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Query by Vocal Imitation
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Vocal imitation of this sound

Sound recording of “Metaloid” 

How to find an 
audio file from 
sound effect 

libraries?



Vocal Imitations in Daily Life 

Bad Turbo: boooOOOOOOooo

Boiling Coolant: bllgh blllgggh blllllgggghh

Clutch Screech: screek, screek, screek

Engine Knock: tuckaTHUCKtuckaTHUCKtucka
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Question 1: What feature representations and similarity 
measures are effective? How to learn them together? 

Solution: Siamese-style Convolutional Neural Network 
(SCNN)

Question 2: How does SCNN work? What feature 
representations are learned at different layers of the network? 

Solution: Visualizing input patterns that activate a certain 
neuron the most 

Vocal Imitation Challenges
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Previous IMINET Model

1. Pre-processing: Constant-Q 
Transform spectrograms

2. Feature Extraction: 
Convolutional Neural Networks

3. Metric Learning: Fully 
Connected Networks

4. Sound Retrieval: Ranking 
output probabilities

Note: The work of this ICASSP 
paper is derived from our previous 
IMINET model in [1]

[1] Y. Zhang and Z. Duan, IMINET: Convolutional Semi-Siamese Networks for Sound 
Search by Vocal Imitation, WASPAA 2017
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Proposed TL-IMINET Model

1. Pre-train imitation tower using
VoxForge data set

2. Pre-train recording tower using
UrbanSound8K

3. Fine-tune two towers with
metric learning module using
VocalSketch Data Set

4. Sound retrieval
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Imitation Tower Pre-training

Dataset: VoxForge spoken 
language classification dataset

7-class spoken language 
recognition: Dutch, English, 
French, German, Italian, Russian, 
and Spanish

Input: 39-band log-mel 
spectrogram, 8.33 ms window/hop 
size, freq. range: 0 - 5kHz

Classification acc: 69.8%

[1] G. Montavon, Deep Learning for Spoken Language Identification, NIPS Workshop on 
Deep Learning for Speech Recognition and Related Applications, 2009.
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Recording Tower Pre-training

Dataset: UrbanSound8K dataset

10-class environmental sound 
classification: Air conditioner, car 
horn, children playing, dog bark, 
drilling, engine idling, gun shot, 
jackhammer, siren, and street 
music.

Input: 128-band log-mel 
spectrogram, 23 ms window/hop 
size, freq. range: 0 – 22,050 Hz

Classification acc: 70.2%

[1] J. Salamon and J. P. Bello, Deep Convolutional Neural Networks and Data Augmentation 
for Environmental Sound Classification, IEEE Signal Processing Letters, 2017.
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Dataset – VocalSketch [1]

Category 
(#concepts)

# train 
concepts

# test 
concepts

Examples

Acoustic Instruments (40) 20 20 Triangle

Commercial Synthesizers 
(40) 

20 20 Metaloid

Everyday (120) 60 60 Knocking

Single Synthesizer (40) 20 20 Subsynth_2217

 Each concept has 10 imitations (~3 sec), ~2 hours in total
 Training: 120*7=840 positive / negative pairs
 Validation: 120*3=360 positive / negative pairs

[1] M. Cartwright and B. Pardo, VocalSketch: Vocally imitating audio concepts, in 
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing 
Systems, 2015
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Evaluation Measure

 Mean Reciprocal Rank (MRR) 

 0 <= MRR <= 1

 The higher the better

1

1 1Q

i i

MRR
Q rank

 

Number of 
queries in 
experiment

Rank of the 
target sound in 
the returned 
sound list for 
the i-th query
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Experimental Results

Config.
Acoustic 
Instr.

Commercial 
Synthesizers

Everyday
Single 

Synthesizer

IMINET 0.40±0.03 0.33±0.02 0.16±0.01 0.38±0.02

TL-IMINET 
(w/o pretrain)

0.40±0.03 0.31±0.02 0.23±0.02 0.38±0.03

TL-IMINET
(w/ pretrain)

0.46±0.02 0.35±0.02 0.25±0.02 0.40±0.03

Table 2. MRR (mean ± std) comparisons.
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Experimental Results
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Visualization Using Activation 
Maximization

Motivation: understand how TL-IMINET works and what 
features are learned

Activation Maximization (AM): Neuron activation as objective 
function, using gradient ascent to update input pixels while 
keeping weights unchanged
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Visualization Using Activation 
Maximization

CNN neurons: visualizing learned features from 
imitation/recording input 

FC neurons: visualizing learned similarity between imitation/ 
and recording

Neuron activation in 
convolutional layers

Input of Imi/Rec tower

Neuron activation in 
fully connected layers

Input of Imi tower Input of Rec tower
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(a) Imi Conv1: w/ pretraining

(c) Imi Conv2: w/ pretraining

(e) Imi Conv3: w/ pretraining

(b) Imi Conv1: w/o pretraining

(d) Imi Conv2: w/o pretraining

(f) Imi Conv3: w/o pretraining

(a) Rec Conv1: w/ pretraining

(c) Rec Conv2: w/ pretraining

(e) Rec Conv3: w/ pretraining

(b) Rec Conv1: w/o pretraining

(d) Rec Conv2: w/o pretraining

(f) Rec Conv3: w/o pretraining
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(a) Imi Conv1: w/ pretraining

(c) Imi Conv2: w/ pretraining

(e) Imi Conv3: w/ pretraining

(b) Imi Conv1: w/o pretraining

(d) Imi Conv2: w/o pretraining

(f) Imi Conv3: w/o pretraining

(a) Rec Conv1: w/ pretraining

(c) Rec Conv2: w/ pretraining

(e) Rec Conv3: w/ pretraining

(b) Rec Conv1: w/o pretraining

(d) Rec Conv2: w/o pretraining

(f) Rec Conv3: w/o pretraining

Time: 4 sec
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(a) Imi Conv1: w/ pretraining

(c) Imi Conv2: w/ pretraining

(e) Imi Conv3: w/ pretraining

(b) Imi Conv1: w/o pretraining

(d) Imi Conv2: w/o pretraining

(f) Imi Conv3: w/o pretraining

(a) Rec Conv1: w/ pretraining

(c) Rec Conv2: w/ pretraining

(e) Rec Conv3: w/ pretraining

(b) Rec Conv1: w/o pretraining

(d) Rec Conv2: w/o pretraining

(f) Rec Conv3: w/o pretraining

Time: 4 sec
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(a) Imi Conv1: w/ pretraining

(c) Imi Conv2: w/ pretraining

(e) Imi Conv3: w/ pretraining

(b) Imi Conv1: w/o pretraining

(d) Imi Conv2: w/o pretraining

(f) Imi Conv3: w/o pretraining

(a) Rec Conv1: w/ pretraining

(c) Rec Conv2: w/ pretraining

(e) Rec Conv3: w/ pretraining

(b) Rec Conv1: w/o pretraining

(d) Rec Conv2: w/o pretraining

(f) Rec Conv3: w/o pretraining

Time: 4 sec
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(a) Imi Conv1: w/ pretraining

(c) Imi Conv2: w/ pretraining

(e) Imi Conv3: w/ pretraining

(b) Imi Conv1: w/o pretraining

(d) Imi Conv2: w/o pretraining

(f) Imi Conv3: w/o pretraining

(a) Rec Conv1: w/ pretraining

(c) Rec Conv2: w/ pretraining

(e) Rec Conv3: w/ pretraining

(b) Rec Conv1: w/o pretraining

(d) Rec Conv2: w/o pretraining

(f) Rec Conv3: w/o pretraining

Time: 4 sec
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(a) Imi Conv1: w/ pretraining

(c) Imi Conv2: w/ pretraining

(e) Imi Conv3: w/ pretraining

(b) Imi Conv1: w/o pretraining

(d) Imi Conv2: w/o pretraining

(f) Imi Conv3: w/o pretraining

(a) Rec Conv1: w/ pretraining

(c) Rec Conv2: w/ pretraining

(e) Rec Conv3: w/ pretraining

(b) Rec Conv1: w/o pretraining

(d) Rec Conv2: w/o pretraining

(f) Rec Conv3: w/o pretraining
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(a) Rec Conv1: w/ pretraining (b) Rec Conv2: w/pretraining (c) Rec Conv3: w/pretraining

(d) Rec Conv1: w/o pretraining (e) Rec Conv2: w/o pretraining (f) Rec Conv3: w/o pretraining
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Imitation Tower Visualization

(a) Imi Conv1: w/ pretraining

(c) Imi Conv2: w/ pretraining

(e) Imi Conv3: w/ pretraining

(b) Imi Conv1: w/o pretraining

(d) Imi Conv2: w/o pretraining

(f) Imi Conv3: w/o pretraining

(a) Rec Conv1: w/ pretraining

(c) Rec Conv2: w/ pretraining

(e) Rec Conv3: w/ pretraining

(b) Rec Conv1: w/o pretraining

(d) Rec Conv2: w/o pretraining

(f) Rec Conv3: w/o pretraining
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(a) Imi Conv1: w/ pretraining                (b) Imi Conv1: w/o pretraining

(c) Imi Conv2: w/ pretraining                (d) Imi Conv2: w/o pretraining

(e) Imi Conv2: w/ pretraining                (f) Imi Conv2: w/o pretraining
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FC Layer Visualization

(a) Imitation and recording pair, w/ pretraining

(b) Imitation and recording pair, w/o pretraining



Conclusions & Future Work

Conclusions

 Proposed transfer learning based Siamese style 
network: TL-IMINET

 Interpreted how TL-IMINET works by visualizing input 
patterns that maximally activate neurons

Future work

 Conduct subjective studies to use TL-IMINET

Vision

 Sound query by vocal imitation will be widely available
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The End

Thank you for your attention！


