
Adaptive local searching and caching strategies for on-demand routing protocols
in ad hoc networks

Zhao Cheng, Wendi B. Heinzelman
Department of Electrical and Computer Engineering

University of Rochester
Rochester, NY 14627

(585) 275-{8078, 4053}
{zhcheng, wheinzel}@ece.rochester.edu

Abstract

On-demand routing protocols are widely used in mobile
ad hoc networks due to their capability of adjusting to fre-
quent network topology changes within acceptable routing
overhead. In order to further reduce routing overhead, es-
pecially the overhead from the network-wide flooding in the
route discovery phase, two techniques named route caching
and searching localization are usually performed. In this
paper, we reinvestigate these two techniques, in particular
their joint effect on the routing overhead. For quantitative
analysis purposes, we define one essential parameter for
each technique: route caching validation probability and
local searching radius. Based on the analytic results, we
propose a new routing strategy that adapts to the current
caching availability and is self-tunable towards the opti-
mal performance. We demonstrate through extensive sim-
ulations that this routing strategy can reduce the routing
overhead greatly under general scenarios.

1 Introduction

In ad hoc networks, there is no pre-existing fixed net-
work architecture. Mobile nodes, typically with similar
transmission and computational capabilities, cooperate by
forwarding packets for nodes that are not in each other’s di-
rect transmission range. The properties of ad hoc networks
such as node mobility, limited available bandwidth and the
broadcast nature of the wireless medium make the design of
efficient routing protocols for ad hoc networks more chal-
lenging than for traditional networks.

Routing protocols proposed for ad hoc networks can be
roughly divided into two categories: table-driven (proac-
tive) and on-demand (reactive). On-demand protocols typ-
ically have lower routing overhead than table-driven proto-

cols, and thus attract more interest. This is because they
only initiate a route discovery process when a packet is
ready to be transmitted, which removes the necessity of per-
sistent maintenance of a routing table using costy shortest
path algorithms. Typical examples of these reactive proto-
cols are DSR [1], AODV [2]. However, despite the reduced
routing overhead using this reactive approach, the perfor-
mance is still not satisfactory. Two primary techniques are
introduced to improve the performance: route caching and
searching localization.

Route caching plays an important role in reducing both
the overhead and the discovery latency. After storing a route
cache from the route discovery phase, a node is able to send
a new packet without delay and respond to route requests
from other nodes without further broadcasting. However,
the routing overhead cannot be effectively reduced by those
intermediate nodes due to the flooding nature of route re-
quests. Also, a stale cache may bring about even more rout-
ing overhead and even longer packet delay.

Caching optimizations have been extensively researched
to fully exploit benefits from caches. However, in this pa-
per, we point out that in order to obtain full benefits, a
local searching scheme must be performed in cooperation
with the caching scheme. Also, a more accurate method
for quantifying the quality of caches is required in order to
avoid the adverse effects from stale caches. The major con-
tribution of our paper is to provide a method to accurately
measure the quality of caches and determine the optimal
local search radius according to current caching conditions
(see Section 3). Based on the analytical results, we present
our local-searching and caching strategy that can adaptively
adjust itself to the caching availability conditions and ap-
proach the optimal performance in Section 4. Finally, we
implement this strategy in DSR and demonstrate its advan-
tage through extensive simulations in Section 5.

2 Overview and related work

When a node has a packet to send but has no route to the
destination node, it initiates a route discovery procedure by
broadcasting a Route REQuest (RREQ) packet. Upon re-
ceiving a RREQ, if an intermediate node has a cached route
for the destination or itself is the destination, it unicasts a
Route RESponse (RRES) following the reversed route back
to the source node. The discovered route will be stored in
a route cache by the source node for future use. Intermedi-
ate nodes without route caches for the target attach their
addresses in the RREQ packet and continue to flood the
packet.

Caching strategies and caching designs for DSR are stud-
ied in [3]. The authors achieved the optimal choices for
timeout and route cache capacity through exhaustive search-
ing over specific scenarios. In our paper, we not only
study the effects of caching, but also the joint effects of
searching localization. Some optimizations, such as sal-
vaging, gratuitous route repair and promiscuous listening,
have been proposed and have been shown to be effective
in reducing stale caches and improving the performance of
route caching [1]. Some other proactive optimizations, such
as Negative caches, Wider error notification and Adaptive
timeout selection, are proposed in [4]. These schemes, al-
though not taken into account in our analysis and simula-
tions, can cooperate with our routing strategies seamlessly.
Their existence only changes the caching availability con-
ditions in the network, while our routing strategy is able to
adjust itself based on the caching conditions and achieve the
optimal performance.

Compared to the extensive studies on route caching,
study in the searching localization area is relatively lack-
ing. Although LAR [5] is able to localize its querying area,
it requires geographical information, which we do not as-
sume in our study. In DSR, the non-propagating route re-
quest technique is performed by the source node to search
one-hop neighbors first before resorting to a network-wide
flood. In AODV [2], an expansion ring searching scheme
is proposed. A source node starts a route discovery process
with an initial searching radius and increases the searching
radius linearly upon each failure. A network-wide search
is performed when the searching radius exceeds a prede-
fined threshold. However, in [6], it is shown that when
the existence of caching availability in the network is weak
(e.g., in networks with infrequent traffic), using one-hop lo-
cal searching has an only insignificant savings in overhead,
while the expansion ring scheme has more overhead than a
simple network-wide flooding. Another searching localiza-
tion technique is also proposed in [7]. It utilizes prior rout-
ing histories but does not take route caches into account.
Our scheme also utilizes prior route histories, but in a dif-
ferent manner, and our paper concentrates on the joint ef-

fects of the route caching and the local searching techniques
rather than only one of these. Also, in contrast to the experi-
mental study on cache validation and optimization schemes
in [8], our study exposes the underlying relationship be-
tween routing overhead and caching optimization methods
quantitatively.

The authors in [9] studied the effects of DSR with both
caching and local searching, and they mentioned the pos-
sible ineffectiveness of the expansion ring technique under
weak caching existence. They compared the performance of
one specific expansion ring scheme with the one-hop local
searching scheme and analyzed when a node should switch
from one scheme to the other. In our paper, we do not con-
sider the expansion ring scheme. Instead, we analytically
determine the optimal local searching radius among all the
possible choices in different scenarios and propose our pro-
tocol to realize it. To the best of our knowledge, this is
the first study on finding the optimal performance of on-
demand routing protocols for general scenarios with both
techniques applied.

3 Model and analysis

3.1 Nomenclature and assumptions

Without loss of generality, let us consider N homoge-
nous nodes with unit transmission range that are randomly
distributed in a disk of radius R. N is large enough to form a
network with good connectivity [10, 11]. Nodes move with
the maximum speed of Sm in a random waypoint method.
Each node has a total event rate of λT . In this paper, event
indicates a one-way traffic flow towards a destination that is
randomly selected from all the other nodes. The arrival of
the events is a random variable that follows a poisson distri-
bution, and each event lasts for a fixed lifetime Tl. During
this lifetime, it is not necessary for the traffic to be continu-
ous. For example, for an event with a lifetime of 10 seconds,
there may be only 10 packets, or one packet per second. We
denote Src as the source node and D as the destination node.

During our analysis, we assume that we are studying the
DSR protocol with only the options of gratuitous route re-
pair and non-propagation route request turned on. Without
gratuitous route repair, after a RERR is received, the source
node will receive invalid caches from intermediate nodes
each time it resends the RREQ. The loop of RREQ-invalid
cache-RERR will continue until the cache in the intermedi-
ate nodes expires. The performance of the protocol without
this option is too poor to be studied. Non-propagation route
request is the same as our local searching technique and will
be fully studied. Furthermore, we assume that each node
has at most one route cache entry for each destination. To
avoid reply storms, we also assume that the destination only
replies to the first route query packet.

In the remainder of this section, we will first introduce
two crucial protocol parameters. Then we reveal the rela-
tionship between routing overhead and these two parame-
ters. Finally, we give the optimal numerical results for these
two parameters to maximize the overhead reduction. All
these results will become the guideline for the protocol de-
sign in Section 4.

3.2 Route caching validation probability

The first term we are going to introduce is route caching
validation probability Pv, which expresses the probability
for a route cache to be valid. By valid route, we mean that a
packet can follow this cached route to reach the destination.
Pv is related to three factors: the maximum node speed Sm,
the number of links L contained in the route and the elapsed
time T since its last use. It is obvious that the larger the
value of Sm, T and L, the less probability Pv for the route
to remain valid. In other words, the function Pv(Sm, L, T)
decreases monotonically and continuously as its variables
increase. Pv(Sm, L, T) can be decomposed as

Pv(Sm, L, T) = P L
lv(SmT) (1)

Here, Plv(t) is the probability for an originally connected
link to remain valid after the two nodes of the link move
for a time period t with a random speed from [0, 1]. This
transformation simplifies the route validation problem into
a unit speed link validation problem. This transformation is
valid since Sm can be seen as a scale for time, and also, for a
route cache to be valid, each of its independent L links must
remain connected after time T . Although the lifetime of
different routes may be correlated by certain common links,
the lifetimes of different links within one specific route are
independent of each other. This is validated by our simula-
tions.

The definition of Pv has several practical meanings.
First, it allows the source node to determine the quality of
cache it requires by appending a validation threshold value
pt in the RREQ packets. Intermediate nodes with route
caches only respond if they have a qualified route cache
with its calculated Pv larger than pt. By adjusting pt, the
source node is able to adapt to the current caching situation
and reduce unnecessary RREQ packets. Second, Pv allows
the source node to determine which route to choose when
several RRES packets are received. Of course, the closer
the Pv is to 1 and the shorter the route length is, the more
likely this returned route is chosen. Third, Pv also helps
with route caching management. Nodes can remove a route
cache automatically if its Pv is lower than a certain value or
remove the cache with the lowest Pv when the route caching
table is full. Overall, the introduction of Pv provides more
options for handling route caches more accurately than us-
ing cache lifetime alone.

3.3 Local searching radius

A local searching scheme must work with a caching
scheme to be meaningful. In [6], it is shown that when there
is no caching, even the optimal local searching scheme can
reduce the searching overhead only by an amount of at most
8% while bringing about excessive latency.

In general, a local search has two-sided effects on the
searching overhead. If a local search finds the target itself
or it finds cached routes to the target in intermediate nodes,
the network-wide flood can be avoided if the route cache is
correct, and the searching overhead is reduced effectively.
However, if this search fails to return any result, a network-
wide search is still required and the overall searching cost is
even more than a simple network-wide flood. Thus, the lo-
cal searching radius k should be carefully chosen to achieve
the most benefit from the local search. If the radius k is cho-
sen too large, the probability of discovering a route returned
from the destination itself is large and little benefit can be
obtained from the route caches. If the radius k is chosen too
small, the chance of discovering the destination or a cached
route to the destination in this local search is also small and
little benefit can be gained from this local search because
the first round local search will be part of the total search-
ing overhead. As we will show later, the radius k is a crucial
parameter in determining the RREQ overhead and is also
closely related to the amount of caching in the network.

3.4 Life periods of a cache

To understand how a node responds to other nodes’ route
requests, we need to clarify the life periods of a route cache
first. The time interval between two traffic events from a
certain Src to a certain D can be divided into three caching
periods, as shown in Fig. 1, which are the guaranteed valid
period I, the probable valid period II and the invalid period
III. In different periods, a route cache is of different qualities
and has different effects on the routing overhead and the
routing performance.

Starting from the leftmost of Fig. 1, when a new event,
say event i, just arrives, Src initiates a route discovery pro-
cess and caches the discovered route for future use. During
period I, all of the traffic packets of this event will follow
this cached route. Meanwhile, if the route is broken due to
node mobility, the route maintenance will detect it and ini-
tiate a new route discovery. Thus, during the event lifetime
Tl, this node maintains a valid route for D. More strictly
speaking, during period I, a node can respond to a RREQ
from other nodes with a route cache whose validation prob-
ability Pv is very close to 1.

During life period II when there is no more traffic be-
tween Src and D, there are no more proactive methods such
as route maintenance to refresh the cached route. As time

guaranteed valid

period I

propable valid

 period II

invalid period III

T
i

event i
 event i+1

event i

finishes

T
l
 T
v

cache becomes

invalid

Figure 1. Time periods for a node’s route
caching between two events towards the
same destination. In Period I, the cache is
almost valid all the time. In the probable valid
period II, the node has stopped sending traf-
fic to the destination and therefore has only a
probable valid route cache. In the invalid pe-
riod III, the route cache is of very low quality.

elapses, this cached route becomes invalid gradually, i.e.,
Pv decreases. If a RREQ arrives with the validation thresh-
old pt, a route cache will be returned in response only if its
validation probability Pv satisfies pt < Pv < 1. In other
words, when pt is given, the time length Tv of life period II
can be explicitly found by solving Pv(Sm, L, Tv) = pt, or
PL

lv(SmTv) = pt.
During Period III, Pv is below the threshold pt. Nodes

no longer respond to a RRES and we consider the cache
invalid. This period lasts until the next event arrives and a
new round starts.

When a route request arrives at the intermediate node I
randomly at any time, it may fall into any of the above three
periods. The probability of falling into each period is deter-
mined by the traffic pattern and evaluation of pt. Also, the
route cache validation probability varies for RRES packets
from different periods.

3.5 Overhead reduction ratio (ORR)

The primary goal of this research is to achieve the mini-
mum routing overhead, i.e., to reduce the number of RREQ
and RRES packets as much as possible. We define overhead
reduction ratio to measure the effectiveness of the com-
bined caching and local searching schemes. Since RREQ
packets are required to be flooded while RRES packets are
unicasted, RREQ packets are dominant in the overall rout-
ing overhead and we only consider RREQ packets in the
measurement of ORR. Suppose that with the caching and
local searching schemes, the overhead is O, and without
these schemes, the overhead is On. Then ORR is defined
as

ORR =
On − O

On

(2)

Suppose there are Nl(k) nodes in the k-hop local area,
and the total number of nodes in the network is N . When

doing a local searching with radius k, the expected RREQ
overhead O falls into the following cases:
1. When node D is local: cost is local Nl(k).
2. When node D is non-local and a guaranteed valid route
cache is found locally: cost is local Nl(k).
3. When node D is non-local and a guaranteed valid route is
not found but a probable valid route is found, and it is valid:
cost is local Nl(k).
4. When node D is non-local and a guaranteed valid route
is not found but a probable valid route is found, and it is
invalid: cost is local plus network-wide Nl(k) + N .
5. When node D is non-local and no cache is found: cost is
local plus network-wide Nl(k) + N .

The probability of the above five cases can be derived as
well when k and pt are given. Due to space constraints, we
skip the analysis details here. We find that: ORR(k, pt) =

(1− Nl(k)
N

)(Pg+Pppt), where Pg denotes the probability of
receiving at least one guaranteed valid route cache and Pp

denotes the probability of receiving at least one probable
valid route cache. This equation indicates that the overhead
can be reduced when the target is not in the local area but
either a guaranteed valid cache or a probable valid cache,
which is valid, is found locally.

ORR is also related to other non-protocol related pa-
rameters such as network parameters, node mobility, traffic
rates and the event life. All these parameters actually de-
termine the caching availability conditions of the entire net-
work. It is obvious that when the node mobility is low, or
the traffic is frequent, or the event life is long, route caches
will be abundant and of high qualities, and vice versa.

Our analysis shows that when the caching condition is
moderate or weak, choosing k = bM

2 c and pt = 0.4 will
provide the largest overhead reduction (M is the network
diameter and can be determined using methods provided
in [6].) When the caching condition is abundant, numeri-
cal results show that the searching radius k and pt should
be set where a cache is very likely to be found to further
reduce the overhead. In the next section, we will design a
routing scheme based on these results that is able to dynam-
ically adjust itself to approach the maximum performance
under all possible scenarios.

4 Protocol description

Only minor changes are needed for existing on-demand
routing protocols to fully attain the benefits of caches. Two
primary parameters are needed, the caching validation prob-
ability threshold pt and the local searching radius k. When
the network is just set up, or a node just joins a network,
these values should be set to pt = 0.4 and k = bM

2 c, as-
suming weak or moderate caching conditions. When more
abundant caching conditions are detected based on history,
k should be set to a smaller value accordingly. Also, pt

can be adjusted larger to reduce unnecessary caches of low
qualities. In this section, we propose an add-on protocol for
existing routing protocols. Its three components, new data
structures, protocol procedures and parameter adjustment
rules, will be described in detail next.

4.1 New data structures

A new field for caching validation probability is required
for both the RREQ and the RRES packets. For RREQ pack-
ets, the value of this field is calculated through the param-
eter adjustment rules described below and appended in the
RREQ packets to serve as the caching validation threshold.
For RRES packets, the value of this field is calculated by the
node that initiates the RRES packet to indicate the cache’s
quality using equation 1.

Also, each node maintains a statistic such as the number
of recent RREQ attempts, the values of k and pt applied,
the number of guaranteed valid caches and the number of
probable valid caches received. This information is used
to estimate the current caching condition to serve for the
parameter adjustment rules. The counting of these numbers
does not differentiate destinations and only needs a little ex-
tra storage. This non-differential counting is valid for uni-
form traffic scenarios. For biased traffic scenarios such as
the client-server traffic model, a maintenance of the history
of different destinations may provide more accurate param-
eter adjustment. The tradeoff is much larger extra storage
for each destination node. In our current work, we utilize
the general statistical method without destination differen-
tiation.

4.2 Protocol procedure

When a source node needs to send a RREQ, it calculates
the parameters k and pt according to the parameter adjust-
ment rules and attaches the values in the RREQ packet. In-
termediate nodes calculate Pv for their cached route to the
destination from equation 1 and return a RRES packet with
Pv attached if Pv satisfies Pv > pt. The source node picks
the cached route with the largest Pv . When two cached
routes have close Pv values, the one with a shorter route
length is preferred. Each node refreshes the statistics each
time it sends out a RREQ packet and receives RRES packets
from intermediate nodes.

4.3 Parameter adjustment rules

The parameter adjustment rules determine the value of pt

according to the current caching situation. A node first cal-
culates the average number of guaranteed valid route caches
Ng and the average number of probable valid route caches

Np received from its history, say the last 100 RREQ at-
tempts. Also, from the history it calculates the averages
k̃ and p̃t. These values indicate the current caching condi-
tions. If k already equals bM

2 c and pt is already 0.4 and
Np and Ng are still less than 1, there is no need to further
increase k and pt since this is a weak or moderate caching
condition and the protocol is already running using optimal
parameters. A running average over all the past RREQ at-
tempts instead of the last 100 attempts requires less storage.
However, it cannot represent the most recent caching con-
ditions and is less accurate for the parameter adjustment.
Therefore, there is a tradeoff between storage and parame-
ter adjustment accuracy.

When Ng is larger than 1, guaranteed valid caches be-
come the dominating factor. k should be primarily ad-
justed according to Ng towards the goal of receiving only
one guaranteed cache by using k = k̃

Ñg
. In a more gen-

eral case, the average number of guaranteed valid caches is
much lower than 1 and the probable valid caches are prevail-
ing. Thus, k should be adjusted towards the goal of Np = 1

by using k = k̃

Ñp
. If k is already as low as 1 and there are

still more than necessary caches returned, pt should be ad-
justed larger to accept only more qualified caches by using
pt = p̃t

Ñp
. This indicates a very abundant caching condition

such as when the node speed is very low and traffic between
nodes happens very often. In summary, k and pt are ad-
justed towards receiving one guaranteed valid cache, or one
probable valid cache when the chance of receiving guaran-
teed valid caches is small. However, the adjustment of k

should not exceed bM
2 c, and the adjustment of pt should

not be lower than 0.4. Exceeding these values only brings
about more routing overhead although it may bring about
more returned caches. However, during our simulations,
we notice that the adjustment towards the goal of receiving
only one probable valid cache from our analysis is a little
conservative in finding qualified caches in some cases. This
is because our analysis does not differentiate destinations in
the non-local area for simplicity purpose. We simply use
a more aggressive parameter adjustment method by setting
k = 2k̃

Ñp
towards the goal of receiving two probable valid

caches. This simple modification can provide good enough
performance and avoid the excessive storage required by the
per destination based statistic maintenance.

5 Performance evaluation

5.1 Assumptions, metrics and methodology

We simulate our routing scheme as an add-on to the DSR
protocol in a mobile ad hoc network scenario. The simula-
tions are performed using ns-2 [12]. In order to focus our
study in the routing level, we programmed an ideal lower

layer below the routing layer, which is able to send pack-
ets without collision and detect link failures automatically
with no time and no cost. Working with this virtual bot-
tom layer, the routing protocol can be approximately seen
as working at low traffic. We believe that a realistic MAC
will have negligible effect due to the broadcast nature of
RREQ packets. For unicasting packets such as RRES, the
MAC layer should have the same impact on our scheme as
on traditional schemes since there is little modification on
the packet structures.

We test all the scenarios in a square region of size
1400m × 1400m. There are 150 nodes inside this area,
each moving in a random waypoint mobility pattern. The
number of nodes is chosen large enough for good connec-
tivity as well as to make it easy to investigate the perfor-
mance difference between our scheme and the original DSR
scheme. Each node has a transmission range of 250m, and
the estimated maximum hop value is 7. The maximum node
speeds of 1m/s or 10m/s are used. The total simulation time
is 4500 seconds, long enough to remove the potential un-
desirable effects of starting the random waypoint mobility
model simultaneously for all the nodes [13].

In our simulations, basic metrics commonly used by for-
mer studies [1] are investigated, which are routing over-
head, successful delivery ratio, discovery latency and route
optimality. However, in order to concentrate on our topic of
reducing routing overhead, we only show in the figures the
metrics that have significantly changed. Other metrics with
little changes will just be briefly mentioned.

We study the performance of three routing schemes:
the original DSR with No Caching (DSR-NC), DSR with
Caching (DSR-C) and DSR with our scheme of Local
searching and Caching added on (DSR-LC). We first vali-
date our results of the selection of k and pt through exhaus-
tive simulations on DSR-LC. Then we simulate DSR-C and
show that the selection of the timeout value has a similar im-
pact on the performance as the selection of pt in DSR-LC.
Finally, we compare the performance of DSR-LC, DSR-C
and DSR-NC under different scenarios.

5.2 DSR-LC, effects of k and pt

In this part, we will validate the claim that k = bM
2 c and

pt = 0.4 are optimal values by testing all the possible k and
pt values in a scenario with moderate caching availability.
First, we fix pt at 0.4 and change k from 1 to 4. From the
results shown in Fig. 2, we can see that k = 3 is optimal for
the number of RREQ, which matches with our analytical
result k = bM

2 c = b 7
2c = 3. The number of RRES is not of

the same order as the number of RREQ.
Next, we fix k at 3 and change pt from 0 to 0.6. The sim-

ulation results are shown in Fig. 3. From Fig. 3, some point
between 0.3 and 0.4 is a good balance point for pt. Before

1 2 3 4
3.2

3.4

3.6

3.8

4

4.2

4.4
x 106

k

RREQ num

1 2 3 4
1.6

1.7

1.8

1.9

2

2.1

2.2
x 105

RRES num

k
1 2 3 4

0.902

0.904

0.906

0.908

0.91
delivery ratio

k

Figure 2. Performance of DSR-LC with pt fixed
at 0.4. The X-axis indicates the local search-
ing radius k, ranging from 1 to 4. The optimal
point is at k = 3 for the number of RREQ with
almost no effect on other metrics.

0 0.2 0.4 0.6
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7
x 106

p
t

RREQ num

0 0.2 0.4 0.6
1.8

2

2.2

2.4

2.6

2.8

3
x 105 RRES num

p
t

0 0.2 0.4 0.6
0.84

0.86

0.88

0.9

0.92
delivery ratio

p
t

Figure 3. Performance of DSR-LC with k fixed
at 3. The X-axis indicates the route caching
validation probability threshold pt, ranging
from 0 to 0.6. The tradeoff is between the
number of RREQ and the the number of RRES
plus the delivery ratio. A good balance point
is at pt = 0.4.

this point, the increase of pt leads to an approximately lin-
ear increase of RREQ while leading to a faster decrease of
RRES and a faster increase of the packet delivery ratio. The
knee of the curves of the RRES number and the packet de-
liver ratio is at around 0.4. Also, considering the delivery
ratio to be larger than 90%, we choose pt equal to 0.4 for
the rest of the simulations. The study of pt also shows that
we can trade the routing overhead for the packet delivery
ratio by adjusting pt.

5.3 DSR-C, effects of timeout

We test DSR-C with the route cache timeout value of
5s, 10s, 20s and 30s, and the results are shown in Fig. 4.
In order to compare the results with the selection of pt in
DSR-LC shown in Fig. 3, we reverse the order of the cache
timeout values on purpose.

As shown in Fig. 4, there is a similar trend and tradeoff
for the timeout value as there was for pt shown in Fig. 3.
The relationship between the timeout and pt can be partially
explained by equation 1. The larger the time for a route

0102030
4

4.1

4.2

4.3

4.4
x 106

TIMEOUT

RREQ num

0102030
1.8

2

2.2

2.4

2.6

2.8

3
x 105 RRES num

TIMEOUT
0102030

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92
delivery ratio

TIMEOUT

Figure 4. Performance of DSR-C with one-hop
neighbor searching. The X-axis indicates the
timeout value, ranging from 30 seconds to
5 seconds. The tradeoff is also between the
RREQ number and the delivery ratio. Just like
Fig. 3, the increase of TIMEOUT causes both
metrics to decrease. A good balance point is
at TIMEOUT=10 seconds.

cache to be stale, the easier it is for a route request to be
satisfied with certain cached routes. However, the sacrifice
is a higher number of RRES packets and a lower packet
delivery ratio due to stale routes. We pick the balance point
TIMEOUT equal to 10s as the representative for DSR-C to
ensure that the delivery ratio is larger than 90%.

5.4 DSR-LC, DSR-C and DSR-NC

In this part, we will compare these three routing schemes
under different caching conditions by different traffic rates,
node speeds, event lifetimes and traffic patterns. First, we
experiment in a moderate caching condition with a low
event rate of 0.05 events per second. We test the scenarios
with the duplex [event lifetime, maximum node speed Sm]
valued at [2s, 10m/s], [10s, 10m/s] and [2s, 1m/s]. These
scenarios can all be categorized as moderate caching avail-
ability. From the results shown in Fig. 5, DSR-LC achieves
a significantly lower routing overhead for this low event
rate, despite the fact that the savings may vary depending
on the other parameters.

Next, we test an extreme scenario with abundant caching
availability. The event rate is as high as 0.5 events per sec-
ond and the maximum node speed is as low as 1m/s. As
shown in Fig. 6, the overhead reduction ratio of DSR-LC
in this abundant caching scenario is as high as about 80%
compared to DSR-NC, thanks to the caches. DSR-LC even-
tually adjusts its local searching radius to around 1 and pt to
around 0.65. DSR-C may achieve a closer number of RREQ
packets if it adjusts its timeout value to 40 seconds (shown
in the fourth column) instead of 10 seconds. However, the
number of RRES packets increases correspondingly since
more route caches are available for returning. DSR-LC,
with the adjustment of both k and pt, restrains the number
of both RREQ and RRES in a satisfactory range.

(2,10) (10,10) (2,1)
0

2

4

6

8

10
x 106

RREQ num

(2,10) (10,10) (2,1)
0

0.5

1

1.5

2

2.5

3

3.5
x 105

RRES num
DSR−LC
DSR−C
DSR−NC

Figure 5. Routing overhead comparisons un-
der a low event rate of 0.05 events/sec. The X-
axis indicates different scenarios tested, from
left to right stands for (event life, node speed)
pairs of (2s, 10m/s), (10s,10m/s), (2s,1m/s).
This figure shows the effects of event lifetime
and the node speed on routing overhead in a
moderate caching condition.

0

0.5

1

1.5

2
x 107 RREQ num

0

0.5

1

1.5

2

2.5
x 106 RRES num

DSR−LC
DSR−C−10s
DSR−NC
DSR−C−40s

Figure 6. Routing overhead comparisons un-
der a high event rate of 0.5 events/sec and
a low maximum node speed of 1m/s. This
figure shows the performance of different
schemes in an abundant caching condition.

In the above experiments, each node has the same traf-
fic pattern as other nodes and has events toward other nodes
with equal probability. In contrast with this peer-to-peer
traffic model, we experiment with a client-server traffic
model. In this model, we choose 20% of the nodes as
servers and 80% of the total traffic is towards these servers.
The results shown in Fig. 7 are based on a maximum node
speed of 10m/s and a total event rate of 0.05. As can be seen
from this figure, the shift from a peer-to-peer model to a
client-server model reduces the overhead reduction ratio of
DSR-LC compared to DSR-C but increases the overhead re-
duction ratio of DSR-LC compared to DSR-NC. This is rea-
sonable since the client-server model implies a more abun-
dant cache availability. For this reason, DSR-LC eventually
adjusts k to an average of around 1.3 in the client-server
model, while it adjusts k to an average of around 2.5 in the
peer-to-peer model. Thus, in the client-server model, DSR-
C with local searching radius fixed at 1 is already close to
the optimal value, and therefore, the number of RREQ pack-
ets in DSR-C is close to that in DSR-LC. However, for the

CLI−SER P2P
0

0.5

1

1.5

2

2.5
x 107 RREQ num

CLI−SER	 P2P
0

0.5

1

1.5

2

2.5
x 106 RRES num

DSR−LC
DSR−C
DSR−NC

Figure 7. Routing overhead comparisons for
peer-to-peer and client-server traffic models.

same reason illustrated in the last paragraph, DSR-C has a
large number of RRES packets when route caches are abun-
dant.

Overall, DSR-LC can achieve an overhead reduction up
to 80% compared to DSR-NC and up to 40% compared
to DSR-C, depending on the caching level in the network.
When the route cache availability is moderate, DSR-LC has
a larger ORR compared to DSR-C. When route caches are
abundant, DSR-LC has less overhead reduction in RREQ
packets compared to DSR-C while it has much larger re-
duction compared to DSR-NC. Besides, DSR-LC can re-
strain the number of RRES packets by adjusting pt without
degrading cache qualities, while DSR-C does not have an
effective method to control the number of RRESs.

6 Conclusions and future work

The main contributions of this paper are to determine
the optimal value for parameters of local searching radius
and route caches valid probability threshold and to propose
an adaptive routing strategy that can be easily added on
to existing on-demand protocols. The new scheme adjusts
the local searching radius and the required caching qual-
ity according to the caching conditions. It reduces routing
overhead consistently and significantly, for both RREQ and
RRES packets, with almost no effects on other performance
aspects.

Further research on the parameter adjustment and the
performance of our routing scheme working with specific
MAC protocols is needed. One avenue of future work is
to take into account more history information to aid in de-
termining the local searching radius. Another avenue is to
investigate how our scheme performs in a more realistic
model. Currently, we ignore the existence of a MAC layer
and the physical layer. In our future work, we will exam-
ine the performance improvement of our scheme over the
popular ad hoc MAC protocol 802.11 and realistic wireless
channels. However, as explained earlier in section 5, we be-
lieve that the impact of realistic MAC layers and wireless
channels should be negligible.

References

[1] D.B.Johnson and D.A.Maltz. Mobile Computing,
Chapter Dynamic source routing in ad hoc wireless
networks, pages 153-181. Kluwer Academic Publish-
ers, Imielinski and Korth edition, 1996.

[2] C.Perkins and E.M.Royer. “Ad hoc on-demand dis-
tance vector routing” Proceedings of IEEE WM-
CSA’99, pp. 90–100, Feb. 1999.

[3] Y.-C. Hu and D. B. Johnson, “Caching strategies in
on-demand routing protocols for wireless networks,”
Proc. ACM/IEEE MobiCom, August 2000.

[4] M. K. Marina and S. R. Das, “Performance of
Route Caching Strategies in Dynamic Source Rout-
ing,” Proc. of WNMC in conjunction with ICDCS,
pp. 425–432, 2001.

[5] Y.-B. Ko and N. H. Vaidya, “Location-aided routing
(LAR) in mobile ad hoc networks,”In ACM/IEEE Int.
Conf. MobiCom’98, Oct. 1998

[6] Z. Cheng, W. Heinzelman,“Flooding strategy for tar-
get discovery in wireless networks,” Proc. of the 8th
MSWIM 2003, Sep 2003.

[7] R. Castaneda and S. Das, “Query localization tech-
niques for on-demand routing protocols in ad hoc net-
works,” in Proc. ACM/IEEE MOBICOM ’99, 1999,
pp. 186–194.

[8] N. Panchal and N. B. Abu-Ghazaleh, “Active Route
Cache Optimization for On-Demand Ad Hoc Routing
Protocols”, ICN 2004

[9] J. Sucec and I. Marsic, “An Application of Parameter
Estimation to Route Discovery by On-Demand Rout-
ing Protocols”, Proc. ICDCS 2001, pp. 207–218.

[10] Feng Xue and P. R. Kumar. “The number of
neighbors needed for connectivity of wireless
networks” Manuscript, 2002. Available from
http://black1.csl.uiuc.edu/prkumar/postscript
files.html

[11] B. Krishnamachari, S. Wicker, R. Bejar, and M.
Pearlman, “Critical Density Thresholds in Distributed
Wireless Networks,” in Communications, Information
and Network Security, Kluwer Publishers, 2002.

[12] http://www.isi.edu/nsnam/ns/ns-documentation

[13] T. Camp, J. Boleng and V. Davies, “A Survey of
Mobility Models for Ad Hoc Network Research,”
WCMC: Special issue on Mobile Ad Hoc Networking:
Research, Trends and Applications, vol 2, pp. 483–
502, 2002.

