
Natural Language Generation in the Context of
Providing Indoor Route Instructions

Andrea F. Daniele Mohit Bansal Matthew R. Walter
Toyota Technological Institute at Chicago

Chicago, IL, 60637
{afdaniele, mbansal, mwalter}@ttic.edu

Abstract—Modern robotics applications require robots to be
able to communicate with humans seamlessly and effectively. We
propose a structured algorithm for natural language generation
in the context of indoor route instructions that allows a robot
to combine metrical, topological and semantic information about
the surrounding environment while generating natural language
instructions. Our method learns a policy for giving natural lan-
guage route instructions based on corpora of human instructions
through learning from demonstration. An intermediate formal
language allows the robot to reason first about which environ-
mental features are relevant to the instruction with regards to
minimizing ambiguity (i.e., the content selection problem), and
secondly how to convey this information in a coherent manner by
converting the structured representation into a natural language
English sentence (i.e., the surface generation problem).

I. INTRODUCTION

Natural language provides an efficient and flexible means
for robots to communicate with humans. In order to interact
with people through language, robots must be able to suc-
cessfully generate and interpret free form sentences. One of
the most common tasks we perform every day is navigation,
and in order to reach our destination we constantly use route
instructions. Depending on the specific situation, we can ask
other people for instructions (e.g., when asking staff members
how to get to the exit in a museum) or we can rely on
automatic navigation devices (e.g., while driving a car in a
new city).

Psychological studies have analyzed the usability of route
instructions [16, 23], with a particular focus on identifying
which are the characteristics that constitute “good” instruc-
tions. Waller and Lippa [35] showed that the acquired route
knowledge depends on the function that landmarks serve
during learning.

Existing commercial systems for route instructions gener-
ation typically rely on predefined patterns, populating fields
(e.g., “turn <direction>”) in a turn-by-turn manner. While
correct, the resulting instructions tend to be rigid and un-
natural. Even though they are reliable while navigating road
networks, they are not serviceable in the context of indoor
route instructions. In fact, they are prone to ambiguities as
when the environment structure is aliased.

The need for indoor navigation systems is constantly grow-
ing, especially in the context of assistive technologies where
artificial intelligence and robotics fields provided outstand-
ing tools during the last decades. The ability of robots to

Input: map and path

C

B

H

E

L

S

Floor patterns:

Blue

Brick

Concrete

Flower

Grass

Grey

Wood

Yellow

Objects:

B

Chair

Easel

Hatrack

Lamp

Sofa

Barstool

C

E

H

L

S

Wall paintings:

Tower

Butterfly

Fish

Output: route instruction
“face the grass carpet. walk forward twice. face so the
hatrack is to your right. move until you see grey brick floor
to your left. turn right. go to the wall.”

Fig. 1. An example of route instruction generated by our system.

communicate with humans has the potential to improve the
quality of life of people living with impairments. However,
natural language generation is a challenging task, even when
the context is fixed.

One of the most challenging aspects to generating instruc-
tions is the choice of what to talk about in the instruction. This
problem is known as Content Selection. We can hypothesize
that people tend to generate instructions that reference salient
landmarks, be it large, unique objects in indoor environments,
or famous or otherwise easily recognized buildings when
navigating outdoors. However, it is difficult to derive a set
of rules for identifying such landmarks, since a variety of
different factors participate in this task [16] (e.g., age, culture,
and personal style).

Another challenge is to identify how much information to
convey in the instruction. In fact, longer instructions tend
to be more detailed than shorter ones, but they require a
bigger memory; conversely, shorter sentences can be easily
remembered, but they tend to be too generic and open to

CAS Structure CAS Command

Turn(direction=None) Turn(direction=Left)
Travel(distance=Distance(count=None)) Travel(distance=Distance(count=2))
Face(faced=Verify(desc=[Thing(type=None,value=None)])) Face(faced=Verify(desc=[Thing(type=Obj,value=Chair)]))

Fig. 2. Compound Action Specifications (CAS) structures and commands examples

Context Description (binary)

t change orientation
w change position
tw change orientation and then position
wt change position and then orientation

w obj at the final place contains an object
w past obj pass an object while walking
w dead end the final place is a dead-end

w goal the final pose is the goal pose
t start it is the first action to take

t new carp new floor color is faced from the final pose
t obj side an object is visible from the final pose
t obj at the place where to turn at contains an object

t new pict new wall color is faced from the final pose
t at T the place where to turn at is a dead-end

Fig. 3. List of contexts used as features for paths

Property Description

nsl number of key information to remember
(e.g., Turn(direction=Right) → 1)

cmd low-level command groundtruth
(i.e., walk, turn, walk+turn, turn+walk)

dep CAS command maximum depth
(e.g., Travel(dis=Dist(count=None)) → 2)

eta number of defined attributes
pcp number of floor colors mentioned
ppc number of wall colors mentioned
htw whether or not to head towards an object
nln number of landmarks mentioned

trf turn reference frame
(i.e., allocentric, egocentric)

Fig. 4. List of properties used as features for CAS structures

multiple (sometimes wrong) interpretations.
Natural language generation tasks are often formulated as

three sub-problems: sentence planning, which performs the
choice of how much information to convey, content selection,
which selects which information to provide, and surface gen-
eration, which generates natural language sentences according
to these choices.

Significant progresses have been made on this task (Chen
and Mooney [9], Angeli et al. [2], Kim and Mooney [17],
Konstas and Lapata [19], Mei et al. [29]). Many approaches
solve the three sub-problems separately while others face them

in a end-to-end fashion. Often the sentence planning sub-
problem is considered as part of the content selection problem.
We formulate our model as a sequence of three independent
layers each of which solves a specific sub-problem.

We propose an algorithm that exploits an intermediate
formal language to bridge the gap between a low-level metric
representation of paths and the high-level structure of natural
language sentences. At test time, we are given a path - defined
on a map - and we are asked to generate a natural language
instruction. We solve the sentence planning problem learning
a policy for generating human-like route instructions from
demonstrations by modeling the task as a Markov Decision
Process (MDP) and applying Inverse Reinforcement Learning
(IRL). Subsequently, a greedy-search algorithm performs the
content selection task selecting the most appropriate informa-
tion to include in the instruction. Finally, a set of automatically
extracted templates and a language model based on a recurrent
neural network with long short-term memory units (LSTM-
RNN) are used to perform the surface generation task.

We evaluate our method using a publicly available dataset
of route instructions (SAIL) and show how the system com-
ponents affects the performances of the overall method per-
forming a series of ablations.

II. RELATED WORK

Much attention has been paid recently to developing algo-
rithms that enable robots to interpret natural language manip-
ulation and route instructions [27, 33, 18, 3, 4, 15, 11, 28].
Conversely, natural language generation considers the problem
of representing low-level information the robot produced in
a higher-level format people can easily understand (e.g., an
English sentence).

Selective generation is a relatively new research area and
many approaches have been investigated [32, 36, 26, 8, 24,
10, 17, 25, 5, 34]. Barzilay and Lee [7] propose a technique
to learn topics within text using unsupervised methods and a
Hidden Markov Model (HMM) to model their order.

Barzilay and Lapata [6] consider all the generation deci-
sions jointly. This allows their model to capture dependencies
between utterances and create sentences that are more con-
sistent with how humans perform this task. Liang et al. [20]
propose a generative semi-Markov model that simultaneously
segments text into utterances and aligns each utterance with
the corresponding meaning in the world state.

Angeli et al. [2] rearrange the generation problem as a
sequence of three classification sub-problems (i.e., macro-
content selection, micro-content selection and template selec-
tion) and solve them using three log-linear classifiers. They
use a set of context-dependent rules for automatic template

Model for route instruction generation

Sentence P lanning

Content Selection

{(map, path, instruction), ..}

instruction

Surface Generation

Input

IRL Parser

Sentence
Generator

Maximum
Entropy

Language
Model

path , map

Fig. 5. An overview of our system

extraction from the training data. Mei et al. [29] propose
and end-to-end model that employs a neural encoder-aligner-
decoder network to jointly solve content selection and surface
generation tasks.

Regarding the problem of generating natural language in-
structions, several efforts have been made to study how people
perform such task - from a psychological point of view (Hund
et al. [16], Lovelace et al. [23]) - and also how natural language
aware path planning algorithms can produce easy-to-describe
routes (Haque et al. [14], Richter and Duckham [31], Goeddel
and Olson [13]).

Look et al. [21] asked 10 people to provide written route
instructions for the Stata Center building (MIT), in order to
develop a set of features for “good” instructions. They exploit
the knowledge acquired from the collected data to define a
batch of templates along with a set of application rules.

Look [22] leverages cognitive principles about the way
humans think about space in order to generate route directions
that are easier to understand. Dale et al. [12] derived a set of
rules for generating route directions that appear to be more
human-like by manually analyzing a corpus of human written
directions.

Inverse reinforcement learning (IRL) techniques have been
used to capture the behavior of human instructors from
demonstrations. Oswald et al. [30] model the content selection
problem as a Markov decision process and learn a policy
from demonstrations using maximum-entropy IRL. Unlike our
work, they do not address the surface generation problem.

III. TASK DEFINITION

Natural language generation is the task of constructing a
sequence of words in a human language given a low-level
representation of what to communicate, such that the final
sentence is syntactically correct and its semantics matches the
intended message. In the context of providing indoor route
instructions, the input is a tuple (map, path) consisting of
an environment representation (map) and a route (e.g., as a
sequence of waypoints), while the output is a natural language
instruction. In addition to syntactic and semantic correctness,

the final sentence should also be short and unambiguous. Such
characteristics are fundamental to providing route instructions:
the former ensures that the users can easily understand and
remember the instructions, while the latter increases the like-
lihood that the instructions are followed correctly.

IV. THE MODEL

Our framework (shown in Fig. 5) is composed of three
layers: sentence planning, content selection and surface gen-
eration. The whole system takes as input a couple (path,map)
and provides as output the corresponding instruction (i.e.,
English sentence).

A. Sentence Planning

The sentence planning layer takes as input a tu-
ple (path, map) and outputs a set of CAS structures
(see Sec. IV-A1). It is composed of two sub-blocks: natural
language Parser and IRL (inverse reinforcement learning).

1) Compound Action Specifications: In order to bridge the
gap between low-level information of the input domain (i.e.,
a sequence of waypoint poses) and high-level elements of the
output domain (i.e., words) we employ the Compound Action
Specification (CAS) model, a formal language representation
suited to navigation commands that combines metrical, topo-
logical and semantic information into a single structure. A
CAS consists of five actions (i.e., Travel, Turn, Face, Verify,
Find), each of which is associated with a number of attributes
used to characterize specific commands (e.g., Travel.distance,
Turn.direction). We distinguish between structures and com-
mands. The former is a CAS instruction where the attributes
values are left blank, the latter is an instruction where all the
attributes values are fixed. In other words, a structure defines
a class of instructions, while a command is an instance of
one of such classes. Fig. 2 shows some examples of CAS
structures and commands. For a complete description of the
CAS language, see MacMahon et al. [27].

" turn when you hit the "r ight lamp

Turn(direction= , precond=Travel(until=Verify(desc=[Thing(type= , value=)])))Right Obj Lamp

Fig. 6. An example of english instruction aligned with the corresponding CAS command

2) Parser: We exploit the work done in [27] to convert an
English instruction into a CAS command. Unlike the original
implementation, our parser generates an aligned command.
The alignment connects concepts in the command with the
words in the sentence that generated them. An example of
aligned command is shown in Fig. 6.

3) Inverse Reinforcement Learning: While giving direc-
tions, instructors make decisions about which kind of instruc-
tion to provide. Even if different factors participate in this
decision (e.g., culture, age), different people tend to provide
similar route instructions for similar paths. Hence, we can
assume that people maximize a common unknown reward
function while giving instructions. We formulate the problem
as a Markov decision process (MDP) and employ inverse
reinforcement learning (IRL) to learn a policy that seeks to
mimic the preferences that people use in generating free-form
route instructions, based upon a series of demonstrations.

An MDP is defined by a set of states s ∈ S, a number
of actions a ∈ A, the transition dynamics between states
P (s′|a, s) and a reward function R : S × A → R. The goal
of reinforcement learning is to compute a policy π(a|s) such
that the expected cumulative reward is maximized. Conversely,
the goal of inverse reinforcement learning is to recover an
unknown reward function from a set of demonstrations. We
represent both input (path,map) and output (CAS structure)
as vectors of features, named c (i.e., contexts) and p (i.e.,
properties) respectively. In our model, S and A corresponds
to the enumeration of all possible configurations of the vectors
c and p respectively. Hence, each action a corresponds to
a specific configuration of the vector p and each state s
corresponds to a specific configuration of the vector c. We
employ IRL to learn a policy π(p|c) that decides which
properties p an instruction should have given a context c.

As in [30], we use 14 contexts as features for paths and
9 instruction properties as features for CAS commands. For
each demonstration, map and path are represented by a single
binary vector of 14 elements (indicating which contexts are
active and which are not) while the instruction is represented
by an integer-valued vector of 9 elements. The lists of contexts
and instruction properties we use in our model are shown in
Fig. 3 and 4 respectively.

Given the input u = (p,m), the corresponding vector
representation cu is computed such that its i-th element icu is
equal to 1 if the i-th context ci is active. The desirable feature
vector p?u for the CAS structure is computed such that:

ip?u = argmax
v

π(pi = v|cu) ∀v ∈ values(pi).

where ip?u is the i-th element of p?u, pi indicates the i-th
property and values(pi) is the set of discrete values of the
property pi. Using the desirable properties values, the first
kc nearest neighbor CAS commands are extracted from the
aligned demonstrations and converted into the corresponding
CAS structures C. A distance matrix D ∈ Rkc×kc is computed
such that the element dij ∈ [0, 1] represents the dissimilarity
between the structures ci and cj in C. The spectral clustering
technique is used to group the structures by similarity and
the outliers are removed. The set of distinct structures in C
constitutes the output of the sentence planning layer.

B. Content Selection

The second layer of our system is the content selection
layer. It takes as input a set of CAS structures and chooses the
attributes values such that the final CAS commands are both
valid and not ambiguous. Since the CAS language is formal,
we can compute the likelihood of a CAS command c to be a
valid instruction for a path p define on a map m as:

P (c | p,m) =
δ(c | p,m)∑M

j=1 δ(c | p̂j ,m)
(1)

The index j iterates over all the possible paths that have the
same starting pose of p and δ(c | p,m) is defined as:

δ(c | p,m) =

{
1 if η(c) = φ(c, p,m)
0 otherwise

where η(c) is the number of attributes defined in c, and
φ(c, p,m) is the number of attributes defined in c that are
also valid with respect to the inputs p,m.

For each structure in input, a number of CAS commands are
generated by iterating over the possible attributes values. For
each configuration, correctness and ambiguity are evaluated
using the probability function in (1). A command is valid
if its likelihood is greater than a threshold Pt. The iteration
stops when kt valid commands are found or there are no other
structures to iterate on. Since the number of possible config-
urations for a structure increases exponentially with respect
to the number of attributes of the structure itself, a greedy-
search algorithm is used to make the problem computationally
tractable. The iteration algorithm is forced to use only objects
and aspects of the world visible along the path. A set of valid
CAS commands constitutes the output of the content selection
layer.

" turn when you hit the "r ight lamp

Turn(direction= , precond=Travel(until=Verify(desc=[Thing(type= , value=)])))Right Obj Lamp

Turn(direction= , precond=Travel(until=Verify(desc=[Thing(type= , value=)])))Left Obj Chair

" turn when you hit the "r ight lamp

Turn(direction= , precond=Travel(until=Verify(desc=[Thing(type= , value=)])))Left Obj Chair

" turn when you hit the "l e f t chair

Target CAS

Nearest
Neighbor

Unification

Output

Fig. 7. An example of surface generation using a demonstration as template

C. Surface Generation

The last layer is called surface generation. It takes as input
a set of CAS commands and outputs a natural language
instruction. Each command results in a separate candidate
route instruction, and this layer returns the natural language
command with the greatest confidence.

1) Sentence Generator: For each command ck, a set of
ks nearest neighbors is extracted from the set of aligned CAS
commands generated during the training phase. We use the set
of natural language instructions H related to such neighbors to
compute a distance matrix B ∈ Rks×ks , where 1.0− bij ∈ B
denotes the Ratcliff/Obershelp similarity between the instruc-
tion sentences hi and hj . The demonstration (cas?, h?) that
is used as template for generation is that which minimizes the
average distance,

h? = arg min
hi∈H

1

ks

ks∑
j=1

bij . (2)

The unification set U(cas?, cast) is defined as the smallest
collection of changes to be made in cas? to match the target
command cast. For example:

U(Turn(direction=Left), Turn(direction=Right)) = {Left→Right}

The unification set is computed and the attributes alterations
applied to the template command invalidating the alignment
between the sentence and CAS command itself. Finally, the
broken alignments are restored by changing the words in the
sentence according to the new attributes values. An example
of the surface generation process is shown in Fig. 7.

Our system learns how to map attributes values to words
(e.g., Left→left, 1→one, Sofa→bench) using the alignments
in the demonstrations.

2) Language Model: A language model is a method that
assigns probability to natural language sentences. We employ
a recurrent neural network with long short-term memory units

(LSTM-RNN) as language model to score the instruction
candidates in order to ensure that they are syntactically correct.
An instruction is considered syntactically correct if its score
is above a threshold xt.

3) Maximum Entropy: Complex paths are split into se-
quence of simple segments and for each segment an inde-
pendent set of candidate instructions is generated. Finally the
best candidates for each segment are merged together to form a
paragraph. During the training phase, different demonstrations
can generate the same CAS command and, since we perform
sentence clustering to increase the generation confidence (as
described in Sec.IV-C1), our system tend to prefer particular
sentence structures while generating instructions for simi-
lar CAS commands. This could lead to scenarios in which
the final instruction contains repetitions like “turn left” or
“go straight” and, according to Oswald et al. [30], repetitions
make the instructions appear less natural. In order to promote
language diversity, we provide as output the combination of
instructions candidates such that the final paragraph maximizes
the Shannon entropy.

V. EXPERIMENT SETUP

A. Dataset

We train and evaluate our system using the publicly avail-
able SAIL route instruction dataset collected by MacMahon
et al. [27]. We use the original data without correcting typos
or wrong instructions. The dataset consists of 3213 demon-
strations arranged in 706 paragraphs produced by 6 instructors
for 126 different paths throughout 3 virtual environments. We
partition the dataset in three parts, training (70%), validation
(10%), and testing (20%) set. The publicly available PTB
dataset is used to train the language model.

B. Evaluation metric

We evaluate our system by scoring the generated instruc-
tions using the modified BLEU-score [1]. Since a path can

" turn so that the is on your "r ightlamp

Target CAS

Nearest
Neighbor

Output

Turn(face=Face(faced=Verify(desc=[Thing(type= , value= , side=)])))TypeObj Lamp Right

Turn(face=Face(faced=Verify(desc=[Thing(type= , value=)])))TypeObj Chair

" turn so that the is on your "r ightchair

Fig. 8. An example of surface generation failure due to unwanted information inherited from the demonstration.

allow multiple valid CAS commands and hence different
valid instructions, we evaluate the surface generation algorithm
independently by generating the corresponding CAS command
for each natural language instruction in the testing set. Finally,
we use such commands as input for our surface generation
algorithm and score the output sentence using the BLEU-score
method with the original instruction as ground-truth.

C. Training details

During the training phase, a set of demonstrations (SAIL
dataset) is used to build the robot linguistic knowledge. Each
demonstration is a tuple (map, path, instruction), where:
• map = (lsemantic, ltopologic, lmetric) is a three-layer,

hierarchical representation of the environment;
• path = {(x, y, θ), ...} is a sequence of poses;
• instruction is a natural language instruction for the path;

We use the training set to train inverse reinforcement
learning and sentence generator layers. The PTB dataset is
used to pre-train the language model layer while training
and validation sets are used for a fine-tuning phase. We use
the following values for the system parameters: kc = 100,
ks = 100, Pt = 0.8, kt = 50, and xt = 5.0.

VI. RESULTS AND ANALYSIS

We report the performance of our surface generation module
using the modified BLEU-score [1]. We use the CAS com-
mands from the test set as the input to our surface generation
algorithm and compare against the ground-truth reference
generation. Our system achieves a BLEU-score of 0.87 for the
whole testing set. The single-threaded version of our system
is able to produce instructions in 87 seconds for paths of 14
movements on average. To the best of our knowledge, the
SAIL dataset has never been used before for the purpose of
route instruction generation. This does not allow us to make a
fair comparison between our results and others. Fig. 1 shows
an example of a route instruction paragraph generated by our
system.

A. Sentence Clustering Ablation

The contribution of the sentence clustering algorithm to
the overall system performance is evaluated by analyzing the

surface generation layer output score when the equation 2 is
replaced by a random selection. The resulting system achieves
a BLEU-score of 0.84 for the whole testing set. Fig. 9
shows an example of generated instruction when the sentence
clustering algorithm is not considered (NoCluster).

B. Language Model Ablation

We analyze the effect of the language model layer to the
system performance by analyzing the output of our system
when the language model assigns constant scores. Fig. 9 shows
an example of generated instruction when the language model
is not considered (NoLangM).

C. Maximum Entropy Ablation

We evaluate the effect of the maximum entropy layer to the
system performance by analyzing the output of our system
when the maximum entropy method assigns constant entropy.
Fig. 9 shows how the generated instruction is affected by
repetitions when the maximum entropy layer is not considered
(NoMaxEnt).

VII. DISCUSSION

Our results show how the exploitation of an intermediate
formal language helps the natural language generation process
by bridging the gap between low-level and high-level informa-
tion and providing a skeleton for the final sentence. Moreover,
it shows also that we can achieve high performances even
using a small number of demonstrations.

The generated instructions sometimes contain unwanted
information inherited from the original demonstrations. This
happens when the nearest neighbor of the target CAS com-
mand contains more attributes than needed. An example is
shown in Fig. 8. Future efforts will be focused on the appli-
cation of deep learning oriented approaches. A sequence-to-
sequence model could be used indeed to learn how to translate
a CAS command into a natural language sentence.

VIII. CONCLUSION

We presented a model for natural language generation in the
context of providing indoor route instructions that exploits a
structured approach to produce unambiguous, easy to remem-
ber and grammatically correct human-like route instructions.

Method Generated Instruction

Full “face the grass carpet. walk forward twice. face so the hatrack is to your right. move until you see grey brick floor to your
left. turn right. go to the wall.”

NoMaxEnt “face the grass carpet. move until you see red brick floor to your left. turn left. move until you see grey brick floor to your
right. turn right. move until you see blue brick floor to your right”

NoCluster “turn and face the blue olive hallway so that the pink floored hallway is on your left and the wall is on your right. walk
forward twice. face the brick carpet. move until you see grey brick floor to your left. turn right. go to the hallway.”

NoLangM “you should be facing down a grass hallway. it’s second movement after a lamp pole. and then take another back once
you see a wall in the middle of the hall. move until you see black brick floor to your left. turn right. move to the left.”

Fig. 9. An example of instruction generation under the effect of some ablations.

REFERENCES

[1] Natural Language Toolkit (http://www.nltk.org/).
[2] Gabor Angeli, Percy Liang, and Dan Klein. A simple

domain-independent probabilistic approach to genera-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 502–512, 2010.

[3] Yoav Artzi and Luke Zettlemoyer. Weakly supervised
learning of semantic parsers for mapping instructions to
actions. Transactions of the Association for Computa-
tional Linguistics, 1:49–62, 2013.

[4] Yoav Artzi, Dipanjan Das, and Slav Petrov. Learning
compact lexicons for ccg semantic parsing. In Proceed-
ings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1273–1283, 2014.

[5] Daniel Paul Barrett, Scott Alan Bronikowski, Haonan
Yu, and Jeffrey Mark Siskind. Robot language learn-
ing, generation, and comprehension. arXiv preprint
arXiv:1508.06161, 2015.

[6] Regina Barzilay and Mirella Lapata. Collective content
selection for concept-to-text generation. In Proceedings
of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing,
pages 331–338. Association for Computational Linguis-
tics, 2005.

[7] Regina Barzilay and Lillian Lee. Catching the drift: Prob-
abilistic content models, with applications to generation
and summarization. arXiv preprint cs/0405039, 2004.

[8] Anja Belz. Automatic generation of weather forecast
texts using comprehensive probabilistic generation-space
models. Natural Language Engineering, 14(04):431–
455, 2008.

[9] David L Chen and Raymond J Mooney. Learning
to sportscast: a test of grounded language acquisition.
In Proceedings of the 25th international conference on
Machine learning, pages 128–135. ACM, 2008.

[10] David L Chen, Joohyun Kim, and Raymond J Mooney.
Training a multilingual sportscaster: Using perceptual
context to learn language. Journal of Artificial Intelli-
gence Research, pages 397–435, 2010.

[11] Istvan Chung, Oron Propp, Matthew R. Walter, and

Thomas M. Howard. On the performance of hierarchical
distributed correspondence graphs for efficient symbol
grounding of robot instructions. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Hamburg, Germany, 10 2015.

[12] Robert Dale, Sabine Geldof, and Jean-Philippe Prost.
Using natural language generation in automatic route.
Journal of Research and practice in Information Tech-
nology, 37(1):89, 2005.

[13] Robert Goeddel and Edwin Olson. Dart: A particle-
based method for generating easy-to-follow directions.
In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1213–
1219, 2012.

[14] Shazia Haque, Lars Kulik, and Alexander Klippel. Algo-
rithms for reliable navigation and wayfinding. In Spatial
Cognition V Reasoning, Action, Interaction, pages 308–
326. Springer, 2006.

[15] T.M. Howard, S. Tellex, and N. Roy. A natural language
planner interface for mobile manipulators. In Proceed-
ings of the IEEE International Conference on Robotics
and Automation (ICRA), 2014.

[16] Alycia M Hund, Martin Schmettow, and Matthijs L
Noordzij. The impact of culture and recipient perspective
on direction giving in the service of wayfinding. Journal
of Environmental P/sychology, 32(4):327–336, 2012.

[17] Joohyun Kim and Raymond J Mooney. Generative
alignment and semantic parsing for learning from am-
biguous supervision. In Proceedings of the 23rd In-
ternational Conference on Computational Linguistics:
Posters, pages 543–551. Association for Computational
Linguistics, 2010.

[18] Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas
Roy. Toward understanding natural language directions.
In Proceedings of the ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), pages 259–266,
2010.

[19] Ioannis Konstas and Mirella Lapata. Unsupervised
concept-to-text generation with hypergraphs. In Pro-
ceedings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, pages 752–761.
Association for Computational Linguistics, 2012.

[20] Percy Liang, Michael I Jordan, and Dan Klein. Learning
semantic correspondences with less supervision. In Pro-
ceedings of the Joint Conference of the Annual Meeting
of the Association for Computational Linguistics and
the International Joint Conference on Natural Language
Processing (ACL/IJCNLP), pages 91–99, 2009.

[21] Gary Look, Buddhika Kottahachchi, Robert Laddaga, and
Howard Shrobe. A location representation for generating
descriptive walking directions. In Proceedings of the
International Conference on Intelligent User Interfaces,
pages 122–129, 2005.

[22] Gary Wai Keung Look. Cognitively-inspired direction
giving. 2008.

[23] Kristin L Lovelace, Mary Hegarty, and Daniel R Mon-
tello. Elements of good route directions in familiar and
unfamiliar environments. In Spatial information theory.
Cognitive and computational foundations of geographic
information science, pages 65–82. 1999.

[24] Wei Lu and Hwee Tou Ng. A probabilistic forest-to-
string model for language generation from typed lambda
calculus expressions. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing,
pages 1611–1622. Association for Computational Lin-
guistics, 2011.

[25] Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S
Zettlemoyer. A generative model for parsing natural
language to meaning representations. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 783–792. Association for
Computational Linguistics, 2008.

[26] Wei Lu, Hwee Tou Ng, and Wee Sun Lee. Natural
language generation with tree conditional random fields.
In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 1-
Volume 1, pages 400–409. Association for Computational
Linguistics, 2009.

[27] M. MacMahon, B. Stankiewicz, and B. Kuipers. Walk
the talk: Connecting language, knowledge, and action
in route instructions. In Proceedings of the National

Conference on Artificial Intelligence (AAAI), 2006.
[28] Hongyuan Mei, Mohit Bansal, and Matthew R Walter.

Listen, attend, and walk: Neural mapping of naviga-
tional instructions to action sequences. arXiv preprint
arXiv:1506.04089, 2015.

[29] Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. What to talk about and how? Selective genera-
tion using lstms with coarse-to-fine alignment. CoRR,
abs/1509.00838, 2015.

[30] Stefan Oswald, Henrik Kretzschmar, Wolfram Burgard,
and Cyrill Stachniss. Learning to give route directions
from human demonstrations. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), pages 3303–3308, 2014.

[31] Kai-Florian Richter and Matt Duckham. Simplest in-
structions: Finding easy-to-describe routes for naviga-
tion. In Geographic information science, pages 274–289.
Springer, 2008.

[32] Radu Soricut and Daniel Marcu. Stochastic language
generation using widl-expressions and its application in
machine translation and summarization. In Proceedings
of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Associ-
ation for Computational Linguistics, pages 1105–1112.
Association for Computational Linguistics, 2006.

[33] S. Tellex, T. Kollar, S. Dickerson, Matthew R. Walter,
Ashis G. Banerjee, S. Teller, and N. Roy. Understand-
ing natural language commands for robotic navigation
and mobile manipulation. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI), pages
1507–1514, San Francisco, CA, 8 2011.

[34] Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus,
and Nicholas Roy. Asking for help using inverse seman-
tics. In Robotics: Science and systems, volume 2, page 3,
2014.

[35] David Waller and Yvonne Lippa. Landmarks as beacons
and associative cues: their role in route learning. Memory
& Cognition, 35(5):910–924, 2007.

[36] Yuk Wah Wong and Raymond J Mooney. Generation by
inverting a semantic parser that uses statistical machine
translation. In HLT-NAACL, pages 172–179, 2007.

	Introduction
	Related Work
	Task definition
	The Model
	Sentence Planning
	Compound Action Specifications
	Parser
	Inverse Reinforcement Learning

	Content Selection
	Surface Generation
	Sentence Generator
	Language Model
	Maximum Entropy

	Experiment Setup
	Dataset
	Evaluation metric
	Training details

	Results and Analysis
	Sentence Clustering Ablation
	Language Model Ablation
	Maximum Entropy Ablation

	Discussion
	Conclusion

