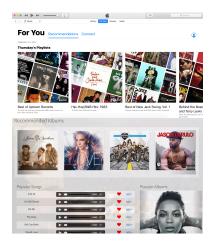
DEEP RANKING: TRIPLET MATCHNET FOR MUSIC METRIC LEARNING

Rui Lu¹, Kailun Wu¹, Zhiyao Duan², Changshui Zhang¹

¹Department of Automation, Tsinghua University ²Department of Electrical and Computer Engineering, University of Rochester

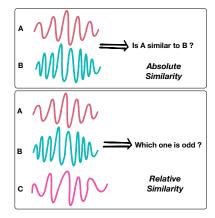
March 8, 2017
Presentation at IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP)


Applications of music metric learning

Classification

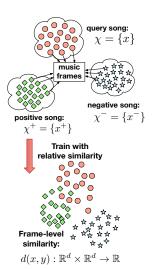
ROCK in the state of the state

Recommendation

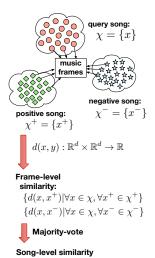


Music metric learning

Basic methods


- Supervised methods
 - RITML: learns mahalanobis distance
 - MLR: learn to rank
 - SVM-based
 - ...
- Unsupervised methods
 - Mahalanobis distance
 - PCA
 - ...

Similarity



From frame-level to song-level

Training process

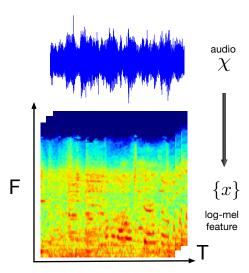
Testing process

Traditional and deep approaches

Traditional methods

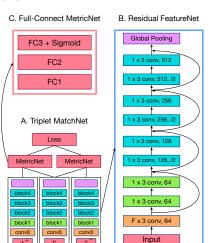
- Handcrafted song-level features
- Linear projections

Deep learning approaches

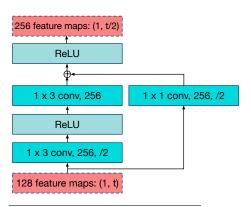

- Learn features automatically
- Highly nonlinear transformations
- Success in various domains
- None for music metric learning

Our approach

Use deep neural networks to learn frame-level relative similarities of music


Method

Data preprocessing


Triplet MatchNet

Network Structure

Residual block

Residual Structure

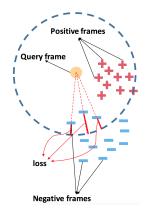
Advantages

- Easier to optimize
- Accuracy gain from deeper model^[1]
- Behave like ensembles of shallow networks^[2]

¹ Kaiming He et al, Deep residual learning for image recognition, CVPR 2016.

Andreas Veit et al, Residual networks behave like ensembles of relatively shallow networks, NIPS 2016.

Final loss


The final loss for training our Triplet MatchNet is:

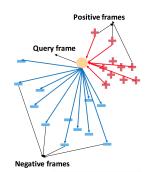
$$loss(\chi, \chi^+, \chi^-) = \frac{1}{|\{x\}|} \sum_{x \in \{x\}} (\psi(x) + \phi(x)).$$

Where $\psi(x)$ is the rank-based loss; $\phi(x)$ is the contrastive loss.

Rank-based loss

Illustration

Equation


Rank-based loss

$$\psi(x) = \frac{1}{|\{x^-\}|} \sum_{x^- \in \{x^-\}} \max\{0, d_{\max}^+ - f(x, x^-)\}$$

where
$$d_{max}^+ = \max_{x^+ \in \{x^+\}} f(x, x^+);$$

 $f(x, y)$ is the proposed network's final output

Contrastive loss

Illustration

Equation

Contrastive loss

$$\phi(x) = -\frac{\sum_{x^{+}} \sum_{x^{-}} [\log(1 - d^{+}) + \log(d^{-})]}{|\{x^{+}\}||\{x^{-}\}|}$$

where
$$d^+ = f(x, x^+)$$
; $d^- = f(x, x^-)$

Experiments

Dataset and Evaluation

MagnaTagATune

- Relative similarity
- 860 triplets like (χ, χ^+, χ^-)
- 993 unique songs
- Each song with 29 seconds

Evaluation

- Constraints Fulfillment Rate
 - Portion of triplets that preserve partial order relationships
- 10-cross validation
- Comparison methods
 - RITML^[1]
 - MLR^[2], RMLR^[3]
 - SVM, Euclidean

 $^{^{1}}$ Daniel Wolff et al, Comparative music similarity modelling using transfer learning across user groups, ISMIR 2015.

² Brian McFee et al, Metric learning to rank, ICML 2010.

³ Daryl KH Lim et al, Robust structural metric learning, ICML 2013 ≥ × ≥ → ≥ → ○ ○

Constraints Fulfillment Rate comparison

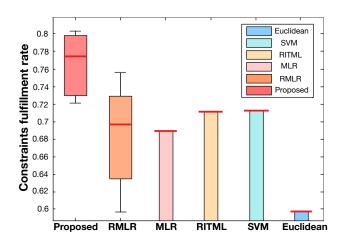


Figure: Constraints Fulfillment Rate by 10-fold cross validation.

Generalization Capability

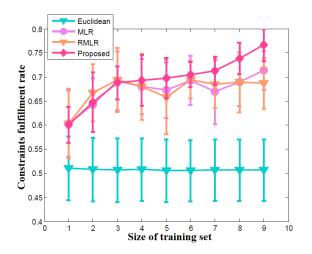


Figure: Generalization capability by 10-fold cross validation.

Better features extracted by Triplet MatchNet

Method	HandCrafted	PCA	Proposed
RMLR	-	65.9 ± 8.3	$\textbf{71.2} \pm \textbf{7.2}$
MLR	68.9	61.7 ± 10.5	$\textbf{71.7} \pm \textbf{6.9}$
Euclidean	59.8	50.7 ± 6.3	$\textbf{70.6} \pm \textbf{3.8}$

Table: Constraints Fulfillment Rate of three baselines working with different features.

Thank you!