Visually Informed Multi-Pitch Analysis of String Ensembles

Karthik Dinesh, Bochen Li, Xinzhao Liu, Zhiyao Duan, Gaurav Sharma

Department of Electrical and Computer Engineering, University of Rochester
March 9, 2017

Pitch in Music

- Pitch - fundamental frequency of musical note from an instrument

- Pitch changes with time as notes and vibrato change

Multi-pitch Analysis

- Multiple music instrument ensemble has pitches corresponding to notes from each instrument - multiple pitches

Introduction: Multi-pitch Estimation and Streaming

Multi-pitch Analysis

- Multi-pitch Estimation (MPE): Estimate instantaneous pitches and polyphony

- Multi-pitch Streaming (MPS): Organize the estimated pitches into streams corresponding to individual sound sources

Introduction: Applications of Multi-pitch Analysis

- Multipitch analysis
- MIR: Music transcription, source separation, melody extraction
- Speech recognition: Multi-talk recognition, prosody analysis
- Musicology: Scholarly analysis
- Music education: Teach music to amateurs

Contribution: Augmenting MPE/MPS with Video

- MPE/MPS based on audio alone challenging
- Video modality provides valuable information
- Multimedia research has gained prominence
- Limited video informed work till date

Visually Informed Multi-pitch Analysis: Framework

- Video module \rightarrow play/non-play (P/NP) activity
- P/NP activity \rightarrow instantaneous polyphony (for MPE) helps organize pitches to active sources (for MPS)

P/NP detection: Framework

Input video
Optical flow
GMM based player detection
Histogram threshold based high motion region detection

High motion region

Multipitch Analysis: Prior Audio-Only Multi-pitch

 Estimation [2]
$\hat{\theta}=\underset{\theta \in \Theta}{\arg \max } £(\mathbf{O} \mid \theta)$
$£(\theta)=£_{\text {peak }}(\theta) . £_{\text {non-peak }}(\theta)$
$\theta \rightarrow$ Set of fundamental frequency
$\mathrm{O} \rightarrow$ Obs. from power spectrum
$\Theta \rightarrow$ space of possible sets of θ

Multipitch Analysis: Video Based Multi-pitch Estimation

- P/NP labels inform instantaneous polyphony
- Instantaneous polyphony used as threshold

Multipitch Analysis: Prior Audio-Only Multi-pitch Streaming [3]

Multipitch Analysis: Video Based Multi-pitch Streaming

Constrained Clustering Algorithm

Experimental Results

- Assessment on subset of URMP ground-truth dataset [4]
- Focus on string ensembles including violin, viola, cello, and bass
- 11 videos featuring 3 duets, 2 trios, 4 quartets, and 2 quintets
- P/NP SVM classifier used with radial basis function (RBF) kernel
- P/NP evaluation: leave one out cross validation error

Experimental Results: Performance Metrics

- P / NP detection accuracy:

$$
P / N P \text { detection acc }=\frac{\text { \#corr predicted labels w.r.t ground truth }}{\text { \#labels }}
$$

- MPE accuracy:

$$
\text { MPE acc }=\frac{\# \text { corr est pitch }}{\# \text { est pitch }+\# \text { gt pitch }-\# \text { corr est pitch }}
$$

- MPS accuracy:

MPS acc $=\frac{\# \text { corr est \& str pitch }}{\# \text { corr est \& str pitch }+\# \text { pitch in est not gt }+\# \text { pitch in gt not est }}$ corr \rightarrow correct, est \rightarrow estimated, str \rightarrow streamed, gt \rightarrow ground truth

Experimental Results: P/NP Detection and MPE Accuracy

Piece No.	P/NP Detection Accuracy (\%)			MPE Accuracy (\%)				
	P1	P2	P3	P4	P5	Audio	Video PNP	GT PNP
$\# 1$	97.4	91.5	-	-	-	70.2	83.6	85.1
$\# 2$	93.6	93.3	-	-	-	68.7	72.2	74.2
$\# 3$	81.1	71.3	-	-	-	58.5	62.7	70.0
$\# 4$	92.5	91.4	78.4	-	-	59.8	65.9	68.6
$\# 5$	93.9	92.9	89.4	-	-	75.0	76.7	79.0
$\# 6$	83.4	88.4	78.6	73.4	-	49.5	52.3	56.3
$\# 7$	69.3	73.6	75.1	70.1	-	52.1	52.0	59.0
$\# 8$	90.0	90.9	84.6	86.4	-	62.2	62.3	66.6
$\# 9$	93.1	95.5	82.4	91.5	-	62.2	63.3	65.7
$\# 10$	91.9	92.3	88.5	94.1	91.2	47.4	52.3	53.3
$\#$ \#11	74.2	75.1	70.0	75.3	62.5	46.4	44.0	48.8

Table: Results of video-based Play/Non-play detection and MPE accuracy of the 11 test pieces.

Experimental Results: Comparison of MPE Accuracies

Audio/Video/Ground Truth

- Experiments on 53 duets, 38 trios and 14 quartets

Figure: Boxplot of MPE accuracy grouped by polyphony on all subsets derived from the 11 pieces, comparing the baseline audio-based method (dark gray), proposed visually informed method (light gray), and the incorporation of ground-truth PNP labels (white). The number above each box shows the mean value of the box.

Experimental Results: Comparison of MPS Accuracies

Audio/Video/Ground Truth

- Experiments on 53 duets, 38 trios and 14 quartets

Figure: Boxplot of MPS accuracy grouped by polyphony on all subsets derived from the 11 pieces, comparing the baseline audio-based method (dark gray), proposed visually informed method (light gray), and the incorporation of ground-truth PNP labels (white). The number above each box shows the mean value of the box.

Conclusion

- We demonstrated a novel technique of visually informed multi-pitch analysis for string ensembles
- Video based play/non-play detection technique was used
- To obtain concurrent pitches in each time frame (MPE)
- To assign the estimated pitches to corresponding sound sources (MPS)
- Experimental results show
- Video based P/NP detection has accuracy of 85.3%
- Statistically significant improvement on both the MPE and MPS accuracy at a significance level of 0.01 in most cases
- With improvement in underlying MPE/MPS integration with P/NP, better results can be obtained

References

[1] D. Sun, S. Roth, and M. J. Black, "Secrets of optical flow estimation and their principles," in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2010, pp. 2432-2439.
[2] Z. Duan, B. Pardo, and C. Zhang, "Multiple fundamental frequency estimation by modeling spectral peaks and non-peak regions," IEEE Trans. Audio, Speech, Language Process., vol. 18, no. 8, pp. 2121-2133, 2010.
[3] Z. Duan, J. Han, and B. Pardo, "Multi-pitch streaming of harmonic sound mixtures," IEEE/ACM Trans. Audio, Speech, Language Process., vol. 22, no. 1, pp. 138-150, 2014.
[4] B. Li, X. Liu, K. Dinesh, Z. Duan, and G. Sharma, "Creating a musical performance dataset for multimodal music analysis: Challenges, insights, and applications," IEEE Trans. Multimedia, submitted.
Available: https://arxiv.org/abs/1612.08727.

Back Up Slides

Pieces Used in Experiments

Piece number	Piece Name	Polyphony	Performance Style Description
\#1	01_Jupiter_vn_vc	2	Motion is easy to capture. All players are playing at most time
\#2	02_Sonata_vn_vn	2	Motion is easy to capture. All players are playing at most time
\#3	19_Pavane_cl_vn_ve	3	Some plucking motion for the violin and cello
\#4	12_Spring_vn_vn_vc	3	Motion is easy to capture for player 1 and 2 . For player 3, some soft articulation is from slow motion, which may be difficult to capture
\#5	13_Hark_vn_vn_va	3	Motion is easy to capture. All players are playing at most time
\#6	24_Pirates_vn_vn_va_vc	4	Motion is easy to capture. All players are playing at most time
\#7	26_King_vn_vn_va_vc	4	A lot of repeated notes, where the bow motion is slight
\#8	32_Fugue_vn_vn_va_vc	4	Motion is easy to capture. Different players play alternatively sometimes
\#9	36_Rondeau_vn_vn_va_vc	4	Motion is easy to capture. All players are playing at most time.
\#10	38_Jerusalem_vn_vn_va_vc_db	5	Motion is easy to capture. All players are playing at most time.
\#11	44_K515_vn_vn_va_va_vc	5	Some fast notes are played by legato bowing, where the bow motion is slow.

Table: Pieces used in the experiment with polyphony and performance style $21 / 24$

Problematic Pieces

Figure: MIDI plot for segments from pieces (\#7) 26-In hall of mountain king (top) and (\#11) 44-K515 (bottom) which have limited bow motion

Audio Based Multipitch Analysis

Multi-pitch Estimation

- Likelihood method [2]
- Model peak/non-peak region of spectrum
- Interative greedy search \rightarrow estimate pitch one by one

Frequency

Pitch

Time

Audio Based Multipitch Analysis

Multi-pitch Streaming

- Constrained clustering method [3]
- Constraints on timbre consistency
- Constraints on time-frequency relationship

