See and Listen: Score-informed Association of Sound Tracks to Players in Chamber Music Performance Videos

Bochen Li, Karthik Dinesh, Zhiyao Duan, Gaurav Sharma

Department of Electrical and Computer Engineering, University of Rochester

March 7, 2017

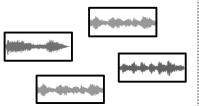
- Music \rightarrow Multi-modal art form
- \bullet See and listen \rightarrow More enjoyment
- Popular music video streaming service

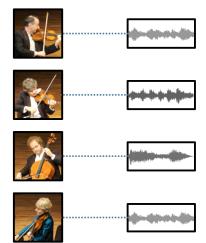
Multi-modal Music Information Retrieval

- Instrument Recognition
- Playing Activity Detection
- Polyphonic Music Analysis
- Fingering Investigation
- Conductor Following

Source Association

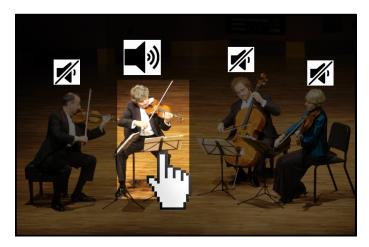
Chamber Music Performance


Detected Players

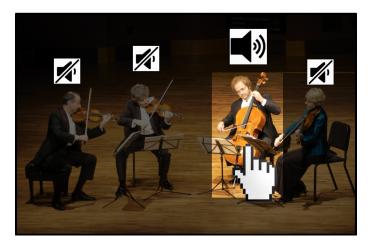

Separated Sound Tracks

Source Association

Audio-visual Source Association


Applications

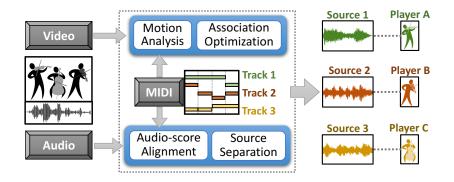
- Intuitive and user-friendly interaction with music performance videos
- Smart Music Editor


Applications

- Intuitive and user-friendly interaction with music performance videos
- Smart Music Editor

Applications

- Intuitive and user-friendly interaction with music performance videos
- Smart Music Editor



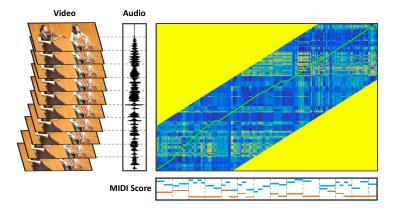
System Overview

Example:

- Score-informed
- String-instruments
- Bow stroke \Rightarrow audio event
- Correlate bow strokes with audio onsets

Method: Audio Analysis
 Audio-score Alignment

• Method: Video Analysis

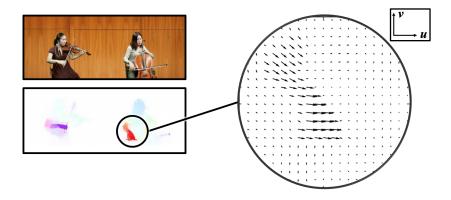

- Optical Flow Estimation
- Player Detection
- Bowing Motion Capturing
- Method: Association Optimization

• Experiments

- Dataset
- Evaluation Measure
- Results

Method: Audio Analysis

Audio-score Alignment



- Chroma Feature & Dynamic Time Warping
- Video-score Alignment

- Method: Audio Analysis
 Audio-score Alignment
- Method: Video Analysis
 - Optical Flow Estimation
 - Player Detection
 - Bowing Motion Capturing
- Method: Association Optimization
- Experiments
 - Dataset
 - Evaluation Measure
 - Results

Optical Flow Estimation

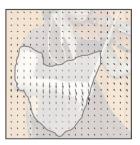
The motion velocity of each pixel between two adjacent frames Method: Sun et al. [2]

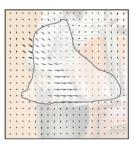
[2] D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principles, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2010.

Player Detection

Original Video Frame

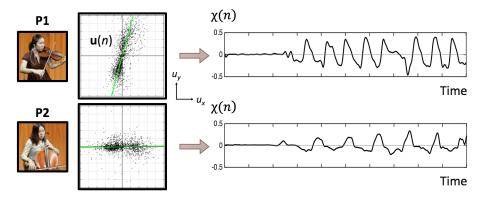
Player Detection Result

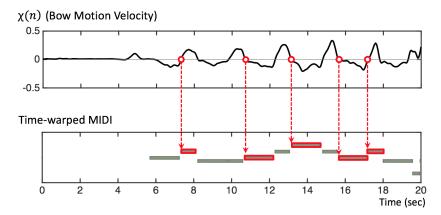



player

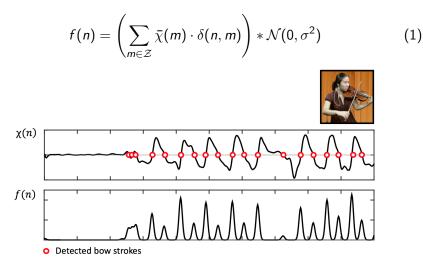
region

background

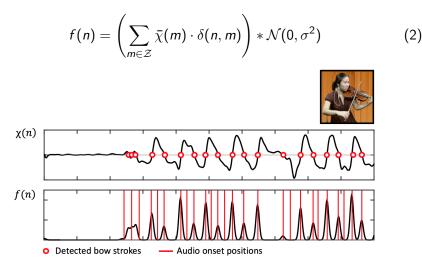

- Flow Magnitude \Rightarrow GMM Clustering \Rightarrow Player Region
- $\bullet~\mbox{Thresholding} \Rightarrow \mbox{High Motion Region}$


Bowing Motion Capturing

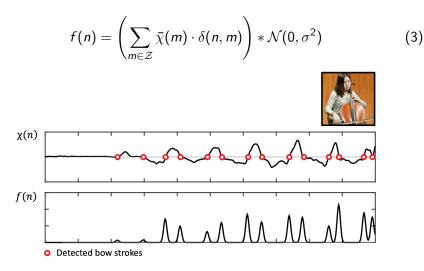
- Frame-wise global motion vector $\Rightarrow \mathbf{u}(n) = [u_x(n), u_y(n)]^T$.
- Principal component analysis (PCA) $\Rightarrow \mathbf{\tilde{u}} = (\tilde{u}_x, \tilde{u}_y)^T$
- Dimension reduction $\Rightarrow \chi(n) = \frac{\mathbf{u}(n)^T \tilde{\mathbf{u}}}{\|\tilde{\mathbf{u}}\|}$

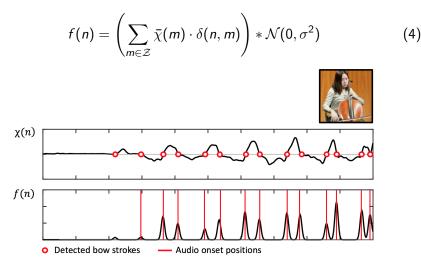

Bowing Motion Capturing

Correlation:



- Method: Audio Analysis
 Audio-score Alignment
- Method: Video Analysis
 - Optical Flow Estimation
 - Player Detection
 - Bowing Motion Capturing
- Method: Association Optimization
- Experiments
 - Dataset
 - Evaluation Measure
 - Results


Pair-wise Matching


Pair-wise Matching

Pair-wise Matching

Pair-wise Matching

Matching Function:

$$\begin{cases} M_{p,q}^{-} = f_{p}(n)^{T} g_{q}(n) / \sum_{m} g_{q}(m) \\ M_{p,q}^{+} = f_{p}(n)^{T} g_{q}(n) / \sum_{m} f_{p}(m) \\ M_{p,q} = \sqrt{M_{p,q}^{-} \cdot M_{p,q}^{+}}, \end{cases}$$
(5)

- $f_p(n) \rightarrow$ Bow onset likelihood for the *p*-th player.
- $g_q(n) \rightarrow \text{Onset}$ sequence for q-th track.
- $M_{p,q}^-$: This is low for legato bowing
- $M_{p,q}^+$: This is low for non-related body motion.

Association Score:

$$S_{\sigma} = \prod_{p=1}^{N} M_{p,\sigma(p)}$$

- For N players/tracks \rightarrow N! bijections.
- $\sigma(\cdot) \rightarrow$ Permutation function.
- Select σ that maximizes S_{σ} .

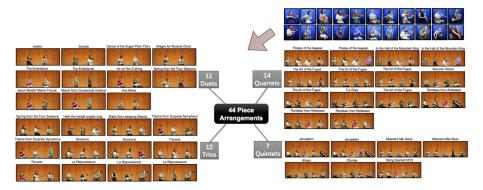
5	M _{1,1}	M _{2,1}	M _{3,1}	M _{4,1}
5	M _{1,2}	M _{2,2}	M _{3,2}	M _{4,2}
	М _{1,3}	M _{2,3}	М _{3,3}	M _{4,3}
5	M _{1,4}	M _{2,4}	М _{3,4}	M _{4,4}

Method: Audio Analysis
 Audio-score Alignment

• Method: Video Analysis

- Optical Flow Estimation
- Player Detection
- Bowing Motion Capturing

• Method: Association Optimization


• Experiments

- Dataset
- Evaluation Measure
- Results

Experiments

Dataset: URMP Dataset [3]

- 14 instruments, 44 piece arrangements
- Individually recorded and assembled together

[3] B. Li *, X. Liu *, K. Dinesh, Z. Duan, and G. Sharma, Creating a musical performance dataset for multimodal music analysis: Challenges, insights, and applications, IEEE Trans. Multimedia, under review. (* Equal Contribution)

Piece Selection

- We select 19 pieces \rightarrow 5 duets, 4 trios, 7 quartets, 3 quintets
- Selection criteria: contains at most 1 non-string instrument

Overall Results

- Piece-level success rate: 89.5% (17 of 19 pieces)
- * All sources within one piece should be correctly associated
 - Source-level success rate: 89.2% (58 of 65 sources)

Piece-wise Evaluation Measure

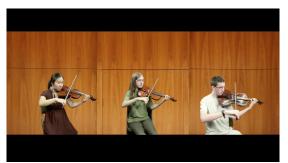
- Association Rank: the association score rank of the ground-truth association
- Metric Ratio: the ratio between the association score of the ground-truth association and the highest competitive one

Experiments

Piece-wise Results

Metadata				Association Measures		
No.	Instrument Type	Piece Length	Polyphony -	No. of Correctly	Rank of	Metric Ratio
140.	51	(mm:ss)	(No. permutations)	Associated Sources	Correct Association	
1	Vn. Vc.	01:03	2 - (2)	2	1	1.454
2	Vn1. Vn2.	00:46	2 - (2)	2	1	1.689
3	Fl. Vn.	00:35	2 - (2)	2	1	1.036
4	Tp. Vn.	03:19	2 - (2)	2	1	3.203
5	Ob. Vc.	01:44	2 - (2)	2	1	2.519
6	Vn1. Vn2. Vc.	02:12	3 - (6)	3	1	1.821
7	Vn1. Vn2. Va.	00:47	3 - (6)	3	1	1.048
8	Cl. Vn. Vc.	02:13	3 - (6)	3	1	1.247
9	Tp. Vn. Vc.	02:13	3 - (6)	3	1	1.289
10	Vn1. Vn2. Va. Vc.	00:50	4 - (24)	4	1	1.470
11	Vn1. Vn2. Va. Sax.	00:50	4 - (24)	4	1	1.142
12	Vn1. Vn2. Va. Vc.	01:25	4 - (24)	4	1	1.138
13	Vn1. Vn2. Va. Sax.	01:25	4 - (24)	2	5	0.769
14	Vn1. Vn2. Va. Vc.	02:54	4 - (24)	4	1	9.106
15	Vn1. Vn2. Va. D.B.	02:08	4 - (24)	4	1	1.330
16	Vn1. Vn2. Va. Vc.	02:08	4 - (24)	4	1	1.281
17	Vn1. Vn2. Va. Vc. D.B.	01:59	5 - (120)	5	1	1.438
18	Vn2. Vn2. Va. Sax. D.B.	01:59	5 - (120)	5	1	1.135
19	Vn1. Vn2. Va1. Va2. Vc.	03:45	5 - (120)	0	19	0.564

Failure case investigations:


- $\bullet~\mbox{Non-string instrument} \rightarrow \mbox{Motions not correlated}$
- \bullet Legato bowing \rightarrow Audio onsets not correlated
- \bullet Same rhythmic patterns \rightarrow Difficult to identify

Video

• Legato bowing

• Same rhythmic patterns

- Methodology for audio-visual source association
- High success rate
- Richer music enjoyment experiences

