Power-Rate-Distortion Analysis For Wireless Multimedia Networks - Part II

Chao Yu and Ilker Demirkol
ECE Dept, University of Rochester
Rochester NY, USA

March 2nd, 2009
Consider wireless transmission of an image of R bits

- energy/bandwidth constraint
- unreliable channel

Goal:

- Minimize energy consumption P, given distortion requirement
- Minimize distortion D, given the power constraint.

Design parameters:

- the compressed bit rate, R_s
- the channel-coded bit rate R_c
- the transmission power P
Recap: Power-Rate-Distortion Analysis

PRD for compression

- focus: computation energy \(P_s \)
- parameter: \(R_s \),
 - approximate energy model for adaptable compression algorithms
- optional: simplistic model for transmission: \(P_t \propto R_s \)
Recap: Power-Rate-Distortion Analysis

PRD for compression
- focus: computation energy P_s
- parameter: R_s
 - approximate energy model for adaptable compression algorithms
- optional: simplistic model for transmission: $P_t \propto R_s$

PRD for transmission
- focus: transmission energy P_t
- parameter: R_c, P
 - mathematical formulation for power-distortion analysis of wireless data transmission
- optional: simple model for compression energy: $P_s \propto R_s$
Recap: Power-Rate-Distortion Analysis

PRD for compression
- focus: computation energy P_s
- parameter: R_s
 - approximate energy model for adaptable compression algorithms
- optional: simplistic model for transmission: $P_t \propto R_s$

PRD for transmission
- focus: transmission energy P_t
- parameter: R_c, P
 - mathematical formulation for power-distortion analysis of wireless data transmission
- optional: simple model for compression energy: $P_s \propto R_s$

PRD for joint compression-transmission
PRD for transmission:

- Goal: minimize P_t for a fixed amount of data, R_s
- Parameter: channel code rate R_c, transmission power P

Model:

- Given channel/modulation model
 \[P \rightarrow \text{BER} \]

- Given channel code type
 \[\text{BER}, R_c \rightarrow P_e \text{ fail rate} \]

- Given distortion model
 \[P_e \rightarrow E[D_t] \]

Result: $E[D_t](P, R_c)$, allows optimization of P, R_c
Joint source-channel matching for a wireless communications link, [Appadwedula et al., ICC98]

- **Goal**: minimize average distortion under power and rate constraint
- **Parameter**: R_c, P

\[
\min_{BEP, r} \mathbb{E}[D] = \sum_{\text{blocks}} D(\text{block})P_e(\text{block})
\]

\[
s.t. \quad P_{\text{tot}} \leq P \quad \text{and} \quad R_{\text{tot}} \leq R
\]
PRD formulation for joint compression-communication is obtained by combining individual components

\[P_{tot} = P_s + P_t + \ldots \]

\[D_{tot} = D_s + D_t \]

Various energy models for

- video coding
- channel encoding/decoding
- receiver
Total system energy minimization for wireless image transmission, [Appadwedula et al., 2001, Journal of VLSI signal processing, 2001]

- Goal: minimize total energy of encoding/transmission/receiving
- Parameter: $R_s, R_c, P, C_{rake}, \ldots$

Nonlinear optimization problem, numerical methods.
Power-minimized bit allocation for video communication over wireless channels, [Zhang et al., 2002, CVST 2002],

- **Goal:** \(\min P_{tot}, \text{s.t. } D_{tot} < D \)
- **Parameters:** \(R_c, P, R_s \)
- \(R_s \) controlled by adaptive motion estimation
- Simple model for power consumption in source/channel coding
Power efficient multimedia communication over wireless channels, [Lu et al., 2003, JSAC 2003]

- Goal: \(\min P_{tot}, \text{s.t.} D_{tot} < D \)
- Parameter: \(R_c, P, R_s \)
- \(R_s \) controlled by adaptive I-frame ratio
- Simple model for power consumption in source/channel coding
Related power-rate-distortion analysis for video coding

- More control parameters
 - Block mode selection (intra/inter), adaptive quantization [He et al., 2002]
- Advanced distortion model
 - inter-frame distortion model
 - error-concealment
- Application of PRD
 - Power allocation (frames/blocks)
- Review papers, [Katsaggelos et al., 2005][Etoh and Yoshimura, 2005]

