over the entire dataset so that it can generate musical perfor-
mance images of different instruments from different input sounds.
In other words, the same model can generate an image of person-
playing-violin from an unheard sound of violin, and can generate
an image of person-playing-saxophone from an unheard sound of
saxophone.We apply the following training settings:

x̂I ← GS 7→I (φ(Aj
i ), z)

Sf = DS 7→I (x̂I ,φ(Aj
i ))

Sr = DS 7→I (I ji ,φ(A
j
i ))

Sw = DS 7→I (ω(I−i ),φ(Aj
i )) , (5)

where x̂I is the synthetic image of size 64x64x3, z is the random
noise vector and φ(Aj

i ) is the compressed sound encoding. ω(·) is a
random sampler with a uniform distribution, and it samples images

from the wrong instrument category to construct wrong pairs for
calculating Sw . We use the sound-to-image network structure as in
Fig. 2 (a).
S2I Generation (Pose-Oriented) We train a set of S2I models
with one for eachmusical instrument category. Eachmodel captures
the relations between different human poses and input sounds of
one instrument. For example, the model trained on violin image-
sound pairs can generate a series of images of person-playing-violin
with different hand movements according to different violin sounds.
This is a fine-grained generation task compared to the previous
instrument-oriented task. We apply the following training settings:

x̂I ← GS 7→I (φ(Aj
i ), z)

Sf = DS 7→I (x̂I ,φ(Aj
i ))

Sr = DS 7→I (I ji ,φ(A
j
i ))

Sw = DS 7→I (ω(I−ji ),φ(A
j
i )) , (6)

where the main difference from Eq. (5) is that here in constructing
the wrong pairs we sample images fromwrong images in the correct
instrument category, I−ji , instead of images in wrong instrument
categories, I−i . Again, we use the network structure as in Fig. 2 (a).
I2S Generation We train a single I2S model over the entire
dataset so that it can generate sound magnitude spectrograms of
different instruments from different musical performance images.
In other words, the same model can generate For example, the
model generates a sound spectrogram of drum given an image that
has a drum. The generator should not make mistakes on the type
of instruments while generating spectrograms. In this case, we set
the training as the following:

x̂A ← GI 7→S (ϕ(I ji ), z)

Sf = DI 7→S (x̂A,ϕ(I ji ))

Sr = DI 7→S (Aj
i ,ϕ(I

j
i ))

Sw = DI 7→S (ω(A−i ),ϕ(I ji )) . (7)

Recall that x̂A is the generated sound spectrogram with size 128x34,
and ϕ(I ji ) is the compressed image encoding. We use the image-to-
sound network as in Fig. 2 (b).

3.3 Sound Encoder Network
The sound files are sampled at 44,100 Hz. To encode sound, we
first transform the raw audio waveform into the time-frequency
or time-quefrency domain. We explore a set of representations
including the Short-Time Fourier Transform (STFT ), Constant-Q
Transform (CQT ), Mel-Frequency Cepstral Coefficients (MFCC),
Mel-Spectrum (MS) and Log-amplitude of Mel-Spectrum (LMS).
Figure 3 shows images of the above-mentioned representations for
the same sound. We can see that LMS shows clearer patterns than
other representations.

We further run a CNN-based classifier on these different repre-
sentations. We use four convolutional layers and three fully con-
nected layers (see Fig. 4). In order to prevent overfitting, we add
penalties (l2 = 0.015) on layer parameters in fully connected layers,
and we apply dropout (0.7 and 0.8 respectively) to the last two
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Figure 3: Different representations of audio that are fed
to the sound encoder network. The horizontal axis is time
and the vertical axis is amplitude (for Wave), frequency (for
STFT, MS, CQT, and LMS) or quefrency (for MFCC).

Accuracy MS LMS CQT MFCC STFT
3 layers 62.01% 84.12 % 73.00% 80.06% 74.05%
4 layers 66.09% 87.44 % 77.78% 81.05% 75.73%

Table 1: Accuracy of audio classifier. We apply three Conv
layers and four Conv layers respectively and it shows that
the best performance is achieved using four Conv layers.

layers. The classification accuracies obtained by different repre-
sentations are shown in Table 1. We can see that LMS shows the
highest accuracy. Therefore, we chose LMS over other representa-
tions as the input to the audio encoder network. Furthermore, LMS
is smaller in size as compared to STFT , which saves the running
time. Finally, we feed the output of the FC layer (size: 1x128) of
CNNs classifier to GAN network as the audio feature.

Further merit of LMS is detailed in the experiment section. We
thus choose LMS to represent the audio. To calculate LMS , a Short-
Time Fourier Transform (STFT) with a 2048-point FFT window
with a 512-point hop size is first applied to the waveform to get the
linear-amplitude linear-frequency spectrogram. Then a mel-filter
bank is applied to warp the frequency scale into the mel-scale, and
the linear amplitude is converted to the logarithmic scale as well.

3.4 Image Encoder Network
For encoding images, we train a CNN with six convolutional layers
and three fully connected layers (see Fig. 5). All the convolution
kernels are of size 3x3. The last layer is used for classification with a
softmax loss. This CNN image classifier achieves a high accuracy of
more than 95 percent on the testing set. After the network is trained,
its last layer is removed, and the feature vector of the second to
the last layer having size 128 is used as the image encoding in our
GAN network.

4 DATASETS
To the best of our knowledge, there is no existing dataset that we
can directly work on. Therefore, we compose two novel datasets
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Figure 4: Audio classifier trained with instrument category
loss.
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Figure 5: Image classifier trained with instrument category
loss.

to train and evaluate our models, and they are a Subset of URMP
(Sub-URMP) dataset and a ImageNet Image-Sound (INIS) dataset.

Sub-URMP dataset is assembled from the original URMP dataset [11].
It contains 13 musical instrument categories. In each category, there
are recorded videos of 1 to 4 persons playing different music pieces
(see Fig. 6). We separate about 80% videos for training and about
20% for testing and ensure that a video will not appear in both train-
ing and testing sets. We use a sliding window method to obtain
the samples. The size of the sliding window is 0.5 seconds and the
stride is 0.1 seconds. We use the first frame of each video chunk to
represent the visual content of the sliding window. The audio files
are in WAV format with a sampling rate of 44.1 kHz and a bit depth
of 16. The image files are 1080P (1080x1920). There are a total of
80, 805 sound-image pairs in our composed Sub-URMP dataset. The
basic information is shown as Table 2. We use this dataset as our
main dataset to evaluate models in Sec. 5.
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Bassoon Cello Clarinet Double bass Horn Oboe Sax Trombone Trumpet Tuba Viola Violin Flute

Figure 6: Examples from the Sub-URMP dataset. Each category contains roughly 6 different complete solo pieces.

Category Cello Double Bass Oboe Sax Trumpet Viola Bassoon Clarinet Horn Flute Trombone Tuba Violin
Training set 9800 1270 4505 7615 1015 6530 1735 8125 5540 5690 8690 3285 7430
Testing Set 1030 1180 390 910 520 485 390 945 145 525 925 525 945

Table 2: Distribution of image-sound pairs in the Sub-URMP dataset.

Drum Saxphone Piano Guitar Violin

Ground
 Truth

Generated 
 Image

Figure 7: Examples from the INIS dataset. Bottom row con-
tains generated images by our S2I-A model . Due to large
variation, images are not as good as those generated in the
Sub-URMP dataset.

Category Piano Saxphone Violin Drum Guitar
Complete songs 23 7 21 7 19
Training set 766 1171 631 1075 818
Testing set 327 500 269 460 349

Table 3: Distribution of image-sound pairs in INIS dataset.

All images in the INIS dataset are collected from ImageNet,
shown in Fig. 7. There are five categories, and each contains roughly
1200 images. In order to eliminate noise, all images are screened
manually. Audio files of this dataset come form a total of 77 solo
performances downloaded from the Internet, such as a piano perfor-
mance of Beethoven’s Moonlight Sonata and a violin performance
of Led Zeppelin’s Bonzo’s Montreux. We sample 7200 small audio
chunks from all pieces with each having 0.5 second duration. We
match the audio chunks to the instrument images to manually cre-
ate sound-image pairs. Table 3 shows the statistics of this dataset.

5 EXPERIMENTS
We first introduce our model variations in Sec. 5.1, and then present
our evaluation on instrument-oriented Sound-to-Image (S2I) gen-
eration in Sec. 5.2, pose-oriented S2I generation in Sec. 5.3 and
Image-to-Sound (I2S) generation in Sec. 5.4.

5.1 Model Variations
We have three variations for our sound-to-image network.
S2I-C network This is our main sound-to-image network that
uses classification-based sound encoding. The model is described
in Sec. 3.
S2I-N network This model is a variation of the S2I-C network. It
uses the same sound encoding but it is trainedwithout themismatch
Sw information (see Eq. 5).
S2I-A network This model is a variation of the S2I-C network
and differs in that it uses autoencoder-based sound encoding. Here,
we use a stacked convolution-deconvolution autoencoder to encode
sound. We use four stacks. For the first three stacks, we apply
convolution and deconvolution, where the output of convolution is
given as input to the next layer in stacks. In the last stack, the input
(a 2D array of shape 120x36) is flattened and projected to a vector
of size 128 via a fully connected layer. The network is trained to
minimize MSE for all stacks in order.

5.2 Evaluating Instrument-Oriented S2I
Generation

We show qualitative examples in Fig. 1 for S2I generation. It can
be seen that the quality of the images generated by S2I-C is bet-
ter than its variations. This is because the classifier is explicitly
trained to classify the instruments from sound. Therefore, when
this encoding is given as a condition to the generator network, it
faces less ambiguity in deciding what to generate. Furthermore,
while training the classifier, we observe the classification accuracy,
which is a direct measurement of how discriminative the encoding
is. This is not true in the case of autoencoder, where we know the
loss function value, but we do not know if it is a good condition
feature in our conditional GANs.

5.2.1 Human Evaluation. We have human subjects evaluate
our sound-to-image generation. They are given 10 sets of images for
each instrument. Each set contains four images; they are generated
by S2I-C, S2I-N and S2I-A and a ground-truth image to calibrate
the scores. Human subjects are well-informed about the music
instrument category of the image sets. However they are not aware
of the mapping between images to methods. They are asked to
score the images on a scale of 0 to 3, where the meaning of each
score is given in Table. 4.
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Score Meaning
3 Realistic image & match instrument
2 Realistic image & mismatch instrument
1 Fair image (player visible, instrument not visible)
0 Unrealistic image
Table 4: Scoring guideline of human evaluation.

Average Score

: 1.16
: 1.81
: 2.59

: 0.84

Vote  number

H
um

an
 E

va
lu
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Figure 8: Result of human evaluation on generated images.
The upper right shows average scores of S2IGANs onhuman
evaluation.

Figure 8 shows the results of human evaluation. More than half
of all images generated by S2I-C are considered as realistic by our
human subjects, i.e. getting score 2 or 3. One third of them get score
3. This is much higher than S2I-N and S2I-A. In terms of mean score,
S2I-C gets 1.81 where the ground-truth gets 2.59 due to small size;
all images are evaluated at size 64x64.

Images from three instruments in particular were rated with
a very high score among all images generated by S2I-C. Out of
30 Cello images, 18 received highest score of 3, while 25 received
scores of 2 or above. Cello images received an average score of 1.9.
Out of 30 Flute images, 15 received the highest possible score of 3,
while 24 received a score of 2 or above. Flute images also received
an average score of 2.1. Out of 30 Double-Bass images, 18 received
a score of 3, while 21 received a score of 2 or more. The average
score that Double-Bass images received was 2.02.

5.2.2 Classification Evaluation. We use the classifier used
for encoding images (see Fig. 5) for evaluating our generated images.
When classifying real images, the accuracy of the classifier is above
95%, thus we decide to use this classifier (Γ) to verify whether the
generated (fake) images are belong to the expected instrument
categories. We calculate the accuracies on images generated by
S2I-C, S2I-A and S2I-N. Table. 5 shows the results. It shows that
the accuracy of S2I-A and S2I-N is far worse than the accuracy of
S2I-C.

5.2.3 Evolution of Classification Accuracy. Figure 9 shows
the classification accuracy on images generated in both the training
set and the test set. It is plotted for every fifth epoch. The model

Ac
cu
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cy

 Accuracy (a)  Accuracy (b)Epoch number

Figure 9: Evolution of image quality and classification accu-
racy on generated images versus the number of epochs. Ac-
curacy (a) is the percentage of fake images generated in the
training set of S2I-C that are classified into the right cate-
gory by using classifier Γ. Accuracy (b) is the percentage of
fake images generated in the test set of S2I-C that are classi-
fied into the right category by using classifier Γ.

used for plotting this figure is our main S2I-C network. We visualize
generated images for a few key moments in the figure. It shows
that the accuracy increases rapidly up till the 35th epoch, and then
begins to fall sharply till the 50th epoch, after which it again picks
up a little, although the accuracy is still much lower than the peak
accuracy. The training and testing accuracies follow nearly the
same trend.

Epoch 50 has lower accuracy than epoch 60 onwards, despite the
images in epoch 50 looking slightly better than later epochs. One
potential reason is, at epoch 50, the discriminator has not lost its
ability to discriminate real images against fake images, but has lost
its classification ability. Thus the classifier can look at the generated
image and predict a category, but the classes are random. In case
of epochs 60 onwards, the generated images are random, so when
they are fed into the classifier, the classifier just outputs the class
with the most images.

In other words, images in epoch 50 look like images from the
dataset, but they rarely correspond to the right instrument;the
images after epoch 60, however, do not look like images from the
dataset at all, and thus the classifier makes a guess according to the
most populated class.

It is interesting to note that even the fifth epoch has much higher
training and testing accuracies than any epoch after 40. What this
means is that, even after as few as 5 epochs, not only are the images
getting aligned with the expected category, the generated images
also have enough quality so that a classifier can extract distinguish-
ing features from them. This is not true in the case of a random
image like the ones after epoch 50.
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Mode S2I-C S2I-A S2I-N
Training Set 87.37% 10.63% 12.62%
Testing Set 75.56% 10.95% 12.32%

Table 5: Classifier-based evaluation accuracy for images.

5.3 Evaluating Pose-Oriented S2I Generation
The model and the training strategy for our pose-oriented S2I gener-
ation is described in Sec. 3.2. The results we got were encouraging:
various poses can be observed in the generated images (see Fig. 10).
Note that for sound encoding, we used the same image classifier
as S2I-C. It is trained to classify various instruments, not various
poses. With a classifier that is trained to classify music notes, we
expect the results to better match the expected poses.

Figure 10: Generated pose image. The first row shows viola
images. The second and third rows are both violin images,
which show that one singlemodel can generatemultiple per-
sons with different poses. The fourth row is cello, where the
variation of poses is more significant.For one instrument
category, different videos were used in the training and test
sets.

5.4 Evaluating I2S Generation
Because of the loss of phase information and the non-even fre-
quency resolutions, the transformation from waveform to the LMS
representation is not invertible. Therefore, we conduct evaluation
on generated sound spectrograms instead of the waveforms. We use
the sound classifier (see Fig. 4), which is trained to encode sound
for image generation, to evaluate how discriminative the generated
sound spectrograms are. The reason we use this model is because
the model is trained on real LMS , and achieves a high accuracy of
80% on the test set of real LMS . We achieve 11.17% classification
accuracy on the generated LMS .Furthermore, Figure 11 shows the
generated LMS compared to the real LMS . We can see that, in gen-
erated LMS , there is less energy in the high frequency range and
more energy in the low frequency range, which is the same as the
real LMS .

Good
 Example

Bad
 Example

real image Real LMS Fake LMS real image Real LMS Fake LMS

Figure 11: Generated sound spectrogram and ground-truth.

6 CONCLUSION
In this paper, we introduced the problem of cross-modal audio-
visual generation and made the first attempt to use conditional
GANs on intersensory generation. In order to evaluate our models,
we composed two novel datasets, i.e., Sub-URMP and INIS. Our
experiments demonstrated that our model can, indeed, generate
one modality (visual/audio) from the other modality (audio/visual)
to a good extent at both the instrument-level and the pose-level.
For example, our model is able to generate poses of a cello player
given the note that is being played.
Limitation and Future Work. While our I2S model generates
the LMS , the accuracy is low. On the other hand, we are able to gen-
erate various poses using our S2I network, but it is hard to quantify
how good the generation is. Strengthening the Autoencoder would
enable accurate unsupervised generation. The present autoencoder
appears to be limited in terms of extracting good representations.
It is our future work to explore all these directions.
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