A study of the robustness of raw waveform based speaker embeddings under mismatched conditions

Ge Zhu, Frank Cwitkowitz and Zhiyao Duan University of Rochester

UNIVERSITY of ROCHESTER

A study of the robustness of raw waveform based speaker embeddings under mismatched conditions

- •Why we are interested in raw waveform?
- •Channel mismatch problem
- •Proposed strategies
- •Experiments

Why we are interested in raw waveform?

•Mel fbank may not optimal:

 $\log \lambda$

(a)

Scalogram $\log |x \star \psi_{\lambda}(t)|^2$

Channel mismatch in waveform speaker embedding modeling

Averaged scalogram $\log |x \star \psi_{\lambda}|^2 \star \phi^2(t)$

Figure: Joakim Andén, Stéphane Mallat. Deep Scattering Spectrum. IEEE TRANSACTIONS ON SIGNAL PROCESSING

UNIVERSITY of ROCHESTER

Why we are interested in raw waveform?

•Frequency resolution in Mel scale

Figure: Xugang Lu, Jianwu Dang. An investigation of dependencies between frequency components and speaker characteristics for text-independent speaker identification. Speech Communication

Channel mismatch in waveform speaker embedding modeling

UNIVERSITY of ROCHESTER

Why we are interested in raw waveform?

Modern unsupervised/self-supervised speech frontend applies waveform as audio inputs:

Model	Fix pre-train	Vox1-O	Vox1-E	Vox1-H
ECAPA-TDNN	-	0.87	1.12	2.12
HuBERT large	Yes	0.888	0.912	1.853
Wav2Vec2.0 (XLSR)	Yes	0.915	0.945	1.895
UniSpeech-SAT large	Yes	0.771	0.781	1.669
WavLM large	Yes	0.59	0.65	1.328
WavLM large	No	0.505	0.579	1.176
+Large Margin Finetune and Score Calibration				
HuBERT large	No	0.585	0.654	1.342
Wav2Vec2.0 (XLSR)	No	0.564	0.605	1.23
UniSpeech-SAT large	No	0.564	0.561	1.23
WavLM large (New)	No	0.33	0.477	0.984

Speaker verification

Table: GitHub repo for WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing

Channel mismatch in waveform speaker embedding modeling

UNIVERSITY of ROCHESTER

Prior Works

Left Figure: Waveform-based music processing with deep learning. ISMIR 2019 Tutorial

Channel mismatch in waveform speaker embedding modeling

UNIVERSITY of ROCHESTER

Channel Mismatch Problem

•Filters in the first layer conduct quasi time-frequency analysis, but tend to capture task-irrelevant aspects of the waveforms

Different audio frontend SV performance under channel mismatch

Experimental design:

- Train dataset: augmented VoxCeleb2
- Test dataset: Full VoxCeleb1 (in-domain) and VOiCEs (out-of-domain)
- Audio frontends: MFBank, Sinc, TDF, MultiScale with 25ms long, 30 channels/filters
- Common backbone for embedding network

Different audio frontend SV performance under channel mismatch

•Results:

Channel mismatch in waveform speaker embedding modeling

UNIVERSITY of ROCHESTER

https://github.com/gzhu06/TDspkr-mismatch-study

9

•Analytical Filters: modulus of filtered signal is shift-invariant

$$u_{\text{analytic}}(t) =$$

Channel mismatch in waveform speaker embedding modeling

$= u(t) + j\mathcal{H}[u(t)]$

UNIVERSITY of ROCHESTER

*Shift-invariant time-frequency representation

A general form of a magnitude-wise shift invariant linear time-frequency representation given signal x(t):

$$D_x(t,f) = \int g(t'-t) x(t') e^{-j2\pi ft'} dt'$$

Analytic representation assuming filterbanks are narrowband models:

$$egin{aligned} &u_a(t) = u_m(t) \cdot \cos(\omega t + \phi) + i \cdot u_m(t) \cdot \sin(\omega t + \phi) \ &= u_m(t) \cdot [\cos(\omega t + \phi) + i \cdot \sin(\omega t + \phi)] \ &= u_m(t) \cdot e^{i(\omega t + \phi)}. \end{aligned}$$

Lütfiye Durak and Orhan Arıkan Short-Time Fourier Transform: Two Fundamental Properties and an Optimal Implementation. IEEE TRANSACTIONS ON SIGNAL PROCESSING Hilbert transform.WIKIPedia

Channel mismatch in waveform speaker embedding modeling

UNIVERSITY of ROCHESTER

•Variational dropout on learned noisy filterbanks:

Discard noisy filterbank weights in a smart way

UNIVERSITY of ROCHESTER

Variational dropout

Dropout: multiplying masks to NN weights.

Bernoulli Gate

image: towardsdatascience.com/12-main-dropout-methods-mathematical-and-visual-explanation

Channel mismatch in waveform speaker embedding modeling

Gaussian Gate

UNIVERSITY of ROCHESTER

Variational dropout

• Gaussian dropout: 0

$$\alpha = \frac{p}{1-p}$$
 is fix

$$w_{ij} = \theta_{ij}\xi_{ij} = \theta_{ij}(1 + \sqrt{\alpha}\epsilon_{ij}) \qquad \epsilon_{ij} \sim \mathcal{N}(0,1)$$

• Variational dropout:

$$w_{ij} = \theta_{ij} (1 + \sqrt{\alpha_{ij}} \cdot \epsilon_{ij})$$

Channel mismatch in waveform speaker embedding modeling

xed

 α_{ii} is learned for each weight

At inference: α_{ii} > Threshold, drop the weights J

UNIVERSITY of ROCHESTER

(I) Ablations on improvement of analyticity:

System	Vox1-O	Vox1-E	Vox1-H	Voices
x-vector (Kaldi)	3.12	2.9	4.99	8.41
x-vector	3.12	2.94	5.07	10.78
x-conv-vector	2.93	2.7	4.67	10.45
TDF	2.79	2.69	4.67	12.74
TDF+VD	3.01	2.79	4.81	11.10
$TDF+\mathcal{H}$	2.72	2.81	4.86	10.72
$TDF+\mathcal{H}+BD$	3.06	2.77	4.83	11.69
$TDF+\mathcal{H}+GD$	2.98	2.73	4.83	11.29
$TDF+\mathcal{H}+VD$	2.72	2.72	4.72	10.32

Channel mismatch in waveform speaker embedding modeling

UNIVERSITY of ROCHESTER

(2) Ablations on improvement of variational dropout:

System	Vox1-O	Vox1-E	Vox1-H	Voices
x-vector (Kaldi)	3.12	2.9	4.99	8.41
x-vector	3.12	2.94	5.07	10.78
x-conv-vector	2.93	2.7	4.67	10.45
TDF	2.79	2.69	4.67	12.74
TDF+VD	3.01	2.79	4.81	11.10
$TDF+\mathcal{H}$	2.72	2.81	4.86	10.72
$TDF+\mathcal{H}+BD$	3.06	2.77	4.83	11.69
$TDF+\mathcal{H}+GD$	2.98	2.73	4.83	11.29
$TDF+\mathcal{H}+VD$	2.72	2.72	4.72	10.32

Channel mismatch in waveform speaker embedding modeling

UNIVERSITY of ROCHESTER

Experiments

(2) Variational dropout

MELIORA S Channel mismatch in waveform speaker embedding modeling

UNIVERSITY of ROCHESTER

Channel mismatch in waveform speaker embedding modeling

Experiments

(2) System comparisons

System	Feature	VoxCeleb-O		VoxCeleb-E		VoxCeleb-H		VOiCEs	
		EER	min-DCF	EER	min-DCF	EER	min-DCF	EER	min-DCF
x-vector (Kaldi)	MFCC	2.26	0.256	2.37	0.279	4.14	0.408	6.79	0.553
x-vector	Mel-fbank	2.37	0.264	2.42	0.280	4.18	0.406	8.14	0.658
x-conv-vector	Mel-fbank	2.04	0.241	2.17	0.252	3.79	0.379	7.10	0.581
Multi-scale	Waveform	2.28	0.273	2.38	0.285	4.17	0.408	8.54	0.705
Sinc		2.37	0.287	2.32	0.278	4.02	0.400	8.55	0.682
Sinc+ \mathcal{H}		2.15	0.270	2.28	0.271	3.91	0.396	8.90	0.669
TDF		1.98	0.230	2.19	0.249	3.85	0.383	8.38	0.663
$TDF+\mathcal{H}$		2.01	0.261	2.27	0.263	3.98	0.396	7.46	0.621
TDF+VD		1.98	0.235	2.30	0.264	4.05	0.385	7.68	0.626
TDF+H+VD		1.99	0.266	2.26	0.253	3.93	0.385	7.40	0.633

Channel mismatch in waveform speaker embedding modeling

UNIVERSITY of ROCHESTER

Experiments

(2) System comparisons

System	Feature	VoxCeleb-O		VoxCeleb-E		VoxCeleb-H		VOiCEs	
		EER	min-DCF	EER	min-DCF	EER	min-DCF	EER	min-DCF
x-vector (Kaldi)	MFCC	2.26	0.256	2.37	0.279	4.14	0.408	6.79	0.553
x-vector	Mel-fbank	2.37	0.264	2.42	0.280	4.18	0.406	8.14	0.658
x-conv-vector	Mel-fbank	2.04	0.241	2.17	0.252	3.79	0.379	7.10	0.581
Multi-scale		2.28	0.273	2.38	0.285	4.17	0.408	8.54	0.705
Sinc		2.37	0.287	2.32	0.278	4.02	0.400	8.55	0.682
Sinc+ \mathcal{H}		2.15	0.270	2.28	0.271	3.91	0.396	8.90	0.669
TDF	Waveform	1.98	0.230	2.19	0.249	3.85	0.383	8.38	0.663
$TDF+\mathcal{H}$		2.01	0.261	2.27	0.263	3.98	0.396	7.46	0.621
TDF+VD		1.98	0.235	2.30	0.264	4.05	0.385	7.68	0.626
TDF+H+VD		1.99	0.266	2.26	0.253	3.93	0.385	7.40	0.633

Channel mismatch in waveform speaker embedding modeling

UNIVERSITY of ROCHESTER 19

Conclusions

based speaker embeddings

• We proposed to introduce (1) analyticity and (2) variational dropout to alleviate the performance mismatch

MELIORA S Channel mismatch in waveform speaker embedding modeling

• We studied cross channel speaker verification performance of raw-waveform

