Distributed Source Coding for Wireless Sensor Networks

Mark Perillo
March 14, 2007
Overview

- Review of information Theory Principles
- Distributed Source Coding Principles
 - Lossless
 - Lossy
 - The CEO Problem
- Practical Distributed Source Coding Schemes
- Ideas For Work In Distributed Source Coding
Review of Information Theory
Principles
Review of Information Theory Principles

- **H(x)**: Entropy - a measure of the information contained of a random variable

\[H(X) = \sum_i - p_i \log p_i \]

- For Bernoulli random variable X
 - If \(p = 0.5, q=0.5 \) then \(H(X) = H(p) = 1 \) bit
 - If \(p = 0.1, q=0.9 \) then \(H(X) = H(p) = 0.47 \) bit

- For uniform random variable \(Y \in \{1,2,3,\cdots,N\} \)
 \[H(Y) = \log N \]
Review of Information Theory Principles

- **H(X|Y)**: Conditional entropy - a measure of the information remaining in X, once Y is known

\[
H(X) = \sum_x \sum_y - p(x, y) \log p(x | y)
\]

- For example
 - Uniform random variable X → \(H(X) = \log N \)
 - But if we know Y and we know that X = Y or X=Y+1 with equal probability, \(H(X|Y) = 1 \) bit
Review of Information Theory Principles

- **H(X,Y):** Joint Entropy – a measure of the total information in X and Y

\[
H(X,Y) = \sum_x \sum_y - p(x, y) \log p(x, y)
\]

- **I(X;Y):** Mutual Information – a measure of the amount of information shared by two random variables X and Y

\[
I(X;Y) = \sum_x \sum_y p(x, y) \log \frac{p(x, y)}{p(x)p(y)}
\]
Review of Information Theory Principles

$H(X,Y)$

$H(X)$ $H(Y)$

$H(X|Y)$ $I(X;Y)$ $H(Y|X)$
Review of Information Theory Principles

- Source coding
 - A large block of n copies of i.i.d RV X can be compressed into $nH(X)$ bits
 - Based on the theory of typical sets and the Asymptotic Equipartition Property (AEP)
Asymptotic Equipartition Property

- $X_1, X_2, X_3 \ldots X_n$ are i.i.d. random variables
- It is very likely that

\[
-\frac{1}{n} \log p(X_1, X_2, X_3, \ldots, X_n) \approx H(X)
\]

\[
p(X_1, X_2, X_3, \ldots, X_n) \approx 2^{-nH(X)}
\]

- This is a direct result of the weak law of large numbers
Asymptotic Equipartition Property

- If we have a large sequence of random variables, then it is very likely that the drawn sequence will have joint probability about equal to $2^{-nH(x)}$

$$\begin{align*}
(x_1, x_2, x_3, \ldots, x_n) &\in A_\epsilon^{(n)} \\
2^{-n(H(X)+\epsilon)} &\leq p(x_1, x_2, x_3, \ldots, x_n) \leq 2^{-n(H(X)-\epsilon)}
\end{align*}$$

- There are a total of about $2^{nH(x)}$ of these “typical” sequences in the typical set $A_\epsilon^{(n)}$ where nearly all of the probability is concentrated.
Asymptotic Equipartition Property

- If we do a good job compressing the “typical” sequences, the overall quality of the job we do will be good
 - Even if we do a poor job compressing the “atypical” sequences
- In fact, we can compress a block of X with length n into $nH(X)$ bits
- Similarly, a block of (X,Y) with length n can be compressed into $nH(X,Y)$ bits
Jointly Typical Sequences

\[A_\varepsilon^{(n)} = \left\{ (x^n, y^n) : \begin{align*} &-\frac{1}{n} \log p(x^n) - H(X) < \varepsilon \\ &-\frac{1}{n} \log p(y^n) - H(Y) < \varepsilon \\ &-\frac{1}{n} \log p(x^n, y^n) - H(X,Y) < \varepsilon \end{align*} \right\} \]
Rate Distortion Theory

- The source coding theorem states that in order to reconstruct a discrete input sequence with no loss of information (i.e., no distortion), we must encode at a rate of $H(X)$
- But what if some distortion is allowable?
- And what if we want to describe a continuous random variable with a discrete alphabet?
- What rates are required then?
Rate Distortion Theory

- The answers to this question comes in the form of the rate distortion function $R(D)$

\[
R(D) = \min_{p(\hat{x}|x): \sum_{(x,\hat{x})} p(x) p(\hat{x}|x) d(x,\hat{x}) \leq D} I(X; \hat{X})
\]

- Typical distortion measures:
 - Hamming distance (discrete sources)
 - Mean squared error (continuous sources)
Rate Distortion Theory

- **Examples**
 - Bernoulli Source with Hamming distortion measure
 \[
 R(D) = \begin{cases}
 H(p) - H(D) & 0 \leq D \leq p \\
 0 & D > p
 \end{cases}
 \]
 - Gaussian Source with MSE distortion measure
 \[
 R(D) = \begin{cases}
 \frac{1}{2} \log \frac{\sigma^2}{D} & 0 \leq D \leq \sigma^2 \\
 0 & D > \sigma^2
 \end{cases}
 \]
Distributed Source Coding Principles
Distributed Source Coding

Example

- Two temperature sensor with 8-bit ADC
- Entropy $H(X) = H(Y) = 8$ bits
- But $Y = X + N, \quad N = \{0,1\}$ with equal probability
- $H(Y|X) \approx 1$ bit
- Collocated encoder:
 - $R = H(X,Y) = H(X) + H(Y|X) = 8 + 1 = 9$ bits
- Separate encoders with no awareness of each other:
 - $R = H(X) + H(Y) = 8 + 8 = 16$ bits
Lossless Distributed Source Coding

X Y

Encoder

$H(X,Y)$

Decoder

$R = H(X,Y)$
Lossless Distributed Source Coding

Encoder

X

$H(X)$

Decoder

Encoder

Y

$H(Y)$

$R = H(X) + H(Y)$
Lossless Distributed Source Coding

$R = H(X) + H(Y|X)$

Can we do this?

Slepian and Wolf proved that you can indeed
Slepian-Wolf Coding

- Can we encode data sequences separately with no rate increase? YES!!!
- Proof is achieved via analysis of an encoding strategy using “binning”
Slepian-Wolf Coding

- Choose rates R_x and R_y to meet Slepian-Wolf requirements
 \[
 R_x = H(X | Y) \\
 R_y = H(Y | X) \\
 R_x + R_y = H(Y, X)
 \]

- Assign every sequence x^n to a random bin on \{1,2,... 2^{nR_x}\} and every y^n to a random bin on \{1,2,... 2^{nR_y}\}

- Transmit the bin indices to the decoder

- Look for jointly typical sets in (x^n, y^n) that share indices
Lossy Distributed Source Coding

\[x^n = \{0, 1, 0, \ldots, 0, 0\} \]
\[x^n = \{0, 1, 0, \ldots, 0, 1\} \]
\[x^n = \{0, 1, 0, \ldots, 1, 0\} \]
\[x^n = \{0, 1, 0, \ldots, 1, 1\} \]

\[2^{nR_x} \text{ bins} \]
Lossy Distributed Source Coding

\[2^{nH(X,Y)} \] jointly typical sequences

\[x^n = \{0,1,0,\ldots,1,0\} \]
\[y^n = \{0,0,0,\ldots,1,0\} \]

Will result in decoding errors
Slepian-Wolf Coding

- When do we get decoding errors?
 - When the X and Y sequences are not jointly typical
 - Rare from Joint AEP
 - When more than one X in the same bin that is jointly typical with Y (or vice versa)
 - Rare if Rx > H(X|Y) (and Ry > H(Y|X))
 - When more than one jointly typical (X,Y) sequence in a single product bin (and vice versa)
 - Rare if Rx + Ry > H(X,Y)
Lossy Distributed Source Coding

\[R_x \]

\[R_y \]

\[H(X) \]

\[H(X|Y) \]

\[H(Y|X) \]

\[H(Y) \]

- Separate Encoders
Slepian-Wolf Coding

- With two variables, we can achieve considerable savings in amount of traffic required.
- In general, for n sensors, the Slepian-Wolf requirement is as follows:

$$R(S) > H(X(S) | X(S^c)) \quad \forall S \subseteq \{1, 2, ..., m\}$$

$$R(S) = \sum_{i \in S} R_i$$

$$X(S) = \{X_j : j \in S\}$$
Source Coding w/ Side Information

- Look at a special case when ONLY X needs to be recovered at the decoder

\[X \quad \xrightarrow{\text{Encoder}} \quad R_x \quad \xrightarrow{\text{Decoder}} \quad \hat{X} \]

\[Y \quad \xrightarrow{\text{Encoder}} \quad R_y \]
Source Coding w/ Side Information

- For U such that
 \[p(x, y, u) = p(x, y)p(u \mid y) \]
 \[X \rightarrow Y \rightarrow U \]

- Then we can send at rates
 \[R_x \geq H(X \mid U) \]
 \[R_y \geq I(Y; U) \]
Source Coding w/ Side Information

- One extreme: $U = Y$

\[R_x \geq H(X \mid U) = H(X \mid Y) \]
\[R_y \geq I(Y; U) = I(Y; Y) = H(Y) \]

- Another extreme: U is uncorrelated with X, Y

\[R_x \geq H(X \mid U) = H(X) \]
\[R_y \geq I(Y; U) = 0 \]

- The results from Wyner basically say that we can operate between these two extremes
If we want to reproduce X with some distortion D, what rate must we send at, given that we have access to side information Y?

\[E[d(X, \hat{X})] < D \]
R-D w/ Side Information

- If X, Y are uncorrelated, this is just the rate distortion function $R(D)$
- Since side information can only help,

 \[R_Y^*(D) \leq R(D) \]

- If no distortion is allowed, then

 \[R_Y^*(0) = H(X \mid Y) \]

 as Slepian and Wolf showed
R-D w/ Side Information

- In general,

\[R^*_Y(D) = \min_{p(w|x)} \min_f (I(X;W) - I(Y;W)) \]

\[\sum \sum \sum p(x, y) p(w | x) d(x, f(y, w)) \leq D \]

- \(f \) is the reconstruction function

- \(w \) is the encoded version of \(x \)
R-D w/ Side Information

- Remember: in lossless (S-W coding), we pay no penalty for separation of X and Y
- Unfortunately, this is not the case in lossy source coding
- In general, \(R_Y^*(D) \geq R_{X|Y}(D) \)
 \[R_{X|Y}(D) : \text{rate required when X's encoder has access to Y} \]
- However, equality is achieved when (X,Y) are jointly Gaussian
Distributed Data Compression

- The rate-distortion region for this general problem is unknown

![Diagram of distributed data compression system]
The CEO Problem

Source signal, x

Sensor node

Finite rate communication link

Root node
The CEO Problem

\[X \sim p(X) \]

\[W(y_1 | x) \rightarrow \text{Encoder} \]
\[W(y_2 | x) \rightarrow \text{Encoder} \]
\[W(y_L | x) \rightarrow \text{Encoder} \]

\[\text{Decoder} \rightarrow \hat{X} \]
The CEO Problem

- If the CEO’s L agents were able to convene, they could smooth the data (i.e., average out the noise) to obtain a true value of X and then send data at a rate R(D) required to keep distortion below D.

- But what happens if they cannot convene?
 - Assume a sum rate requirement $\sum_i R_i \leq R$.
The CEO Problem

- Berger et al originally found the limits of this problem for a Hamming distance measure.

- For $R > H(X)$, $P_e(R)$ does not go to 0.

- In fact, $P_e(R) = 2^{-\alpha(p,W)R}$ as R gets large, where $\alpha(p,W)$ is a constant for a given source distribution and joint source/observation distribution.

- In other words, there is always a penalty for not being able to convene.
The Quadratic Gaussian CEO Problem
The Quadratic Gaussian CEO Problem

- Viswanathan and Berger et al found the limits of this problem as well
- As R and L get very large, what happens to D as a function of sum rate R
The Quadratic Gaussian CEO Problem

- Result

\[\beta(\sigma_X^2, \sigma_N^2) = \lim_{R \to \infty} \lim_{L \to \infty} R \frac{D(R, L)}{\sigma_X^2} \]

\[0 < \inf_{Q(u|y)} \frac{I(Y; U \mid X)}{\sigma_X^2 E \left[- \frac{\partial^2}{\partial X^2} \log \tilde{Q}(U \mid X) \right]} \leq \beta(\sigma_X^2, \sigma_N^2) \leq \frac{\sigma_N^2}{2\sigma_X^2} \]

- Oohama proved that for Gaussian X,N, these bounds are tight
The Quadratic Gaussian CEO Problem

- This means that distortion decays as \[D = \frac{\sigma^2}{2R} \]

- Compare with the case when agents can all convene

- Agents can smooth out the data and get rid of noise \[D = \sigma_X^2 2^{-2R} \]

- So again, a penalty is paid for not being able to convene
The Quadratic Gaussian CEO Problem

• How do we achieve this? \(D = \frac{\sigma^2}{2R} \)
Practical Distributed Source Coding Schemes
Draper et al’s Work

- Side Information aware limit:
 - For a given rate constraint R

$$d \geq \min_{f, u \in \Pi} E[D(x, f(y_D, u))]$$

$$u \rightarrow y_E \rightarrow x, y_D, y_N$$

$$R > I(y_E; u) - I(y_D; u)$$
Draper et al’s Work

- How to do this:
 - Construct a code of \(\sim 2^{nI(y_e;u)} \) typical codewords
 - Bin each of these into one of \(2^{nR} \) bins
 - \(\sim 2^{n(I(y_e;u) - R)} \) codewords per bin
 - Block encode and transmit codeword’s bin (coset index)
 - Decoder choose codeword in coset that is jointly typical with its observation
Draper et al’s Work

- Side Information aware limit:
 - For a given rate constraint R_{cut}

\[
d \geq \min_{f,u \in \Pi} E \left[D(x, f(y^{A^c}, u)) \right]
\]

\[
u \rightarrow y^A \rightarrow x, y^{A^c}
\]

\[
R_{\text{cut}} > I(y^A; u) - I(y^{A^c}; u)
\]

- One of these constraints exists for all possible cuts
Draper et al’s Work

- Quadratic Gaussian Case:

\[
R(d) = \frac{1}{2} \log \left(\frac{\sigma^2_{x|y_D} - \sigma^2_{x|y_E,y_D}}{d - \sigma^2_{x|y_E,y_D}} \right)
\]

\[
d(R) = \sigma^2_{x|y_E,y_D} + \left(\sigma^2_{x|y_D} - \sigma^2_{x|y_E,y_D} \right) 2^{-2R}
\]

\[
\sigma^2_{x|y_D} : \text{Minimum distortion given decoder observation}
\]

\[
\sigma^2_{x|y_D,y_E} : \text{Minimum distortion given encoder, decoder observation}
\]
Draper et al’s Work

- **Serial Network**

\[
d_l \geq \frac{N_l d_{l-1}}{N_l + d_{l-1}} + \sigma^2_{x|y_l} \left(1 - \frac{d_{l-1}}{\sigma^2_x} \right) \left(1 + \frac{d_{l-1}}{N_l} \right)^{-2R_l-1}
\]

\[
d_1 = \sigma^2_{x|y_1}
\]
Draper et al’s Work

- Parallel Network

\[d_l \geq \frac{N_l d_{l-1}}{N_l + d_{l-1}} + \frac{d_{l-1}^2}{N_l + d_{l-1}} 2^{-2R} \]

\[d_0 = \sigma_x^2 \]
Draper et al’s Work

- We can apply the serial and parallel results to get the achievable distortion of a general sensor network tree
Draper et al’s Work

- Serial Network
- Source variance = 4
- Noise variance = 4/3
- R = 2.5 bits
Source Coding Using Syndromes

- Originally introduced by Wyner in 1974
- Used by many in the literature recently, notably DISCUS by Pradhan et al.
- Exploits duality between Slepian-Wolf coding and channel coding
DISCUS Example

- $X = \{0,1\}^n$ and $Y = \{0,1\}^n$, $n = 3$
- X, Y’s correlation is such that they differ in at most 1 bit
- Thus, given Y, X can take 4 values:
 - Same or differ in the 1^{st}, 2^{nd}, or 3^{rd} bit
- $H(X|Y) = 2$
 - If we send all of Y, this is the S-W limit
DISCUS Example

- Divide codeword space into 4 cosets
 - 0: {000, 111}, 1: {001, 110}, 2: {010, 101}, 3: {011, 100}
 - Send only the coset index (4 cosets = 2 bits)
 - This meets the S-W bound

- Given Y, only one of the members of the coset can have a Hamming distance of 0 or 1

- Coset index is just the syndrome of x using the parity-check matrix \(H \)

\[
H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}
\]

\[
s = Hx
\]
DISCUS Example

\[X = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \]
\[Y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \]
\[s = Hx \]

\[
\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]
i.e., coset index is 2

- Decoder knows that choices for X are [010] and [101]
- Since Y is [110], it has to be [010] since [101] has a Hamming distance of 2
Source Coding Using Syndromes

- Lets say we have correlated X and Y
- $X = Y + U$
 - U is a Bernoulli RV with $p < 0.5$
- Y sends full information
 - $R_Y = H(Y)$
- X sends partial information, hopefully at the Slepian-Wolf limit
Source Coding Using Syndromes

- Lets generate a parity check matrix \(H (m \times n) \)

- \(X \)'s encoder generates \(n \) samples and then calculates the syndrome \(s_X = HX \)
 - No guarantee that \(X \) is a valid codeword (in the null space of \(X \)) so \(s_X \) can take any value

- \(X \)'s encoder sends \(s_X \) to the decoder
Source Coding Using Syndromes

- Decoder generates syndrome of \(Y \)
 - \(s_Y = HY \)
- Decoder calculates \(s_X+s_Y \) \(s_{X+Y} = s_U \)
- If \(X \) and \(Y \) are highly correlated, we can expect that there aren’t too many differences
 - i.e., \(U \) should be mostly zeros
- Decoder can now approximate \(U = f(s_U) \) and therefore, approximate \(X \)
Source Coding Using Syndromes

- Alternative way to do this (from DISCUS paper)
 - $s = Hx$
 - $y' = y + [0|s]$
 - Find x', the closest code to y' in the coset with $s = [00...0]$
 - i.e., the closest valid codeword in the null space of H
 - $x = x' + [0|s]$
Source Coding Using Syndromes

- In general, if we have a \((n,k,2t+1)\) code,
 - \(R = n - k\)
 - S-W bound is the log of number of possible outcomes for \(X\) given \(Y\), given each is equally likely

\[
R_X^{SW} \log \sum_{i=0}^{t} \binom{n}{i}
\]

- In previous example, \(n=3, k=1, t=1\)
 - \(R_X^{SW} = \log(1+3) = 2\), \(R = n-k = 2\)
Source Coding Using Syndromes

- A \((n,k,2t+1)\) code can be used if the differences between \(X\) and \(Y\) are at most \(t\)

- Let's look at an \(X,Y\) correlation structure that can be modeled as a BSC with crossover probability \(p\)

- Probability of a correct decode is the probability that the number of crossovers \(\leq t\)

\[
P = \sum_{i=0}^{t} \binom{n}{i} (1-p)^{n-i} p^i
\]
The benefit of using good channel codes should be apparent now.

There has been a lot of work recently applying state-of-the-art codes like LDPC and Turbo codes to the S-W problem.

Also, some have used convolutional codes in similar ways.
DISCUS with Continuous Sources

Fictitious channel $P(Y|W)$ exists
W sends to Y at a rate of $I(W;Y)$
This means fewer bits actually need to be sent
Required rate is now $H(W|Y) = H(W) - I(W;Y)$
DISCUS with Continuous Sources

- Lets say that we set the fictitious rate at 1 bit
- This means we need to send two bits
- Lets make our cosets \{1,5\}, \{2,6\}, \{3,7\}, \{4,8\}
- Sample X and then send the coset index
DISCUS with Continuous Sources

- X quantizes to value of 6
- X send coset index 1 $\rightarrow \{2, 6\}$
- Decoder knows X has been quantized to 2 or 6
- Remember that the fictitious channel sent the other bit
- This means that due to knowledge of Y and the correlation structure, the decoder can disambiguate between the 2 possible values (1 bit)
Separate Encoders
Time-Sharing

- Most typical distributed coding schemes operate on the corners of the achievability region
- But you can operate anywhere on the curve
- Easiest way is via time-sharing
 - i.e., X sends full data, Y sends partial data for some portion of time, and then they reverse roles for some portion of time
Critescu et al’s Work

- Compare approaches for correlated data gathering in tree networks
 - S-W model
 - Coding complex, Transmission Optimization simple
 - Joint Entropy Coding model
 - No S-W, encoding occurs after others’ data is explicitly known
 - Coding simple, Transmission Optimization complex

- How does the choice affect rate allocation?
Critescu et al’s Work

- Main result:
 - S-W Coding – allocate high rates to nodes close
 - Since they have to route over fewer hops
 - Liu et al in Mobicom 2006 paper came up with similar results
 - Joint Entropy Coding – allocate high rates to nodes furthest nodes and lower rates to nearby nodes
 - Since they can use others as side information
Critescu et al’s Work

- **SW scheme**
 - Optimize ST and then use LP for rate allocation
 - LP solution has closed form
 \[
 \begin{align*}
 R_1 &= H(X_1) \\
 R_2 &= H(X_2 | X_1) \\
 &\vdots \\
 R_N &= H(X_N | X_{N-1}, \ldots, X_2, X_1)
 \end{align*}
 \]

- **Approximation:**
 - Each node find nodes in neighborhood that are closer on the SPT
 - Transmit at a rate
 \[
 R_i = H(X_i | C_i)
 \]
Critescu et al’s Work

- Clustered SW scheme
 - Since S-W for many nodes is very complex, we can do it in clusters
 - How do we choose clusters such that
 \[
 \{I_i^*\} = \arg \min_{C,\{I_i\}_{i=1}^C} \left(\prod_{i=1}^C \det K_{I_i} \right)
 \]
 - NP-complete problem for all but a few degenerate cases
Critescu et al’s Work

- Joint Entropy Coding scheme
 - Problem is NP-complete
 - Authors provide SPT-based heuristics
Critescu et al’s Work
Sensor Correlation

- A lot of the solutions for limits of distributed source coding assume the specific cases of
 - Binary sources
 - Correlation modeled as a BSC
 - Distortion measured as Hamming distance
 - Jointly Gaussian sources
 - Distortion measured as MSE
Sensor Correlation

- How should we model correlation of real world sensor data?
 - We could use a training phase where the correlation is learned over time
 - We can assume that nearby sensors have higher correlation
 - True in many real-world applications
Sensor Correlation

• Pattem et al’s approach
 – If X and Y are separated by a distance $d(X,Y)$

$$H(X_2 | X_1) = \left(1 - \frac{1}{d(X_1, X_2) + 1} \right) H(X_2)$$

 – Fit this data to empirical rainfall data
Sensor Correlation

- Additional sensors add and additional
 \[\left(1 - \frac{1}{\frac{d(X_1, X_2)}{c} + 1}\right)H(X_2)\]
 bits of information

- If all sensors equally spaced by d, total information is about
 \[H(X) = H(X_1) + (n - 1)\left(1 - \frac{1}{\frac{d}{c} + 1}\right)H(X_1)\]
Sensor Correlation

- Critescu et al assumes a Gaussian Markov Field

\[
f(X) = \frac{1}{\sqrt{2\pi \det(K)}} e^{-\frac{1}{2}(X-\mu)^T K^{-1} (X-\mu)}
\]

\[
K_{ij} = \sigma_{ij}^2 = \sigma^2 e^{-cd^2}
\]

\[
H(X) = \frac{1}{2} \log(2\pi e)^k \det(K)
\]

\[
H(Y | Y^C) = \frac{1}{2} \log \left((2\pi e)^{N-\left|Y^C\right|} \frac{\det K}{\det K_{Y^C}} \right)
\]
Sensor Correlation

- Liu et al use 3 models in their analysis
 - Hard Continuity Field \(|X_1 - X_2| \leq d\)
 - In general, you could use \(|X_1 - X_2| \leq f(d)\)
 - Linear Covariance Continuity Field \(E[(X_1 - X_2)^2] \leq d^2\)
 - In general, you could use \(E[(X_1 - X_2)^2] \leq f(d)\)
 - Gaussian Markov Field

\[\sigma_{1,2} = \sigma^2 e^{-cd} \]
Ideas For Work In Distributed Source Coding
Ideas For Work In Distributed Source Coding

- There has a lot of work in this field, as applied to WSN, especially in the last 5 or so years.
- Some research has looked at minimizing cost of gathering data in WSN.
 - What about maximizing network lifetime, a la DAPR, MiLAN, etc?
 - What about jointly optimizing transmission ranges with network topology and rate allocation?
Ideas For Work In Distributed Source Coding

- When calculating cost of data gathering, most look at fundamental limits, assuming long block lengths, no overhead
 - What happens when latency is important and we cannot encode long blocks?
 - DISCUS example shows that significant gains can still be made
 - What happens when packet overhead can’t be ignored?
 - e.g., the cost for sending data at 1 bit/sample isn’t much different than sending at 10 bits per sample?
References
References

References

References

References

