METRIC LEARNING BASED DATA AUGMENTATION FOR ENVIRONMENTAL SOUND CLASSIFICATION

Rui Lu¹, Zhiyao Duan², Changshui Zhang¹

¹Department of Automation, Tsinghua University

²Department of Electrical and Computer Engineering, University of Rochester

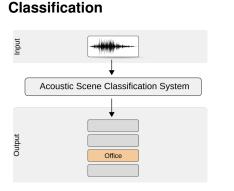
October 16, 2017 Presentation at IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)

(日) (日) (日) (日) (日) (日) (日)

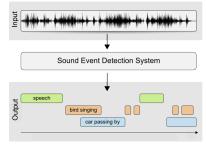
- Introduction

Basic Tasks

Classification and detection of environmental sounds



Detection



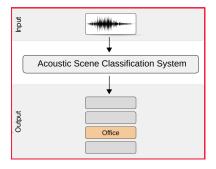
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Introduction

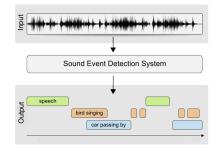
Basic Tasks

Classification and detection of environmental sounds

Classification



Detection



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Introduction

L Deep Learning Based Approaches

Deep learning based approaches

Deep learning advantages

- Learn features automatically
- High nonlinearity
- Success in various domains

Deep learning disadvantages

Data demanding

Current solutions

- Vary intensity and speed ^[1]
- Pitch shift, etc ^[2]
- Importance weighting ^[3]

Drawbacks

- All data treated equally
- Redundancy in training

 1 D. Amodei et al, Deep speech 2: End-to-end speech recognition in english and mandarin, ICML2016.

² J. Salamon et al, Deep convolutional neural networks and data augmentation for environmental sound classification, SPL2016.

³ S. Sivasankaran et al, Discriminative importance weighting of augmented training data for acoustic model training, ICASSP2017.

- Introduction

Problem we want to solve

Problem we want to solve

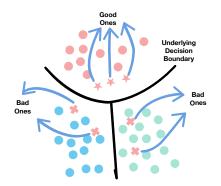
Reduce training data

- Make the training procedure more efficient
- Less power consumption

Less storage required

- Introduction

Un approach



Our approach

Dynamically select those useful augmented samples with the learned metric

- Train a metric for selection
- Brute-force augmentation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Filter out bad samples
- Train the model

Method

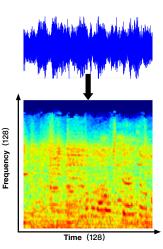
Method

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Method

L Data Preprocessing

Data preprocessing



log-mel spectrograms

- Data: 44.1kHz
- Apply hann window
- Window: 1024
- Without overlap
- 128 bands
- 0 Hz to 22050 Hz
- 128 adjacent frames (2.97 seconds)

Method

-Network Structure

Network structure

Network Structure				
layer	out-size	filters	non-linear	regularize
Input	128×128			
conv1	124×124	(5×5), 24, (1, 1)	ReLU	Batch Norm
pool1	31×62	(4 2), (4, 2)	-	-
conv2	27×58	(5×5), 48, (1, 1)	ReLU	Batch Norm
pool2	6×29	(4 2), (4, 2)	-	-
conv3	2×25	(5×5), 48, (1, 1)	ReLU	Batch Norm
full4	64	-	ReLU	Dropout: 0.5
full5	10	-	Softmax	Dropout: 0.5

Table: Conv filters: "(freq bands \times time frames), filters, (freq stride, time stride)".

Pooling layers: "(freq bands, freq stride), (time frames, time stride)"

- Method

Data Augmentation

Data augmentation

Deformations for audio^[1]

- TS: Time stretch
- PS: Pitch shift
- DRC: Dynamic range compression
- BG: Background noise
- All: All deformations combined

Augmentation schemes

- Baseline: Brute-force augmentation
- Baseline: Class-conditional augmentation
- Proposed: Metric-based augmentation

¹ J. Salamon et al, Deep convolutional neural networks and data augmentation for environmental sound classification, SPL2016.

- Method

Data Augmentation

Class-conditional augmentation

air conditione car horn children playing dog_bark drilling engine idling Class aun shot iackhammer siren street music All classes Delta of Accuracy

Single deformation applied

Class-conditional augmentation

- Apply single deformation
- For each class, know the beneficial deformations
- For each class, apply all the beneficial deformations

イロト イポト イヨト イヨト

 Train the model with the augmented data

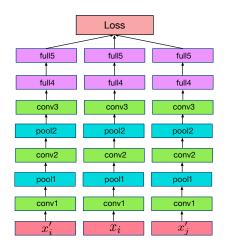
Method

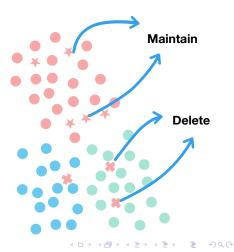
Proposed Augmentation Scheme

Proposed augmentation scheme

Stage1: Learn the metric

Stage2: Select data





- Method

Stage1: Learn the metric

Stage1: Learn the metric

Loss function

$$L(\{(x_i, x_i')\}_{i=1}^C; f) = \frac{1}{C} \sum_{i=1}^C \log(1 + \sum_{j \neq i} \exp(f_i^T f_j' - f_i^T f_i'))$$
(1)

where $\{(x_1, x'_1), (x_2, x'_2), ..., (x_C, x'_C)\}$ are *C* pairs of examples from the *C* different classes, i.e., their labels satisfy $y_i = y'_i$ and $y_i \neq y_j \ \forall i \neq j$; f_i is the output of the network's last fully connected layer when we feed x_i as the input.

Method

Stage2: Select data

Stage2: Select data

Similarity function

$$S(x,x') = \frac{f(x)^T f(x')}{||f(x)|| \cdot ||f(x')||} \qquad \forall x, x' \in \mathcal{X}$$
(2)

kNN

$$y_a = kNN(a, \mathcal{D}_{train}; f)$$
(3)

where, *a* is the augmented sample with label *y*; \mathcal{D}_{train} is the training set; We accept *a* if y_a agrees with *y*, or we discard it

Experiments

Experiments

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Experiments

Dataset and Evaluation

Dataset and Evaluation

UrbanSound8K

- 10 classes
- 8732 clips
- Durations up to 4 seconds

Evaluation

- Classification accuracy
- 10-fold cross validation

Ensemble

- Given test fold, train nine models
- Average outputs of nine models

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Experiments

Brute-force augmentation

Brute-force augmentation

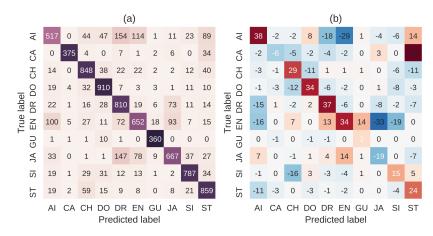


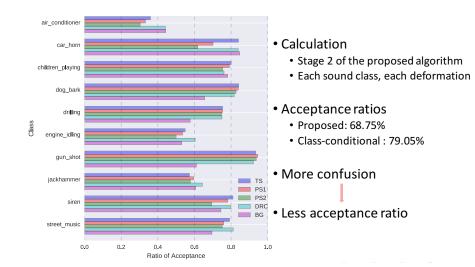
Figure: (a): Confusion matrix of the brute-force method^[1]; (b): Differences between the confusion matrices with and without brute-force augmentation.

э

Experiments

Proposed method: acceptance ratio comparison

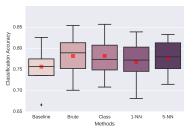
Proposed method: acceptance ratio comparison



Experiments

Classification accuracy comparison

Accuracy comparison



Make training procedure more efficient

- Reduce training data
- Maintain the same performance

・ロット (雪) (日) (日)

ъ

Experiments

L Conclusions

- Brute-force augmentation causes training redundancy
- Fine-grained strategy needed
- Metric-based selection is effective in reducing training data

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

End

Thank you !

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ