

Audio-visual Source Association for String Ensembles through Multi-modal Vibrato Analysis

Bochen Li, Chenliang Xu, Zhiyao Duan

University of Rochester

14th Sound and Music Computing Conference July 5 – 8, 2017 Espoo, Finland

Background

i WATCH

MUSIC

VIDEOS

BBC

- Music \rightarrow multi-modal art form
- See and listen \rightarrow more enjoyment
- Popular music video streaming service

С

Background

Multi-modal MIR

- Instrument Recognition
- Playing Activity Detection
- Polyphonic Music Analysis
- Fingering Estimation
- Conductor Following

String Music Performance

Detected Players

Audio-visual Source Association

Application

- Intuitive and user-friendly interaction with music performance videos
- Smart Music Editor
- Concert cameras automatically take close-up shots of the leading player/instrument

Application

- Intuitive and user-friendly interaction with music performance videos
- Smart Music Editor
- Concert cameras automatically take close-up shots of the leading player/instrument

Application

- Intuitive and user-friendly interaction with music performance videos
- Smart Music Editor
- Concert cameras automatically take close-up shots of the leading player/instrument

Prior Work

Bow Motion Analysis

• Bow Motion <-> Note Onsets

Prior Work

Limitations

• When players have the same rhythm

Proposed System Overview

Vibrato Features for String Instruments

- Vibrato → Audio pitch fluctuations
- Vibrato \rightarrow Fine motions of left hand
- Correlate pitch fluctuations with fine motions of left hand

Method – Audio Analysis

Score-informed Source Separation

- Audio-score alignment
- Harmonic mask

Vibrato Extraction

- Score-informed pitch refinement on separated sources
- Auto-correlation on pitch trajectory

[2] Z. Duan and B. Pardo, "Soundprism: An online system for score-informed source separation of music audio," *IEEE J. Sel. Topics Signal Process.*, vol. 5, no. 6, pp., 2011.

Hand Tracking

- Kanade-Lucas-Tomasi (KLT) tracker with 30 feature points
- Bounding box: 70*70 pixels, centered at the median position of feature points
- Re-initialize feature points every 20 frames

Fine-grained Motion Capture

- Optical flow estimation \rightarrow pixel-level motion velocities
- Average the motion velocities within the bounding box:

$$\mathbf{u}(t) = [u_x(t), u_y(t)]$$

• Subtract its moving average to eliminate body motion:

$$\mathbf{v}(t) = \mathbf{u}(t) - \bar{\mathbf{u}}(t)$$

Original Frame

Color-encoded Optical Flow

Fine-grained Motion Capture

- Principal Component Analysis (PCA)
- → Identify principal motion along the fingerboard
- \rightarrow 1-D Motion Velocity Curve:

$$V(t) = \frac{\mathbf{v}(t)^T \mathbf{\tilde{v}}}{\|\mathbf{\tilde{v}}\|}$$

• Integration on $V(t) \rightarrow$ Motion Displacement Curve:

$$X(t) = \int_0^t V(\tau) d\tau$$

15

Fine-grained Motion Capture

Pitch Contour

Associated player

Method – Source-player Association

index

Note-level matching score
 → Cross-correlation
 Normalized Normalized pitch motion

i-th note

$$m_{\uparrow}^{[p,q]}(i) = \exp \left\{ \frac{\left\langle \hat{F}^{[p]}(\mathbf{t}_i) \cdot \hat{X}^{[q]}(\mathbf{t}_i) \right\rangle}{\left\| \hat{F}^{[p]}(\mathbf{t}_i) \right\| \left\| \hat{X}^{[q]}(\mathbf{t}_i) \right\|} \right\}$$
Audio Player
track index

Track-level matching score
 → Sum of note-level matching score

Total number of vibrato notes in the *p*-th track

$$M^{[p,q]} = \sum_{i=1}^{N_{\mathrm{vib}}^{[p]}} m^{[p,q]}(i)$$

- - [m]

Method – Source-player Association

Association score

One permutation

Output the permutation that maximizes the association score

	M _{1,1}	М _{2,1}	М _{3,1}	M _{4,1}
-	M _{1,2}	M _{2,2}	M _{3,2}	M _{4,2}
-	M _{1,3}	M _{2,3}	M _{3,3}	M _{4,3}
	M _{1,4}	M _{2,4}	M _{3,4}	M _{4,4}

Dataset: URMP Dataset [3]

- Individually recorded and assembled together
- 14 instruments, 44 piece arrangements

[3] B. Li *, X. Liu *, K. Dinesh, Z. Duan, and G. Sharma, "Creating a musical performance dataset for multimodal music analysis: Challenges, insights, and applications," *IEEE Trans. Multimedia*, under review.

Piece Selection

- 19 pieces \rightarrow 5 duets, 4 trios, 7 quartets, 3 quintets
- Selection criteria: contains at most 1 non-string instrument
- Same set as the baseline system (bow motion $\leftarrow \rightarrow$ note onset)

Evaluation Measure

• Note-level Matching Accuracy:

The % of vibrato notes that are best matched to the correct player, according to the note-level matching score

• Piece-level Association Accuracy:

The % of pieces that the correct association is returned, according to the piece-level association score (Polyphony increases \rightarrow Number of error candidates increases in factorial rate)

Results: Note-level Matching Accuracy

Results: Piece-level Association Accuracy

	Metao	Association Measures			
No.	Dataset Folder Name	Piece Length	Polyphony -	No. Correctly	Rank of
1.0.	(with Instrument Types)	(mm:ss)	(No. Permutations)	Associated Sources	Correct Association
1	01_Jupiter_vn_vc	01:03	2 - (2)	2	1
2	02_Sonata_vn_vn	00:46	2 - (2)	2	1
3	08_Spring_fl_vn	00:35	2 - (2)	2	1
4	09_Jesus_tpt_vn	03:19	2 - (2)	2	1
5	11_Maria_ob_vc	01:44	2 - (2)	2	1
6	12_Spring_vn_vn_vc	02:11	3 - (6)	3	1
7	13_Hark_vn_vn_va	00:47	3 - (6)	3	1
8	19_Pavane_cl_vn_vc	02:13	3 - (6)	1	2
9	20_Pavane_tpt_vn_vc	02:13	3 - (6)	3	1
10	24_Pirates_vn_vn_va_vc	00:50	4 - (24)	4	1
11	25_Pirates_vn_vn_va_sax	00:50	4 - (24)	4	1
12	26_King_vn_vn_va_vc	01:25	4 - (24)	4	1
13	27_King_vn_vn_va_sax	01:25	4 - (24)	2	1
14	32_Fugue_vn_vn_va_vc	02:54	4 - (24)	4	1
15	35_Rondeau_vn_vn_va_db	02:08	4 - (24)	4	1
16	36_Rondeau_vn_vn_va_vc	02:08	4 - (24)	4	1
17	38_Jerusalem_vn_vn_va_vc_db	01:59	5 - (120)	5	1
18	39_Jerusalem_vn_vn_va_sax_db	01:59	5 - (120)	5	1
19	44_K515_vn_vn_va_va_vc	03:45	5 - (120)	5	1

- Overall Accuracy: 94.7% (18 out of 19)
 Compared with Baseline: 89.5% (based on bow motion/audio onset)
- Error Case: No vibrato is used in the performance

Conclusions & Future Work

Conclusions

- Audio-visual source association for string music, by correlating pitch fluctuations and left-hand motions
- Highly effective, not demanding on camera angles
- Limitations: Vibrato is not guaranteed to appear in all pieces

Future Work

• Combine all motion features in string music

Bow & Vibrato & Body movement & ...

- Video → Vibrato analysis (rate & extent)
 From monophonic to polyphonic
- Step into woodwind & brass instruments
- Audio-visual Source Separation

