
Information-Sharing Protocol Architectures for Sensor
Networks: the State of the Art and a New Solution∗

Christophe J. Merlin Chen-Hsiang Feng Wendi B. Heinzelman
merlin@ece.rochester.edu feng@seas.rochester.edu wheinzel@ece.rochester.edu

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA

Protocols for wireless sensor networks (WSNs) are very diverse. Reflecting this diver-
sity, no single protocol architecture for WSNs dominates: programmers often modify the
legacy-architecture to fit their set of protocols in the stack. However, there exists desir-
able goals for a sensor network architecture: modularity, flexibility and universality. At
the same time, a WSN architecture should enable the protocols to achieve long network
lifetimes for various applications. These are, in general, conflicting goals, with the former
achieved using layered architectures and the latter obtained through cross-layer interac-
tions. A good balance can be provided by architectures that enable layers to share common
information, as these architectures allow for cross-layer protocol improvements, while pre-
venting some of the short-comings of cross-layer designs. Confirming this observation,
some architectures that enable information-sharing have been proposed in recent years.
We survey these state-of-the-art information-sharing architectures for WSNs, and we in-
troduce X-Lisa, a novel Cross-Layer Information-Sharing Architecture that provides many
desirable properties such as flexibility and simplicity, and offers programmers a modular
framework, simplifying cross-layer interactions.

I. Introduction

While protocols and algorithms for wireless sensor net-
works (WSNs) have been the subject of much research, little
attention has been paid to sustainable architectures for these
networks. The use of WSNs in every day life has been slow
in coming, as sensor networks still endure challenges in en-
ergy conservation and bandwidth use, as well as the lack of
a durable and flexible yet supportive architecture. Histori-
cally, little thought has been given to specific architectures
for wireless sensor networks, with the most widely used ar-
chitecture inherited from wired computer networks in the
form of the OSI model.

To date, there have been numerous proposals of cross-
layer protocols, which use the specificities of sensor net-
works to improve the network lifetime and the response to
the end application. The word “cross-layer” may refer to
various designs, many of which are identified by Srivastava
et al. in [1]. One type of cross-layering allows information
to be shared among several (non-adjacent) layers. Another
type of cross-layering fuses two or more layers into a single,
integrated layer. Figure 1 illustrates some of the differences
between the various stack designs. Whatever their design,
cross-layer algorithms leverage information from various
sources to improve certain aspects of the network behav-
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Figure 1: Examples of cross-layer designs.

ior. A supporting architecture should facilitate this process.

To have a chance at sustaining the development of wire-
less sensor networks, a protocol architecture should exhibit
some desirable characteristics. Flexibility is among the
most important ones: new protocols or improved versions
of existing ones should find their way into current WSN de-
ployments or developments in order to gain from the latest
technology. However, this benefit may be outweighed by
the amount of work necessary to include them into an ex-
isting framework. A strong WSN architecture should thus
ease protocol swapping on any platform.

Information freshness comes next as protocols often rely
on a set of parameters that define a local sub-network at a

26 Mobile Computing and Communications Review, Volume 13, Number 4



certain time. An architecture should provide an up-to-date
vision of a node’s neighborhood. Additionally, simplicity:
in order to guarantee the quick adoption of WSNs as a pre-
ferred solution for industry, an architecture should be simple
to use. We believe a simple architecture is one that does not
carry operations typically reserved to protocols (packet re-
ordering, neighbor selection, etc.) and that provides a com-
mon access to its data structures.

Finally, the architecture should also incur low overhead
for various applications. These are, in general, conflicting
goals, with, for example, the goal of swapping protocols
easily achieved using layered designs and adaptation to spe-
cific applications favored by cross-layer designs.

Following the seminal work of Kawadia et al. [2] cau-
tioning researchers on cross-layer protocols, many use great
care—if not a dose of skepticism—in designing cross-layer
schemes. One solution to prevent the interweaving of pro-
tocols such that changes in one protocol can counterproduc-
tively affect others (thespaghetti designmentioned in [2]),
is to retain a traditional layered structure in the protocol
stack but share information among the layers, as promoted
in [3]. While such architectures do not eliminate the need
for careful protocol design, they can guarantee the avail-
ability and correctness of information shared among many
levels of the stack.

The first steps taken towards such an information-
sharing protocol architecture occurred in the field of mo-
bile ad-hoc networks (MANETs) with MobileMAN [4] and
CrossTalk [5]. Later, SNA [6] was introduced specifi-
cally for wireless sensor networks. Chameleon [7] shares
many of the goals of SNA but provides a different solution.
XLM [8], proposed by Akyildiz et al., takes the interesting
opposite solution and fuses all communication layers to best
support the sensor network application. These architectures
present a variety of approaches to meeting the goals of flex-
ibility, universality, simplicity and low overhead.

The contributions of this paper are twofold: it surveys
the above-mentioned architectures, exposing their relative
strengths and weaknesses against a set of desirable (and
at times, contradictory) goals, and it introduces X-Lisa,
an easy to use and maintain architecture for information-
sharing. X-Lisa incorporates many of the benefits of exist-
ing architectures and improves on their design by providing
service support, information propagation adapted to WSNs,
and a greater level of flexibility under TinyOS.

In the following, section II introduces the architectures
and designs surveyed in this paper. Section III provides a
detailed description of the surveyed architectures, and sec-
tion IV evaluates the merits of each of them. Because the
existing work does not meet the set of desirable goals we

set for a WSN-specific architecture, we propose X-Lisa in
section V. Section VI provides evaluation of X-Lisa and
section VII concludes this paper.

II. Related Work

This section provides an overview of related work on cross-
layer protocol architectures. Relevant work surveyed in
more detail in the following sections is omitted.

In [1], Srivastava et al. provide a definition of cross-layer
designs and a survey of existing cross-layer models. The au-
thors define cross-layer interactions as back-and-forth infor-
mation flows, merging of adjacent layers, design coupling
without a common interface, and vertical calibration across
layers. They also list implementations for cross-layer inter-
actions: explicit interfaces between different layers, shared
databases, and heap organization, which provides new ab-
stractions (no protocol layers).

Whitehouse et al. introduced Hood [9], a neighborhood
abstraction for WSNs that allows nodes to identify neigh-
bors with variables of interest. Nodes defineattributesthat
may be shared with neighbors. Upon receiving attributes,
each node evaluates whether these are valuable enough to
be recorded in a neighbor list. Because it is not an archi-
tecture, it is not part of this study. However, the solution
retained to manage its neighbor table is similar to ours.

In [10], Wang et al. survey existing cross-layer signaling
methods, which most closely corresponds to the explicit in-
terfaces architecture mentioned above. Additionally, the au-
thors propose CLASS (Cross-LAyer Signalling Shortcuts),
an architecture that allows propagation of cross-layer mes-
sages through out-of-band signaling. Because Wang et al.’s
work already surveyed the state of this type of architecture
extensively, the focus of this paper does not include these
architectures.

Sadler et al.’s work [11] propose a sharedplatformamong
all layers of a protocol stack for cross-layer optimizations.
The authors recommend using a table of interchangeable
nodes (capable of handling the same application request)
that lists equivalent nodes to be used by the routing proto-
col when a link breaks. The criteria used are connection
oriented since the work focuses on providing reliable links
in MANETs. While theplatform certainly introduced ar-
chitecture choices made by Sadler et al., the paper focuses
on protocol issues rather than a universal architecture. The
principles guiding the sharedplatform are, however, well
represented in the surveyed architectures and are the object
of further study in this work.
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III. Architectural Approaches

The widespread success of the OSI model [12] in wired
networks provided a starting point in architectural design
for protocol stacks in the new fields of MANETs and
WSNs, with the OSI model constituting the legacy archi-
tecture for these new, more complex networks. Although
the OSI model had not been intended for the specificities
of WSNs and MANETs, this architecture proved flexible
enough (with the help of some ad-hoc violations to accom-
modate cross-layering designs) to stimulate the growth of
these two fields. In this traditional architecture, direct com-
munication is only permitted between adjacent layers. Pro-
tocols may obtain information from the packet headers and
data units, and from the same layers in distant or direct
neighbors. This incurred more horizontal communication
(between the same layers of different neighbors), which the
bandwidth of wired networks could easily support. How-
ever, cross-layer protocols have introduced architectural vi-
olations that allow a layer to communicate in some form or
another with non-adjacent layers. Such designs aim to ben-
efit from the specificities of WSNs to increase network life-
time and application quality of service (QoS) support, and
to avoid wasting bandwidth, a scarce resource in WSNs.

Figure 2 presents a taxonomy of the architectures sur-
veyed in this work. We focus on the designs that allow
information-sharing through a shared database. We also in-
clude XLM because it supports cross-layering while taking
the counter-part of information-sharing.

III.A. MobileMan: Subscription to an Ab-
stracted Database

MobileMan [4] provides an abstracted database, called the
network status (NeSt), which is made available to all layers
of the stack through a publish / subscribe API. NeSt orga-
nizes the exchange of information in the stack: a protocol
that needs information from other layers has to register with

NeSt and subscribe to event notifications regarding this in-
formation. Protocols whose information is of interest to oth-
ers must notify NeSt of the occurrence of an event. NeSt
then delivers the incidence match to the various protocol
subscribers.

To the best of our knowledge, NeSt does not organize
information exchange about a node’s neighbors (horizon-
tal information-sharing), and it leaves the burden of event
notification to data-supplying protocols. Adding such func-
tionalities to all the protocols in the stack may involve lev-
els of refinement and complication not suited for MANETs,
anda fortiori WSNs. This is because the goal of Mobile-
Man is to adapt Internet legacy protocols and applications to
MANETs, where the benefits of cross-layering are greater.
While MobileMan facilitates protocol swapping, the end
goal is to support Internet technology over wireless ad-hoc
technologies.

The solutions retained by the MobileMan workgroup are
elegant and ingenious: NeSt does not store data but merely
provides an abstraction for information exchange. It also
allows complex events to be disambiguated and reported to
the protocols that have an interest in them (using a pub-
lish / subscribe model). However, NeSt asks protocols to
follow complex registration processes, possibly causing in-
formation exchange to be hindered by very procedural ac-
cess.

III.B. CrossTalk: A Common Database for
MANETs

Because publish / subscribe mechanisms to a database, such
as those found in MobileMan, may be complex and lack
generality, a non-abstracted database made available to all
layers in the stack may be more suited to the needs of net-
works with limited resources. CrossTalk [5] exemplifies
how such a database is used and populated.

The goals of CrossTalk are similar to those of Mobile-
Man: adaptability and flexibility to allow ease of protocol
maintenance and replacement. CrossTalk provides local in-
formation to all protocols in the stack, as well as aglobal
view of the network: a set of parameters deemed of interest
to the protocols is gathered about distant nodes. A global
view of the network is thus propagated, forming a context
for each node. With this information, individual nodes can
evaluate their relative situation and modify their behavior
accordingly.

The global view of the network is formed by propagating
information over several hops: a source node appends the
set of parameters that are then read by every relay node on
the path. Winter et al. argue that a global view of the net-
work at the individual nodes can greatly improve the per-
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formance of the network. However, the implementation of
CrossTalk was carried out in NS-2, a rich programming lan-
guage. Under TinyOS, the incurred per-packet overhead
can be (conservatively) broken down into the following:
(2 + 2) B for 2D location,8 B for time stamping, andn B

for the exchanged information.
CrossTalk and MobileMAN seem particularly well

adapted to MANETs. However, the characteristics of WSNs
limits the benefits of these two approaches.

III.C. SNA: Abstraction of Lower Layers and
Basic Functions

Culler et al. proposed the Sensor Network Architecture
(SNA) in [13] then [6] with the main objective to provide
greater modularity to sensor hardware designs and commu-
nication protocols. The suggestion made in [13] was to de-
couple aspects of the software from the underlying hard-
ware in order to abstract the platform on which the network
stack is set. To do so, the Sensornet Protocol (SP) bridges
the link and network layers by abstracting key parameters of
the lower layers such as link quality and scheduling infor-
mation. In the next step [6], Culler et al. identify com-
mon functionalities to encourage code-reuse and runtime
function sharing. SNA breaks the network layer down into
reusable communication modules.

SNA retains a layered structure, providing detailed in-
formation to the various network protocols present on a
node. Two predefined structures within SP serve as infor-
mation repositories: the “Neighbor Table,” which maintains
information about direct and relevant neighbors, and the
“Message Pool,” which allows protocols to request message
transmissions.

The neighbor table allows several protocols to share in-
formation otherwise maintained in redundant structures. A
neighbor table entry usually consists of the neighbor address
or ID, link quality, and scheduling information. Because
the number of neighbors may be greater than the number
of existing spots in the table, SP implements an advanced
table maintenance scheme: before adding a new neighbor
to the list, SP polls every protocol. If at least one protocol
agrees, the node is inserted. Protocols are also notified when
a neighbor is evicted from the table. Since SP is a protocol,
its actions go beyond that of an architecture: if the power
management schedule of a listed neighbor is expiring, SP
asks the network and link layers to provide a new schedule.
It is not clear whether the neighbor table maintains informa-
tion about the node itself.

Arguably, SNA is a considerable leap forward in WSN
architectures, as it provides an unsurpassed level of flexibil-
ity and universality under TinyOS. The interface between

the various network protocols and data links is rich and ad-
vanced, but also quite complex. This may hinder fast de-
ployment of WSNs. Additionally, SP does not propagate
neighbor information automatically and solely relies on pro-
tocols to populate the neighbor table (although SP may post
requests regarding table information freshness). As a whole,
SNA tries to achieve a different goal from ours since we are
more concerned about data repository reuse rather than al-
gorithm and code reuse.

III.D. Chameleon: Abstraction of Communi-
cation Protocols

The main goal of the Chameleon architecture [7] is to ab-
stract communication layers so that WSN protocols may
run over any network, from 802.15.4 to IP. Abstraction is
achieved thanks to packetattributes, an abstract representa-
tion of information contained in packets. Rime, a layer con-
tained within Chameleon, takes care of mapping attributes
to any standard header.

Additionally, cross-layer interactions are supported
through “vertical calibration”: information is contained in
the attributes of packets that are passed between layers.
However, in order to propagate information to all layers,
the packet headers are not removed after being processed.

Like SNA, the ultimate goal of Chameleon is to pro-
vide abstraction to lower layers by identifying basic pro-
tocol primitives, although Dunkels et al. selected different
ones from SNA. It differs from our intention to allow cross-
layer interactions between protocols, since information is
not shared among all layers in the stack.

III.E. XLM, The Counterpart: Fused Layers

Akyildiz et al. proposed XLM [8] as a fused-layer module,
regrouping all protocols from the data link to the node acti-
vation layers. Because this organization of the protocols has
a redefining impact on the larger architecture, we consider
XLM as an interesting counterpart to simple information-
sharing.

The principle of node communication in XLM isinitia-
tive determinationI: after a node indicates it has a packet
to send with an RTS, each neighbor decides whether to par-
ticipate in the communication. The initiative determination
sets conditions on link state, flows, buffer fullness, and en-
ergy. If all conditions are satisfied, the node participates in
the communication; otherwise it goes to sleep until the next
determination time. According to the authors, this set of
conditions ensures reliability of the link, manages flows and
buffer levels, and guarantees uniform energy consumption.
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Table 1: Qualitative comparison of existing architectures
(given without order of importance): support (

√
) or limited

support (×).

Legacy∗ SNA Cham. X-Talk MobMan XLM X-Lisa

Modularity ×
√ √

?
√

×
√

Universality ×
√ √ √

× ×
√

Event Noti-
fication

× × × ×
√

×
√

Service
Support

× × × × × ×
√

Table Main-
tenance

×
√

N/A ? N/A N/A
√

Information
Prop.

× × N/A × × N/A
√

Overhead Small Small Small High High Small Small

Simplicity Yes No Yes Yes No Yes Yes

Akyildiz et al. argue that the tight meshing of all func-
tionalities guarantees optimality of the network response—
or at the very least the coordination of their actions. All
protocols fused in XLM benefit from the same up-to-date
information, much like the previous approaches. However,
XLM supposes the use of CSMA/CA only. The fused na-
ture of the protocol layers renders protocol swapping a com-
plicated process. Unlike MobileMan, CrossTalk, and SNA,
there is no standardized interface between the various pro-
tocols of the module.

IV. Architecture Comparisons

In this section, we present a qualitative comparison of the
architectures described in the previous section. It is ex-
pected that the architectures will perform better in some re-
gards, and more poorly in others, in accordance with their
different design goals. The aim in this section is to provide
a side-by-side comparison of each architecture’s relative ad-
vantages and drawbacks.

Table 1 presents the strengths and weaknesses of each
architecture for a specific set of goals. The termLegacy∗

refers to the layered structure inherited from the OSI model,
with potential ad-hoc modifications (“violations”) to sup-
port cross-layering.

IV.A. Flexibility

This section evaluates theflexibility of an architecture, and
thus its chance of becoming popular. In WSNs, the term
flexibility indicates both modularity and universality, which

are often contradictory in nature, as modular designs have,
so far, denied support for cross-layer protocols.

IV.A.1. Modularity

Migration from strictly layered to cross-layer designs has
incurred architecture violations that make swapping proto-
cols an intricate task. Modular designs guarantee that re-
placing a protocol requires little more than inserting the new
protocol and using the appropriate interface to connect the
layers. For instance, it would be accomplished in TinyOS
via a simple rewiring.

It is agreed that the OSI model adapted to WSNs (the
Legacy∗ architecture) is the most modular architecture.
However, this architecture is unfit for cross-layer protocols,
which introduce protocol-dependant violations. The legacy
architecture rates poorly in modularity because of the un-
foreseeable nature of these violations.

Because the goals of SNA and Chameleon (Rime) are to
abstract lower layers, modularity may not apply to higher
levels in the stack. We believe, however, that SNA is
the most modular architecture to date proposed for WSNs.
The implementation details of CrossTalk are not provided
in [5], and thus, we can only base this evaluation on what
CrossTalk sets out to do. CrossTalk does not appear to
keep packet information in a message table, which may
hinder protocol replacement. Because sharing information
between protocols requires writing additional access func-
tions, MobileMan is not as modular as other designs, and
to the best of our knowledge, does not support the sharing
of neighbor information. Lastly, since XLM focuses only
on network performance, replacing a core function in XLM
requires knowledge of the full module, limiting the modu-
larity of its design.

IV.A.2. Universality

The termuniversality refers to the ability of the architec-
ture to accommodate all platforms, protocols, and end ap-
plications, through code reuse and run-time sharing. The
eventual goal of universality is to ease protocol develop-
ment and upgrade. SNA and Chameleon propose an ele-
gant solution to abstract the underlying hardware from the
protocols. CrossTalk offers a good solution for MANETs,
however the information propagation model is not suited for
WSNs. Additionally, as for MobileMan, there are no provi-
sions to abstract the data link layer, which heavily depends
on the platform. Finally, changing a function within XLM
requires the knowledge of the full module and its subse-
quent modification.
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IV.A.3. Event Notification

One of the advantages of layer fusion is the ability to co-
ordinate various functions easily: protocols now gathered
under the same layer can share information and invoke the
same set of functions. A layered design, however, is re-
quired to create more complex interfaces between different
layers, which contradicts the goal of modularity. For in-
stance, imagine a MAC protocol able to quickly detect bro-
ken links and a routing protocol whose route repair mecha-
nisms are slow. A programmer may wish for the MAC pro-
tocol to notify the routing protocol of a failed link as early as
possible. We argue that an architecture should allow event
notification through its shared database, thus allowing to re-
port changes in the network. Of the surveyed architectures,
only MobileMan supports event notification.

IV.A.4. Service Support

Rarely mentioned, services provide key support to proto-
cols. For example, services may gather information about
the remaining energy or location of a node. Protocols
should only focus on their main role, such as routing, with-
out concerning themselves with gathering peripheral infor-
mation. To the best of our knowledge, no existing architec-
ture proposes organizing services in their stack.

On top of managing services, the architecture should pro-
vide a fixed and common interface to standardize access to
the services and establish coding conventions. It should also
allow individual protocols to selectively load the services
before deployment, and to turn them off during runtime.

IV.B. Information Freshness

In this section, we examine how the network view is kept
up-to-date, a key feature for many protocols. This feature is
critical to having an architecture that is modular and easy to
maintain and use.

Most architectures propose to store and manage informa-
tion made available to part or all of the layers in the stack.
SNA (SP) features advanced table maintenance, although
more decisions are left for the individual protocols to make.
Because we lack implementation details for CrossTalk, we
cannot evaluate it in this regard. Chameleon does not pro-
vide a common information repository, and thus does not
provide a local view of the network. Because MobileMan
abstracts information structures, there is no actual common
neighbor table, and information freshness and management
is handled by the registered protocols. Finally, XLM does
not need to make any information structure available to
other layers in the stack because it already shares common
data within all functions of the module.

In order to maintain relevant information for all the pro-
tocols, the (global) view of the network should be propa-
gated regularly. Only CrossTalk proposes disseminating in-
formation. However, because the main focus for CrossTalk
is MANETs, this propagation model is not fit for WSNs,
which they tend to have smaller traffic rates and converging
routes.

IV.C. Overhead

Low additional overhead is a critical notion that may qual-
ify an architecture as the most energy efficient, and thus the
most appealing. The overhead incurred by an architecture
usually depends on the sophistication of the protocols in the
stack. However, since MobileMan abstracts a database, re-
dundant structures may still exist at different layers. It fol-
lows that MobileMan, like Chameleon, may require more
RAM than necessary. The propagation model of CrossTalk
can be viewed as expensive: at least 12B must be appended
to each packet for X and Y locations and the time stamp.
SNA and XLM provide RAM savings by removing redun-
dant information: SNA uses a common database approach,
while XLM lets all functions in the module view the same
data.

IV.D. Simplicity

A simple architecture has a greater chance at allowing faster
release and deployment of WSNs. A good view of the sim-
plicity of an architecture is its modularity, thereby exclud-
ing the legacy architecture and XLM. However, beyond this
consideration, architectures that do not carry protocol oper-
ations (routing, packet reordering, etc.) seem to be the sim-
plest to maintain and understand because they do not have
unpredicted behaviors. SNA, because it is supported by the
Sensor Protocol, must also be understood as having proto-
col behavior, which may complicate its use. At the same
time, information exchange must still happen because, al-
though protocols have an interest in information, it is gen-
erally not their role to fetch and organize such information.
In TinyOS, simplicity also means fewer wirings and hidden
capabilities.

V. X-Lisa, a New Architecture for Cross-
Layer Information Sharing

Armed with a new sense of the strengths and weaknesses of
existing architectures for WSNs, we argue that architectures
relying on a non-abstracted shared database are both simple
and flexible. Among them, SNA seems the most appropri-
ate to WSNs, but it does not populate the neighbor table, and
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Figure 3: X-Lisa: An information-sharing sensor network
architecture for cross-layer optimizations. This architecture
retains a layered design while providing flexible informa-
tion repositories as well as services to support the protocols.

more generally, its goal is to abstract the hardware platform
from the protocols. Instead, what is needed is an architec-
ture that provides support for cross-layer protocols using a
modular structure.

Thus, we propose X-Lisa, a new Cross-Layer
Information-Sharing Architecture that combines simplicity
with support for cross-layer interactions, services, informa-
tion propagation and event notification. In this section, we
fully describe our information-sharing architecture, while
in the following section we detail the improvements brought
by X-Lisa. The TinyOS code for X-Lisa is available to
download athttp://www.ece.rochester.edu/research/wcng.

V.A. A New Unifying Architecture

Figure 3 shows the new protocol architecture defined by X-
Lisa. The X-Lisa architecture retains a layered structure
such that each layer is matched to a communication function
in order to maintain a practical and simple design. While
fused layer design is still possible with X-Lisa, it is not fa-
vored as it hinders modularity.

The Cross-Layer Optimization Interface (CLOI) pro-
vided by X-Lisa offers indirect access to a repository of
information that may be needed by one or more protocols.
CLOI maintains this information through three structures, a
neighbor table, a sink table and a message pool, described
in detail below, and it supportsservicesthat will fill these
data structures either once or continuously, depending on
the information. X-Lisa also supports event notifications to
ease coordination between various layers.

While all layers and services in the stack have access to
the interface, aCLOI layer was placed between the routing
and MAC layers for two reasons. First, its location allows
the interface to retrieve much of the information sent from
the node onto the network as well as many incoming pack-
ets. This allowsCLOI to directly obtain information needed
to fill the neighbor and sink tables without going through
the protocols. The MAC and physical layers do not have a

Table 2: A neighbor table is kept at every nodei with non-
predetermined fields. It keeps information about the node
itself (for vertical cross-layering) and each of its neighbors
j (for horizontal cross-layering).

ID Time Stamp n byte Array

2B 8B nB

Idi ti Bi,0Bi,1...Bi,n−1

global vision of the network and cannot provide enough in-
formation about its state for automated use withCLOI. The
second reason is that it offers the potential for abstraction of
the link layer as suggested in [6].

Finally, CLOI has no authority to make any routing, node
activation or medium access decisions, or packet reorder-
ing. CLOI simply acts as an interface to the protocols in the
stack, allowing them to access common yet important infor-
mation about the node and its neighbors that can be used to
optimize each protocol’s performance.

V.B. Information Sharing Structures

In order to support this information-sharing architecture, we
need to determine the best data structures for storing the re-
quired information, and theservicesthat will populate them.
Additionally, today’s platforms often utilize TinyOS, a sim-
ple programming language for embedded systems, that lim-
its the scope of implementation solutions.

V.B.1. Neighbor Table

Since some protocols require knowledge of differing pa-
rameters, the neighbor table is implemented as a flexible
information repository. Before runtime, each programmer
may elect which parameters populate the table according to
the needs of the protocols in the stack. Accordingly, the
neighbor table is in fact defined as three fields, illustrated
by Table 2: nodeID, a time stamp for data freshness, and
an array of integers. The last structure may be filled with
a customizable set of parameters that may or may not have
the same type or size. Some of the previous solutions pro-
posed a neighbor table with fixed fields: since NesC does
not support dynamic structures, extending the neighbor ta-
ble included rewriting some of the definitions and functions,
and replacing fields one by one.

In X-Lisa, the programmer needs only to declare an enu-
meration of the fields of interest and their size in bytes. This
Key-Length-Value solution allows rapid modification of the
neighbor table, without resorting to changing the fields “by
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hand”. Although similar in spirit to Hood, it differs in its
ability to update itself (with permission from- but no di-
rect supervision by- protocols) and in its implementation.
Where Hood creates several vectors of a fixed type (int for
light, float for another sensor reading) of size the maxi-
mum number of neighbors,CLOI keeps a unified neighbor
table. It is as if one was the transposed matrix of the other.
This allowsCLOI to retrieve information from a neighbor
with only one pass, whereas Hood can return neighbor IDs
when searching for information about a variable (which was
its main goal).

A neighbor table can have up to 30 entries, which marks
a compromise between the number of valuable neighbors a
node can have and RAM usage. When the table is almost
full, retrieving information takes longer.

Because they are not predetermined, the fields of the
neighbor table must be opaque and accessed through a fixed
syntax, which provides read / write commands with a value
and a field identifier. This process is illustrated by the fol-
lowing example:

cost = *(float*) call

Cloi.extractValue(entry, COST);

whereentry is a neighbor table entry, andCOST designates
a user-defined protocol metric.

V.B.2. Sink Table

Many protocols require critical information about the vari-
oussinks in the network to determine equivalencies between
them or what data to send to a particular sink. Because
we expect information about the sinks to change slowly, the
sink table is not automatically updated. Maintenance must
be done by the protocols (generally a middleware and the
routing protocol). It is also the only structure carrying in-
formation more than one-hop away.

V.B.3. Message Pool

Others have proposed using a message pool that includes
details about the received and sent messages [6]. We agree
with the pertinence to use such a structure and propose in-
corporating the following fields: packet ID, description (a
data packet or network administration packet), priority (ur-
gency) and status (successfully sent or pending).

V.B.4. Accessing the Structures

Read and write access to all structures may only be granted
throughCLOI: this has the combined advantages of atom-

icity1 and modularity. Because read and write operations
are placed in atomic segments, they are executed in the or-
der they are received, without prioritization. X-Lisa also
provides additional functions for access management: be-
cause protocols do not know the identity of the neighbors
present in the tablea priori, they may invoke the function
nextEntry, which returns theID of the next entry in the
neighbor table.

V.C. Event Signaling

X-Lisa provides two classes of event notifications:protocol
eventsandCLOI events. The former designates events gen-
erated by protocols in the stack and relayed directly through
CLOI. The type of the event is not known toCLOI but has
to be meaningful to both the provider and user of this event.
CLOI eventsrefer to a set of events defined in X-Lisa and
that include notification of a new packet in the pool, a new
neighbor, a full neighbor table, etc. In general,CLOI events
are much more common thanprotocol events2, and thus a
programmer can choose to not useCLOI events at compile
time if they are not needed.

Protocols that require event signaling can subscribe to
CLOI at compile time. Because NesC does not allow run-
time dynamic wiring, a protocol may not unsubscribe from
event notifications. The MeshC [14] language overcomes
this limitation. Either way, this does not seem to be a strong
constraint as we expect protocols to have an interest in event
notification for the duration of the network lifetime. If no
longer relevant, event notifications may simply be ignored
by subscribing protocols.

V.D. Information Exchange

In order to maintain the information contained in the neigh-
bor table, X-Lisa provides an automatic update service. The
information exchange is carried by aninformation vector
that updates the neighbors of a node.

V.D.1. Information Vector

The information vector includes some or all of the fields
necessary to populate the neighbor table. These fields will
automatically be filled by theCLOI of the sending node and
read by theCLOI of the node’s neighbors. The informa-
tion vector may be piggy-backed onto broadcast packets or
sent as a stand-alone packet when no broadcast packets are
sent for a certain amount of time. This implies that when

1Whereby the same segment of code may be accessed by only one
element at a time

2In our implementation of Section VI, one or twoCLOI events were
generated every time a packet was received or sent.
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Table 3: A packet with aCLOI information vector piggy-
back (TOSMsg fields not included).

ID Content Vector data

2B 1B nB xB

the information vector is piggy-backed to packets traveling
more than one hop away, the contents of the vector change
at every hop.

CLOI retains the principle of abstracted encapsulation
that guarantees that X-Lisa components need not be in-
formed of other protocols’ data structures and packet head-
ers.

V.D.2. Size of the Information Vector

Not all fields may require a frequent update depending on
theapplication QoS requirements, the needs of the protocols
in the stack, or the nature of the field itself.CLOI piggy-
backs only the required parameters to its neighbors. These
can be requested through aCLOI command for each param-
eter. The structure of the piggy-back and stand-alone update
is illustrated by Table 3. To inform receiving nodes of the
content of the information vector, we include acontentbyte
in CLOI messages, with each bit representing a parameter
in a pre-determined order.

CLOI exchanges information of the fields that
are requested by at least one protocol through the
exchangeField function by invoking:

Cloi.exchangeField(byte field, bool comm);

wherecomm is FALSE when the field is not required by the
protocol,TRUE otherwise.

This Key-Length-Value solution is the first one of its kind
for packet exchanges and, together with the structure of the
neighbor table, allows changing fields of interest quickly.

V.E. Maintenance of the Neighbor Table

In order to maintain the freshness of the neighbor table,
CLOI must detect obsolete information and remove the cor-
responding entry after a node has died or moved away,
thanks to a time stamp applied every time data is added.
A protocol may block this process to avoid discrepancies in
neighboring sensors’ tables and directly call for an inspec-
tion of outdated entries when it finds convenient.

If the neighbor table reaches near capacity, an entry may
be removed even if its information is not stale. However,
since some neighbors may be more important than others,

protocols may signal so by setting the fieldhold. Neighbors
not heldwill be first choices to be removed.

V.F. Important Services

As mentioned previously, one of the advantages of X-Lisa
is that it allows protocols to re-focus on their primary func-
tions. To enable this, X-Lisa adds peripheral services that
supply some of the information needed to fillCLOI’s in-
formation repositories. These include the following: ID as-
signment, location, time synchronization, channel estima-
tion, remaining energy measure. A more detailed descrip-
tion can be found in [15].

These services are available as libraries and thus individ-
ual services can be selected during compilation (i.e., only
those services that are needed for the particular set of proto-
cols in the stack would be selected). Furthermore, selected
services can be turned off during run-time to guarantee the
maximum flexibility.

VI. Results and Discussion

In this section, we intend to show the benefits of using X-
Lisa through simulation of an existing protocol whose be-
havior with and without X-Lisa was studied in TOSSIM,
the TinyOS simulator. A full account of the evaluation of
X-Lisa can be found in [15]. Test in an actual deployment
is part of our future work.

VI.A. Modus Operandi

VI.A.1. Qualitative Study

We begin by providing a data-point that illustrates the sim-
plicity and generality of X-Lisa through protocol swapping.

Our starting point was XLM [8], which exhibits total
layer fusion and is thus the counter-point of X-Lisa. We
wanted to see if X-Lisa was rich enough to replicate the be-
havior of XLM while maintaining the convenience of sepa-
rated protocol layers. We illustrate the advantage of keeping
a layered scheme by swapping the MAC protocol from the
original XLM MAC functions to a Low-Power-Listening
(LPL) scheme [16].

VI.A.2. Quantitative Study

We then quantify some of the limitations and gains of using
X-Lisa such as the extra overhead and increase in quality of
service (QoS) induced by X-Lisa. There exists a plethora
of protocols for WSNs, many of which could benefit from
X-Lisa. We selected DAPR [17], a distributed fused-layer
routing and node activation protocol, for our familiarity
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with the protocol and because it strikes a good balance be-
tween cross-layer (combined routing and node activation)
and layered (interface of DAPR with other protocols in the
stack) schemes.

We implemented the original version of DAPR as well as
a modified version of DAPR that takes advantage of the X-
Lisa architecture. In our simulations, we measure the total
number of unicast and broadcast packets, which provides
an indication of the extra energy required by X-Lisa. We
also determine the packet delivery ratio, as well as the num-
ber of reports delivered to the data sink: together, these can
measure the QoS provided to the end application.

VI.B. Qualitative Study: The Expressiveness
of X-Lisa

In this section, we show that X-Lisa is an architecture that
is rich enough to mimic the behavior of XLM, a fully-fused
scheme. XLM is particularly of interest because it repre-
sents an extremum in cross-layer designs, and hence is a
candidate of choice to test the limits of X-Lisa.

VI.B.1. Implementation Details

XLM establishes unicast communications through an
RTS / CTS handshake before DATA is exchanged and ac-
knowledged. Power is saved through duty-cycling, which
turns the radio chip on and off periodically: nodes remain
asleep for the remainder of the cycle if they cannot partic-
ipate in the communication (I = 0) or if they lose con-
tention to another node. Contention is handled through a
CTS response backoff proportional to the node’s distance to
the destination (assumed to be known). The stateless greedy
routing is receiver-based, and the node sending the first CTS
signals its intention to forward a packet. Congestion con-
trol reduces the application packet generation rate in case of
communication failure, and increases it otherwise.

In the initial protocol suite, we decomposed XLM into the
five layers (including application) of Figure 3 and included
them in the X-Lisa architecture. The new entity, called
XLM / X-Lisa, is a layered version of XLM. The transport
layer now extracts information from user data (and updates
some fields in X-Lisa’s neighbor table) and segments long
data packets. In this suite, the network layer has a limited
role. The link layer performs the RTS / CTS / DATA / ACK
hand-shake and controls the radio chip for duty-cycle.
Among other things, X-Lisa shares packet delivery failure
information with the application layer for congestion con-
trol purposes and uses the neighbor table as a central stor-
age of node positions for location look up. Figure 4 shows
the new organization.

(a) (b) (c)

Figure 4: The original XLM (a), was broken into a lay-
ered scheme (XLM / X-Lisa) (b), and its MAC layer was
replaced (c). Arrows show packet exchanges between lay-
ers, and squares information exchange.

We tested XLM / X-Lisa and found that it replicates the
behavior of XLM (routing packets to the destination using
the same number of packets) while retaining a layered struc-
ture.

VI.B.2. Protocol Swapping

During the introduction of this paper, we conjectured that
protocol maintenance would be eased by modularity. To
test this supposition, we attempted to swap MAC protocols
to, for instance, a LPL MAC protocol. Although we cannot
quantify the ease with which we did so, a successful MAC
replacement is meaningful in itself.

The second protocol suite is a variant of XLM / X-Lisa:
the original MAC layer was replaced by the LPL MAC
protocol SpeckMAC-D [16] as illustrated in Figure 4. We
named the new entity XLM / LPL / X-Lisa. In SpeckMAC-
D, every node sleeps forti s (the inter-listening time) be-
tween wake-ups. In order to guarantee that the receiver will
wake up at some point during a transmission, a sender must
repeat the same packet forti s. If a node awakens and re-
ceives a packet, its MAC protocol forwards it to the network
layer before sleeping for the rest of the cycle.

Similarly to XLM, we modified XLM / LPL / X-Lisa to
route packets only if the node is the closest to the destina-
tion, a strategy akin to restricted flooding.

The two suites of protocols were implemented in TinyOS
and simulated with TOSSIM. We conducted simulations on
10 nodes spread on a70m by 70m area with nominal radio
range30 m. The Source node sends a packet to the sink
every5 s, for a total simulation time of100 s. The results
are shown in Table 4.

Here, the number of sent packets should not be seen as an
indicator of the energy consumed by each suite, we thus do
not present it in our results. A CSMA-based MAC proto-
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XLM/LPL/X-LISA XLM/X-LISA

Received Packets 165 2036

Goodput (%) 75 100

Latency (s) 1.503 0.683

Table 4: Selected metrics comparing the behaviors of
XLM / X-LISA and XLM / LPL / X-LISA.

col forces the radio to stay in idle mode (a state that incurs
the same energy consumption as active receiving mode) sig-
nificantly more than a LPL scheme. Consequently, sending
more packets with a LPL MAC protocol does not always
result in increased energy consumption.

These results show that XLM / X-LISA receives more
packets than XLM / LPL / X-Lisa because every communi-
cation requires a hand-shake, and because many nodes re-
ceive RTS / CTS / DATA / ACK packets even though they
lost the contention to other nodes and are not part of the
communication. Finally, both suites exhibit high goodput
(greater than 75%), with XLM / X-Lisa showing the better
performance. Likewise, XLM / X-Lisa yields lower latency.
Both metric differences can be explained by the fact that
nodes that are candidates to participate in a communication
(I = 1) are always on during a cycle, allowing few packets
to be dropped or delayed.

These results show that the replacement of the original
XLM MAC protocol by SpeckMAC-D led to observably
similar behaviors: according to a set of quantifiable met-
rics, the two suites are within the same order of magnitude.
Thus, swapping protocols was possible and X-Lisa did not
degrade the performance of the protocol. What these re-
sults donot demonstrate is that one particular MAC pro-
tocol yields a longer lifetime or any other desirable QoS
improvements over the other, because a protocol must take
advantage of the information brought by X-Lisa.

VI.C. Quantitative Study: Measurable Cross-
Layer Improvements

We now show that X-Lisa helps improve the performance
of the network by allowing protocols to take advantage of
cross-layer interactions to their fullest.

VI.C.1. The DAPR Protocol

DAPR assigns “application costs” to all nodes by period-
ically flooding a query request to the network: the higher
the cost, the more important the node is to the application
(because it may be fitted with unique sensors or because it
is located in a sparsely covered area of the network, etc.)
Nodes with high costs are eager to deactivate and make

poor choices as relays for other nodes’ packets. In this sim-
ulation, we divided the whole network intozones: nodes
in the same zone may communicate with one another, and
with nodes from adjacent zones. A routing tree can thus be
formed, and nodes with low costs route data packets to a
single data sink. Nodes located in a target zone repeatedly
send data reports at a rate of0.2 pkt.s−1.

Because DAPR sends queries at the beginning of every
60 s round, changes happening to the tree are unknown to
the protocol stack until a new query is flooded, with some-
times serious consequences. For instance, if a relay node
moves from one zone to a neighboring zone, data packets
will stop being delivered.

X-Lisa brings new information to the protocols it serves:
for the case at hand, DAPR can now be notified when a
change of zone occurs or if a new neighbor has been added
to its table. Such changes usually mean that a node’s next-
hop neighbor might have changed, and that it may need
to start or stop sending data reports. One important met-
ric is the average update delay, defined as the time between
a change and its notification to the nodes’ neighbors. The
longer the delay, the longer nodes affected by a change fail
to take appropriate corrective measures.

Without the added knowledge provided by X-Lisa, DAPR
must include extra information (such as a node’s current
zone) along with queries, regardless of whether a change
has indeed happened.

VI.C.2. Simulation Results

Since the goal of this section is not to evaluate DAPR, we
limit the simulation to a simple scenario: a likely candi-
date to route other nodes’ packets is mobile and may move
around (on average, every150 s). We use a small number of
nodes (5 and 10) so that we may easily interpret the behav-
ior of the network. Had we chosen several mobile nodes,
we would have tested the resilience of DAPR, rather than
the benefits brought by X-Lisa.

We implemented DAPR with and without X-Lisa in
TinyOS. While we ran simulations in TOSSIM, we also
compiled the code for the Tmote Sky platform. DAPR alone
takes up approximately21.5 KB of ROM, and1.3 KB of
RAM. With X-Lisa (and all its features), these numbers be-
come34KB and1.9KB respectively, which can easily be
accommodated by the Tmote Sky.

Figure 5(a) presents the number of unicast and broad-
cast packets for DAPR alone and DAPR with X-Lisa. Also
shown are the number of report packets that were sent and
the average packet size. For both 5 and 10 nodes, the num-
ber of unicast packets increases when X-Lisa is used. Since
updates are broadcast packets only, we know that it does not
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Figure 5: Comparison of (a) the impact and (b) the QoS gains of DAPR and DAPR + X-Lisa on a network of 5 and 10 nodes.
The numbers on the graph are the relative change from DAPR to DAPR + X-Lisa.

constitute overhead for X-Lisa, but merely increased data
traffic brought about by improved performance of DAPR
with X-Lisa. The increase in broadcast packets remains
modest (a maximum of 15%) even for 10 nodes and mea-
sures the added cost of X-Lisa in the face of frequent topol-
ogy changes. Quantifying the energy impact of this increase
depends greatly on the MAC protocol in use, with heavier
consequences for LPL MAC protocols. The number of data
reports sent to the data sink differs only slightly: when a
relay node moves to and from the target zone, X-Lisa can
notify its application layer to start or stop sending reports.
In the absence of X-Lisa, the application layer does not
learn of a change until the next DAPR round, which causes
the node to send too many or too few data reports. Over
the whole node lifetime, however, these tend to average
out. Finally, the average packet size stays approximately
the same: the information vector sent by X-Lisa does not
need to be exchanged if no movement between zones has
been recorded. This compensates for larger packets when
the full information vector is present in all packets.

Figure 5(b) measures the advantages provided by X-Lisa:
a net decrease in the average update delay, which translates
into significant gains of QoS. Neighbors of a moving node
are notified of a change up to 85% faster when X-Lisa is
used. Protocols may take advantage of this in several ways.
With our implementation of DAPR, this translates into a
steep increase in the number of packets delivered to the data
sink, as well as an increase in packet delivery ratio. The
magnitude of this increase depends on conditions in the net-
work (when a change happens, how many alternate routes
there are, etc.) and on the protocols in the stack; however,
the improvement can be significant.

A discussion on the overhead of X-Lisa (up to 15% more
total broadcast packets) must include the fact that X-Lisa re-
groups and limits the size of neighbor update messages and

that it is conducive to a significant increase in QoS. Com-
paring to the original DAPR design, much of the overhead
produced becomes stale after changes in the network topol-
ogy. These results show that while X-Lisa provides more
flexibility and generality, it does not degrade protocol per-
formance. Better yet, correct use of extra information helps
increase the QoS to the application, with X-Lisa incurring
only small overhead.

VII. Conclusions and Future Work

In this paper, we surveyed the state of the art of information-
sharing architectures whose merits include support for
cross-layer interactions while exhibiting high modularity.
We compared these various architectures and found that
none of them provide all the requirements needed for sen-
sor networks: support for 1. cross-layer protocols using a
modular architecture, 2. services, 3. information exchange
suited to sensor network traffic models, and 4. event notifi-
cation.

Thus, we proposed X-Lisa, an information-sharing archi-
tecture that facilitates vertical and horizontal cross-layer op-
timizations in WSNs through a cross-layer optimization in-
terface (CLOI). CLOI maintains updated information on the
network state, the nodes’ states, the data sinks and the mes-
sages to be sent. All layers have access to the information
maintained byCLOI, which ensures that all protocols in the
stack can benefit from cross-layer optimizations facilitated
through information-sharing.

In our Tmote Sky platform implementation, we have
verified that existing protocols (such as XLM [8] and
DAPR [18]) can fit into this information-sharing architec-
ture. However, the real advantage of this architecture is that
it will facilitate the design of future protocols by removing
the burden of finding, maintaining and sharing important
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node and network information from the protocols and plac-
ing this task withinCLOI. In spite of some limitations, the
ease of use and the implementation freedom of X-Lisa make
it a viable option for future sensor network deployments.

Our future work will focus on reducing the code size of
X-Lisa and on continuing to quantitatively evaluate the ben-
efits and drawbacks of X-Lisa, including on actual deploy-
ments. We also plan to add more services to the libraries,
and application requirement information to X-Lisa in an in-
tegrated fashion withCLOI. Providing the protocol stack
with application-level QoS requirements will make X-Lisa
highly adaptable to different application requirements.
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