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Abstract: Data fusion is an important component of 
applications for systems that use correlated data from 
multiple sources to determine the state of a system. As the 
state of the system being monitored and available resources 
change, the general data fusion framework should change 
dynamically based on the current environment and 
available resources in the system. To achieve this goal, we 
have proposed a general Data Fusion Architecture (DFA) 
based on the Unified Modeling Language (UML) and using 
a taxonomy based on the definitions of raw data and 
variables or tasks. The DFA can be reconfigured according 
to the measured environment and availability of the sensing 
units or data sources, providing a graceful degradation in 
the view of the environment as resources change. We have 
shown that we can apply the DFA to different domains and 
applications, including a test bed health monitoring 
application.   
 
Keywords: Data fusion architecture, adaptation, UML, 
resource management. 

 
1. Introduction 

We have developed a data fusion architecture that can 
be applied for network-based dynamic distributed systems 
or conventional stand alone centralized systems. The 
following characteristics can co-exist in both systems: 
components of the system can be inserted or excluded 
without stopping the entire system; the environment 
changes with time, as do the physical measures from it; an 
application’s necessity changes according to different states 
of the environment, and as a consequence, it can use or 
reuse components in the different states; the system can be 
mobile and battery powered, so each component of the 
system has a different lifetime, bandwidth usage and power 
consumption. In the case of a network-based system, 
bandwidth is limited. All of these problems should be 
addressed from the application perspective to make the 
system robust to the dynamic environment. We think that 
some of these problems can be addressed at the data fusion 
module of the application.  

Data fusion is a formal framework used to express the 
convergence of data from different sources in which is 
expressed the means and tools for the alliance of data that 
originated from different sources [1]. The US Department of 

Defense has defined data fusion as a multilevel, 
multifaceted process dealing with the automatic detection, 
association, correlation, estimation, and combination of data 
and information from single and multiple sources [2]. The 
resulting information is more satisfactory to the user when 
fusion is performed than simply delivering the raw data [3]. 
In data fusion, information may be of various types, ranging 
from numeric measurements to linguistic reports. Some data 
cannot be easily quantified, and their accuracy and 
reliability may be difficult to access.  

Sensor measurements have problems related to noise, 
errors and incompleteness. In addition, we often cannot 
have a complete view of the world based on data from only 
one sensor (incompleteness). Associated with sensor data 
use we have to evaluate its reliability. Reliability attempts to 
represent how much confidence we have with the data that 
come from the sensor. All of these aspects contribute to 
grow the uncertainty in the system. Thus, we need a formal 
data fusion framework that represents and provides tools to 
manage all these different problems. None of the 
frameworks described until now achieves this objective for 
different types of applications and scenarios. 

There are different levels of data fusion. We can have 
data fusion from one sensor (time series), redundant sensors, 
redundant variables, variables and systems. We can even 
fuse different levels of data. We can find different 
approaches in the literature to treat this problem. Some 
researchers use statistical analysis like mean, average, 
median, standard deviation, correlation and variance (the 
Kalman filter algorithm) [4]. Other researchers use 
heuristical approaches to manage the uncertainty, such as 
probabilistic models based on Bayesian networks or 
uncertainty sets [5][15], possibility models based on fuzzy 
logic and Dempster-Shafer theory [4][6], mathematical 
models [7], learning algorithms based on neural networks 
and evolutionary algorithms [8], and hybrid systems [8]. 
Which approach to use depends on different aspects, such as 
the type of data, the requirements of the application, and the 
grade of reliability desired. 
 E. Waltez and J. Llinas, cited by [9], have described 
important features related to the development of data fusion 
architectures: robustness and reliability, extended coverage 
in space and time, great data space dimension, reduced 
ambiguity, and a solution to information explosion. Another 
important aspect of data fusion is related to system 



representation and the data fusion framework. Most of the 
papers published in this area are related to military 
applications and image processing. The military application 
field is mainly represented by the functional model 
developed by the Joint Director of Laboratories (JDL) from 
the U.S. Department of Defense. Their functional model is 
represented by four levels. The first level is related to the 
identification and description of the objects; the second 
level represents an interactive process to fuse spatial and 
temporal entities relationships; the third level is associated 
with the combination of the activity and capacity of enemy 
forces to infer their force; and the fourth level is related with 
all other levels and is responsible for regulation of the 
fusion process [2]. Although this model has been applied in 
large-scale projects related to military applications, it seems 
to be very specific to this field.  
 The papers related to image processing are basically 
targeted towards two fields, robot navigation and 
geographical data. Durant presented a frame work to 
integrate and to model coordination and control of robot 
systems [10] and Arnoud proposed an architecture of a 
sensor data fusion system, emphasizing the benefits of 
providing high level fusion [4]. Clement et al., described a 
specialist-based knowledge approach [11]. Matsuyama and 
McKeown worked with hierarchical descriptions of image 
fusion [12][13]. Growe [14] developed a framework based 
on semantic nets representation using a fuzzy membership 
function to determine whether fusion is possible.  
 A few papers have addressed different domains. Dailey 
et al., described data fusion applied to transportation [15]. 
Laskey et al., used Knowledge and Data Fusion in 
Probabilistic Networks applied to the medical diagnosis 
domain [16]. The authors describe the use of probabilistic 
networks to represent and model a medical diagnosis 
approach.  

Although there are different papers in the literature 
addressing the data fusion problem and the management of 
incomplete data, there is a lack of a better definition of the 
different levels of data processing and analysis that need 
fusion. Some papers address the fusion of signals, others 
address the uncertainty of high level data fusion using 
different methods, but none of them have tried to establish a 
formal framework that includes the different levels of data 
fusion. Besides this aspect, there is a need for a taxonomy 
that defines what is low and high level fusion. We present a 
formal framework based on UML (Unified Modeling 
Language) and describe a taxonomy that defines the 
different levels of data fusion.  We applied the framework 
and taxonomy described here to solve the dynamic 
management of data in a Personal Health Monitoring 
System (PHMS), but this framework can be applied to any 
of the class of problems characterized by monitoring the 
environment using different types of sensors, such as a 
home security system, a military application in a war, 
control of robots based on the environment, etc.    

In the next sections we present the relationship of the 
data fusion mo del with the entire system (section 2), the 
data fusion taxonomy (section 3) and the Data Fusion 

Architecture (DFA) (section 4). Section 5 describes the use 
of different instances of the Data Fusion Architecture in 
different domains and applications. Section 6 shows the 
implementation of the DFA applied to the PHMS 
application. In section 7 we compare our model to related 
work and in section 8 we present some conclusions.  

 
2. System Architecture 
 
 This section shows the relationship of the data fusion 
with the whole system.  We think that to achieve all the 
requirements to make a system available all the time we 
need to integrate the network, the service suppliers (data 
sources) and services consumers (applications). The 
application development can be divided in several integrated 
modules; in this paper we will address the data fusion and 
decision modules.   

A network-based system needs all of its components 
(network, middleware and application) to deal with dynamic 
changes in the availability of resources and changes in the 
environment. The system should adapt to the availability of 
sensors and their corresponding signals, and it should also 
adapt to changes in the measurements themselves.  
 
 
 
 
 
 
 
 
 
 
 

Figure 1 shows a block diagram of the system. The 
sensors (service suppliers) and the application (in this case 
service consumer) are nodes of the network. The 
middleware is the software that connects the sensors to the 
application through the network. The application has two 
integrated modules, the data fusion module and the decision 
module. The application sends its QoS requirements to the 
middleware, and the middleware sends the sensor data to the 
application. Next we present the data fusion architecture and 
the decision modules for this system.  

 
3. Data Fusion Taxonomy 

 
The taxonomy proposed in this paper divides three main 

types of data fusion: data oriented, task oriented (variable) 
and a mixture of data and variable fusion. The basic idea 
that divides the levels is the difference between data and 
variable . Data is a measurement of the environment that is 
generated by a sensor or other type of source. Variable is 
determined by an analysis of the data (feature extraction). In 
general, there can be one or more variables extracted from 
one type of data. For example, from an image (raw data) an 
application can determine whether the image contains a 
person (variable = person-present?), an animal (variable = 

Figure 1: Network, middleware, and application relationship. 
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animal-present?) or an object (variable = object-present?). 
These tasks can be an intermediary step or the main goal of 
the application. The variable determination can be achieved 
by using a data analysis algorithm or using a probabilistic 
approach, such as a neural network, that takes the data as 
input and gives as an output the probability of being an 
image of a person, an animal or an object. Thus, what 
determines the three levels is whether the fusion process is 
made before any data analysis (at the data level), after the 
data has been analyzed (at the variable level), or is done on 
a combination of raw data and variables (at the mixture 
level).   
 
4. The Data Fusion Architecture (DFA)   
 

The framework presented in figures 3, 4 and 5 is new 
because it explicitly defines the multiple possible levels of 
data fusion, including different approaches to manage the 
fusion process. Furthermore, it introduces a new taxonomy 
for data fusion--classification based on the definitions of 
data and variable and how to combine and fuse them. The 
formal representation of a data fusion framework based on 
UML description is also new.   

Sensors exist to measure physical variables, such as a 
temperature, heart rate, or blood pressure. A physical 
variable can be measured by several sensors (which we call 
redundant sensors), or by a single sensor (which we call an 
individual sensor). Individual sensors are unique in the 
system, and there is no reason to use multiple sensors of this 
type. Redundant sensors can co-exist with multiple sensors 
of the same type, and it is desired to do so to achieve fault 
tolerance, increase the covering area, or meet other 
constraints. The system should be able to differentiate these 
types of sensors and the data that come from them.  

In general, before any data fusion can be performed, the 
signal that comes from the sensor should be pre-processed. 
The pre-processing can be as simple as an analog to digital 
conversion or as complex as the use of different digital 
signal processing approaches. For example, any of the 
following pre-processing approaches may be useful: error 
analysis, amplification, filtering, noise treatment, 
quantization, and multiplexing.    

After pre-processing, the data should be fused. We 
propose a 3-level data fusion framework based on both data 
and variables. The data fusion can be classified as low level 
fusion of data, high level variable fusion and a mixture level 
fusion. When the data fusion is performed before analysis, it 
is classified as low level. When the data fusion is performed 
after some data analysis, it is classified as high level 
variable fusion. There are some situations where we can 
fuse data and variables. A mixture fusion level class was 
created to represent this class of fusion.  Figure 3 shows the 
data flow from the sensors, pre-processing unit and the data 
fusion framework, describing possible scenarios of data 
fusion represented in UML (Unified Modeling Language).  

Figure 3 shows the UML representation of the Data 
Fusion Architecture. The boxes represent classes and the 
arrows show the direction of possible data or variable flow. 

The numbers around the arrows represent the cardinality of 
the classes’ instances relationship. As an example, we have 
only one instance of any type of sensor at a time for one 
instance of a pre-processing class. Text inside brackets 
represents restrictions, while notes are simple explanations.  

The DFA shows that data come from one sensor; they 
are pre-processed using operations from the pre-processing 
class and the pre-processed data are sent to the Low Level 
Data Fusion (LLDF). Each LLDF instance can receive one 
or more type of data as input and, using any of its 
operations, fuse them. This class can send its output (fused 
data) to another instance of the LLDF (multilevel LLDF), 
and/or to the data analysis, and/or High Level Data Fusion 
(HLDF), and/or Variable interpretation, and/or Mixture 
Level Data Fusion (MLDF) modules.   

The MLDF receives data from one or more LLDF 
instances and variables from one or more HLDF instances, 
and its output (fused data/variable) goes back to the HLDF 
and/or it goes directly to the variable interpretation module. 
The data analysis module receives fused data, analyzes it 
using the appropriate algorithm to the received data and 
sends the resulting variables to different instances of the 
HLDF module (one HLDF instance for each type of 
variable).  
 

 
 
 
 

At the HLDF, each HLDF variable instance performs the 
redundant variable fusion process and sends its resulting 
fused variable to another instance of the HLDF, and/or to 

Figure 2: Data Fusion Architecture based on UML. 



the MLDF, and/or to the Variable Interpretation module. 
The Variable Interpretation (VI) module receives variables 
from different sources as input. It fuses all the views of the 
variable to provide as an output a single or multiple views 
about the sensed environment or data source. Its output goes 
to the decision system. The decision system takes all this 
information and decides about modifications that should be 
made to the environment sensing (application’s Quality of 
Service output), and/or to control any actuator (actuator 
control), and/or to change algorithms and data/variable flow 
in the data fusion model (control output goes to the LLDF, 
MLDF or HLDF). 
 

 
 
 
 
  

Figure 3 shows the classes of the individual and 
redundant sensors, and the pre-processing classes.  The class 
of individual sensors has attributes such as identification, 
type of sensor, data rate(s), available energy (lifetime), 
bandwidth requirement and the IEEE 1451.2 sensor 
characteristics [19]. The individual sensor class functions 
are related to the sensor mode (on, off, sleep, idle) as well as 
data rate control and battery level. The redundant sensor 
class inherits the individual sensor class attributes and 
operations and adds the characteristics related to the sensor 
redundancy, such as covering area and related operations. 
The pre-processing class includes different functions used to 
process analog and digital signals.  
 The low level data fusion class includes different 
approaches that can be used in different low level data 
fusion scenarios and is described in Figure 4.  Figure 5 
shows possible approaches to manage variables in the high-
level variable fusion. In general, high level variable fusion 
uses the same approaches as low level data fusion, but 
applied to the fusion of variables.  The specific variable 
application fusion management approach includes different 
approaches based on uncertainty management tools like 
belief networks, neural networks, genetic algorithms, fuzzy 

logic, probability theory and many others. This will depend 
on the knowledge model applied. 
 

 
 
 
 
 Figure 6 presents the class of an uncommon but used 
form of data fusion, the fusion of raw data with variables.  
  

 
 
 
 

 
 
 
 The DFA can be implemented in both centralized and 
distributed systems.  In a centralized system, all raw sensor 

Figure 3: Individual sensor, redundant sensor and pre-
processing classes.  

Figure 6: Mixture Level Data Fusion class.  

Figure 5: High Level Data Fusion class.  

Figure 4: Low Level Data Fusion class.  



data would be sent to the DFA, and the data fusion (low 
level, high level, and mixture level) would all occur at the 
same location.  In a distributed system, the different fusion 
modules would be implemented on distributed components.  
For example, if the sensors are “smart sensors,” the pre-
processing and low level data fusion may occur locally on 
the sensor.  The fused data could then be transmitted 
somewhere else, to be fused with data (raw or fused) from 
other sensors.  The application, network environment, and 
individual components will dictate where the computation 
for each of the modules in the DFA occurs. 
 
5. Mapping the DFA to Different 
Domains and Applications 
 
 The advantage of the our DF framework is that it can be 
mapped to many different types of applications in various 
domains.  For example, Figure 7 represents different 
instances of the DFA. Figure 7a represents the complete 
system with all the different features of the model. Figure 7b  
represents an instance of the model using the low and high 
level data fusion and is capable of creating variables from 
data without analyzing the data. Figure 7c shows an 
instance, which does not use the mixture and high level data 
fusion. Figure 7d shows that this system can only process 
the data that comes from the sensors and make a decision. 
Figure 7e shows the use of the low and high level data 
fusion with analysis of all the data to get variables. Figure 7f 
allows the creation of variables without data analysis.   

These different scenarios show that all the DFA 
instances have in common a data source, some interpretation 
of the measured environment (task or variable) and a 
decision. This is the general architecture of a system, and it 
can be mapped to different domains and applications, such 
as military applications, robot navigation, home security 
systems and health applications.  

 

d)

b) c)a)

f)e)  
 
 
 In the next subsections we are going to show how to 
apply the DFA to different domains and applications using 
the instances described in figure 7. 
 
5.1 Military Applications  
 

Imagine the use of smart biological agents sensors 
deployed in a war area. Using some information 

dissemination algorithm applied to sensor networks (e.g., 
[18]), we can propagate the information of a detected 
biological agent (data value above a threshold) in the area 
until it arrives at some point where war plans can be 
changed or modified (e.g., removing troops from a 
contaminated area).   We can imagine another approach 
where each soldier carries sensors that advise him, with 
some grade of confidence, when some biological agent is 
detected in the environment.  Both approaches are 
represented by the model in Figure 7d. We can also have a 
more complex system that has some sensors that detect 
biological agents in the environment and others that detect 
modifications in the soldier’s body. A neural network can be 
applied using as input the data from these different sensors 
and giving as an output the presence or not of an infection 
resulting from a biological agent. In this case, we are using a 
low level data fusion approach based on neural networks 
that directly determines a variable (without performing data 
analysis).  The DFA instance used here is represented in 
figure 7c.    
 
5.2 Robot Navigation  
 

Imagine a robot that, based on different sensors, 
evaluates the environment and makes decisions about its 
navigation. This robot can have an accelerometer sensor 
whose data is analyzed to detect the robot position 
(variable), and an ultrasound sensor whose data is analyzed 
to determine (1) the distance from the objects around the 
robot (distance from object is another variable) and (2) the 
form of the surface of the objects in the environment (object 
recognition is another variable). By fusing these variables, 
the robot can learn about its environment and make 
decisions to navigate the environment.  This system will use 
part of the DFA represented in Figure 7e.      
 
5.3 Home Security System  
 

Imagine a home security application using different sets 
of sensors like sound sensors, video cameras, ultrasound 
sensors, temperature sensors, smoke sensors, vibration 
sensors, and infra-red sensors.  From the sound sensor we 
can determine if a sound is a human voice, a broken 
window, an open door, or other types of sounds; from the 
camera we can obtain an image or detect the presence of 
motion; from the infrared sensor we can detect motion, an 
open door, or an open window; from the vibration sensor we 
can also detect motion, an open door, a broken window, or 
an open window; from the image we can determine whether 
a person, an animal, an object, an open door, or a broken 
window is present in the image. We can see from this 
example that the variable person can come from different 
types of sensors. All these processes have in common that 
the data that come from the sensor are processed, redundant 
data can be fused via low level data fusion, and an algorithm 
is used to extract the variable for each type of data and fuse 
the redundant variables in the high level fusion. If we fuse 
the variable person with the variable broken window we can 

Figure 7: Different instances of the DFA. 



come up with a new variable called intruder. This means 
that we are using a second level of high level data fusion. 
We can also use a tool that, based on the data from the 
smoke sensor (without analysis) and the image, can create a 
new variable called fire (mixture level fusion). This entire 
example will use the model represented in figure 7a.  
 
6. DFA Applied to the Personal Health 
Monitoring System (PHMS) 
 
 The heart rate is the result of the electrical activation of 
the heart, resulting in mechanical contraction of the cardiac 
muscle. The ventricular contraction results in dynamic 
changes in blood flow and blood pressure, as well as 
deformation of the arterial wall (arterial pulse). As a 
consequence of these physiological aspects, we can measure 
the heart rate directly by analyzing the cardiac electrical 
activity or we can measure it indirectly by analyzing the 
hemodynamic changes. The Electrocardiogram (ECG) is the 
graphical representation of the electrical activity of the 
heart. From the ECG analysis we can obtain the heart rate 
and ECG diagnosis  variables. The latter includes, among 
other aspects, a determination of whether the ECG is normal 
or abnormal and what abnormality is present (ischemia, 
infarct, arrhythmia, cardiac chambers enlargement, and 
other abnormalities).  
 The heart rate device is a simple device that is based on 
one ECG lead to determine the heart rate (commonly used 
in exercise evaluations). The hemodynamic changes can be 
evaluated through the blood flow and arterial pulse. 
Different cardiovascular and respiratory exams use the 
blood flow and the arterial pulse variables to determine the 
blood oxygen saturation (pulse oximeter), blood pressure 
(blood pressure device), and blood flow (Doppler). As a 
consequence, these devices can obtain an indirect measure 
of the heart rate among other variables.     
 The blood pressure signal can be fused before any 
analysis (low level data fusion). After the blood pressure 
signal is analyzed, we can come up with two different 
variables: the blood pressure and the heart rate. The heart 
rate can be measured not only through the analysis of a 
blood pressure signal, but it can also be measured from an 
ECG, blood flow or pulse oximeter analysis. As a 
consequence, we can have the variable Heart Rate from 
different types of sensors (redundant variable from different 
types of sensors). If we want to fuse all the heart rate 
variables, we use the high level variable fusion approach.  

Figures 8, 9 and 10 show the application of the DFA 
applied to the multi parametric PHMS application. Figure 8 
shows an example of the use of an individual sensor, pre-
processing, low level data fusion and data interpretation 
classes. The different types and positions of the ECG 
electrodes require pre-processing that includes the signal 
amplification; use of a high pass filter (0.5 Hz); use of a low 
pass filter (25 Hz); use of a notch filter (60Hz); 
multiplexing; and use of an analog to digital converter. The 
multiplexing function generates the four types of ECG with 
different number of leads. The low level ECG fusion 

module only forwards the data. This occurs because the 
management of the redundancy in the ECG data from 
different leads needs a signal analysis. The ECG analysis 
algorithm is responsible for recognizing the ECG 
waveforms and evaluating the grade of normality or 
abnormality of each wave independently and the sequence 
of waves in a continuous monitoring. The ECG signal 
analyzer generates two different variables, the heart rate and 
the ECG diagnosis. 
 

 
 
 
 
 

Figure 9 shows the heart rate variable management. We 
can measure the variable heart rate from different types of 
sensors. We can measure it from a Pulse Oximeter sensor 
(PO), from a Blood Pressure sensor (BP), from an ECG 
system, as shown in Figure 8 (ECG), from a specific heart 
rate measuring device (HR) and from a Blood Flow sensor 
(BF). Each sensor has a different reliability to measure the 
heart rate. The ECG system has the highest reliability and 
the Pulse Oximeter has the lowest reliability. Based on 
power constraints and the system’s request for certain 
reliabilities, the middleware can request from the network a 
specific set of sensors and present that data to the 
application. If the application has requested a HR measure 
with the highest reliability, middleware would present the 
ECG data (reliability = 1) to the application. The ECG 
signal would be pre-processed. Then, an ECG analyzer 
would analyze the ECG data and provide to the Heart Rate 
high level fusion (HR Fusion) the variable (HR) with a 
reliability value (R) and the ECG Diagnosis high level 
fusion (ECG-Diagnosis Fusion) the variable ECG Diagnosis 
with a reliability value (R).  Depending on the system’s 
state, the application can receive and use data from more 
than one type of sensor.   

Redundant variables come from different sensors with 
different reliabilities and from diffe rent locations. Variable 
is defined as a triple composed by the measured variable, 
the sensor reliability to measure that specific variable and 
the sensors placement. For example, the measurement of the 
heart rate using one Pulse Oximeter sensor placed on the left 
arm (LA) has a reliability value of 0.7. So, the triple would 
be represented as (PO-HR value, 0.7, LA). Some of these 
variables can be objective variables (numeric measures) and 
others can be subjective (linguistic variables). For example, 
the measure of the heart rate based on an ECG is an 
objective measurement. A subjective variable is inferred 
from a set of interpreted variables. They are subjective 
assumptions on a specific condition, such as whether the 

Figure 8: Electrocardiogram pre-processing, low level 
data fusion, and data analysis. 



heart rate is high or low based on the knowledge that the 
blood pressure is low. Subjective assumptions are defined as 
a triple composed by the variable V, its reliability measure 
R (which is very low due to subjective evaluation) and zero, 
because it is not related to any location (V,R,0). 
 

 
  
 

 

 
 
 
Figure 13 shows the different levels of the High  
 

At the High Level HR Fusion module, we can fuse 
redundant disposable heart rate data (HR1 to HR5) and the 
very low reliability HR predicted data from Blood Pressure, 
Blood Flow, Body Activity, Oxy gen and Respiratory Rate 
Interpreted Variables (HR6 to HR10). So, based on the 
quantity and quality of disposable data, the HR fuser 
module can perform different procedures. 

As shown in Figure 10, the heart rate is combined with 
the blood pressure and results in the Blood Pressure-Heart 
Rate fusion variable. At the same time, the Muscle Activity 
is combined with the Body Position, resulting in the Body 
Activity variable. The next step is the fusion of the Blood 
Pressure-Heart Rate variable with the Body Activity 
variable, resulting in the Blood Pressure-Heart Rate-Body 
Activity variable. The output of each fusion level goes to the 
variable interpretation module and after to the decision 
module. This provides input redundancy to the system 
decision and guarantees that some decision can be taken in 
the case of failure of a fusion module.   

The current heart rate value has two types of analysis: 
static and dynamic. The first is related to normal and 
abnormal interpretation of the variable according to each 
body’s situations. The dynamic evaluation is related to the 
relative changes (increase or decrease) of the variable. To 
achieve the static, the interpreter should use a reference 
table, where heart rate is correlated with the subject’s age, to 
evaluate the expected heart rate basal level. This is very 
important because the basal HR value of a 1 month old child 
is near 140 beats per minute, while the basal HR value of a  
60 year old man is around 60 to 70 beats per minute. These 
reference values are useful in static evaluations, but HR 
Interpretation should consider dynamic situations As an 
example, we can consider the case where the body is 
exercising. In this case, the HR interpretation should 
consider whether the heart rate is compatible with each level 
of exercising.  
 
7. Discussion  
 
 We presented a proposal of a general data fusion 
architecture described in a formal language of object 
representations (UML) that tries to represent different 
scenarios, specifications and features of a general data 
fusion system. We showed that we can employ our data 
fusion architecture in diverse scenarios, including different 
contexts and domains. In relation to the taxonomy 
employed, although a common taxonomy in data fusion is 
something difficult to achieve, as discussed in [9], we have 
covered several different scenarios with our taxonomy.    
 There are some papers in the fault tolerance related 
literature that use the terminology virtual sensors to 
represent what we call in the DFA redundant variables. 
Thus, we can map the DFA to different models compatible 
with fault tolerance that employ the same aspect. The 
different approaches to choose one or more virtual sensors 
based on events, behavior, or other aspects, is included in 
the decision module. Besides this, the DFA also allows that 
every intermediary or final view of the sensing environment 
arrives at the Variable Interpretation. This aspect guarantees 
the presence of redundant views and provides a graceful 
degradation in the view of the environment when different 
system components fail.  
 The decision or control module is not a formal part of a 
data fusion framework. In general it does things not 
formally related to the data fusion process, such as to 
control actuators or to modify the sensing. However, if this 
module controls the data fusion process, it should be 
included as part of the data fusion model. In the DFA 
proposed in this paper, the decision module controls the 
fusion process in different ways, such as changing the 
data/variable flow, starting new instances of the different 
DFA modules that depend on different types of data and/or 
variables and changing algorithms to process or analyze the 
data. We have explicitly characterized how the fusion 
process can be controlled by itself.     

Figure 9: Heart rate variable redundancy. 

Figure 10: Different level of the High Level Data Fusion in 
the PHMS application. 



 Most of the papers in the data fusion literature describe 
different tools to represent knowledge, but very few papers 
have tried to establish a dynamic model that allows different 
configurations and different mechanisms to add or delete 
new features for the model. The DFA provides all  these 
features to apply the same model in different contexts. 
Furthermore, we employed a well-known language (UML) 
to represent the model.  
 The JDL functional model [2] is the most commonly 
used data fusion model in the literature, although outside the 
military domain it is not well accepted because it describes 
features for the data fusion that are difficult to apply in 
different domains.  We can map the JDL model to the DFA 
in the following way: level 0 corresponds to the pre-
processing module; level 1 to the LLDF and data analysis 
until the point where the variables are generated; level 3 is 
represented in the DFA by the HLDF and variable 
interpretation modules; and level 4 is represented by the 
decision module. All the functionalities provided by the 
JDL model are provided by the DFA, but the DFA is a more 
general and dynamic model than the JDL model. 
     
8. Conclusions and Future Work  
 

We presented a general data fusion architecture 
described in a formal language of object representation 
(UML) that tries to represent different scenarios, 
specifications and features of a general data fusion system. 
It also allows a dynamic modification of the system 
according to different states of the environment or of the 
system.  

The Personal Heart Rate Monitor is from the class of 
network-based mobile dynamic systems powered by battery, 
where an application should adapt itself to different 
configurations of the system (data sources moving in and 
moving out), different states of the environment, and 
considering power and bandwidth constraints. The DFA 
proposed and applied to the PHMS is a good solution to the 
problem of developing an application framework to manage 
data from different types of sensors to perform different 
tasks in a ubiquitous computing environment. We have 
mapped the data management problem of the PHMS to 
different domains and applications to show that we can 
employ our data fusion architecture in diverse scenarios, 
including different contexts and domains. In this work, we 
have focused on the application’s framework (data fusion 
and decisions modules). In the future, we plan to develop a 
dynamic communication approach between the application 
framework and the middleware. This will allow us to 
achieve the quality of service of the entire system when 
there is more than one application running at the same time.   
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