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Abstract

Acoustic feature extraction algorithms play a central role in many speech and

music processing applications. However, noise usually prevents acoustic feature

extraction algorithms from obtaining the correct information from speech and

music signals. Thus, the robustness of acoustic feature extraction algorithms is an

area worth studying. In this thesis, we consider two important acoustic features:

pitch and speaking rate. For each acoustic feature, we introduce several classic

and state-of-the-art feature extraction algorithms and evaluate the performance of

each of them in noisy environments. We analyze the results and provide possible

explanations why some feature extraction algorithms outperform the others in

noisy environments.
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1 Introduction

Nowadays, speech and music technologies are receiving increasing attention. Ap-

plications such as speech recognition and automatic music transcription play an

important role in human computer interactions and are widely used in a large num-

ber of mobile devices. For example, mobile applications such as Sound Hound use

so-called “query-by-humming” technology to find the song a user sings to his/her

iPhone [9]. Standard testing organizations such as ETS have developed some

speaking rate estimation programs to automatically measure the examinees’ lan-

guage fluency [10]. Some speech-based emotion classification systems [11] [12]

use the statistics of acoustic feature statistics of speech samples such as pitch to

classify the emotion of a speech sample.

Extracting accurate acoustic features from signals is crucial for the functionali-

ties of these applications. However, noise usually has a negative impact on speech

and music. Many acoustic feature extraction algorithms can perform very well

in a quiet environment. However, the performance of these algorithms in noisy

environments is unknown. Hence, it is necessary to evaluate the performance

of existing feature extraction algorithms in noisy environments. The evaluation

results can provide good reference for developing noise-resilient software. This

thesis achieves this goal by implementing several classic as well as state-of-the-

art feature extraction algorithms for pitch and speaking rate and evaluating the
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performance of these algorithms in noisy environments.

1.1 Thesis Outline

Chapter 2 introduces some classic and state-of-the-art pitch estimation algorithms

and speaking rate estimation algorithms. In Chapter 3, databases for the eval-

uation are introduced and then a thorough comparison is conducted to compare

the performances of pitch estimation algorithms and speaking rate algorithms in

noisy environments for each database. Chapter 4 presents the conclusions and

potential future work.

1.2 Contributions

Although we can find some examples in the literature that describe the evaluation

of pitch estimation algorithms in noisy environments [13][14], my thesis includes

two recent pitch estimation algorithms, BaNa [1] and SAFE [6]. In addition, I test

pitch estimation algorithms not only on noisy speech signals but also on noisy mu-

sic, which provides more comprehensive evaluation results. Few studies have been

done on evaluating speaking rate estimation algorithms in noisy environments.

Hence, my work on evaluating the performance of speaking rate is novel.
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2 Feature Extraction

Algorithms

This chapter first introduces windowing, a basic technique for signal analysis.

Then two basic acoustic features (pitch and speaking rate) are introduced. A

number of classic and state-of-the-art pitch estimation algorithms and speaking

rate estimation algorithms are introduced as the foundation of our algorithm e-

valuations in Chapter 3.

2.1 Windowing

Since acoustic signals that need to be analyzed often last for a few seconds or

minutes and the features (e.g., pitch, loudness, formant) are usually varying over

time, a common technique called windowing is used to analyze the signal over a

short period of time. The window size is chosen such that the feature is expected

to remain unchanged in this period.

A Hamming window [15] is widely used in speech and music processing because

it has a narrower main lobe and smaller side lobes compared with other windows

such as a triangular window [16]. Thus the Hamming window is closer to an

impulse in the frequency domain than other windows.

Window size and window shift size are two variables that need to be considered
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when utilizing windowing of an acoustic signal. A larger window provides better

frequency resolution because it includes more samples for analysis. However, with

a larger window, the time sensitivity is reduced. Window shift size determines

the amount of overlap of consecutive frames.

2.2 Pitch Estimation

Pitch is defined as the property of an acoustic signal that is determined by the

frequency of the waves producing it: pitch thus represents the highness or lowness

of sound. Strictly speaking, the term “pitch” should be regarded as the auditory

perception of tone. Pitch is an inherently subjective quantity and cannot be

directly measured from the acoustic signal. It is a nonlinear function of the signal’s

spectral and temporal energy distribution [17].

Fundamental frequency (F0) is the quantity that is measured by almost all

pitch estimation algorithms. F0 is defined as the inverse of the period of a signal.

The perceived pitch of a signal is highly correlated with its fundamental frequency.

Pitch estimation plays a vital role in many speech and music processing appli-

cations. For speech, pitch estimation tracks the pitch contour of the speech, and

hence pitch works as an important component of speech recognition algorithms.

For music, pitch estimation maps detected frequency to certain musical notes.

Many pitch estimation algorithms have been developed [17]. However, none of

the existing methods can guarantee the detection accuracy in the presence of high

levels of additive noise.

In this section, a number of classic and state-of-the-art pitch estimation algo-

rithms are introduced. The evaluation of these algorithms in the presence of noise

is presented in Chapter 3.

The commonly used pitch estimation algorithms often have three stages: 1)

pre-processing of the acoustic signal, 2) possible pitch candidates generation, and
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Figure 2.1: The work flow of a typical pitch estimation algorithm.

3) post-processing to select the best choice among the candidates to optimize the

estimation of F0 [18].

2.2.1 Pre-processing

The purpose of pre-processing is to eliminate interfering signal components.

Filtering:

Filtering is the most common technique used in the pre-processing stage of

pitch estimation. For example, the pitch range for speech is 50Hz to 600 Hz. A

band pass filter can effectively remove frequencies outside the desired bandwidth,

which improves F0 estimation performance.

Non-linear operations:

One non-linear technique that is often used is to set a threshold in order to

remove some low level noise. Another commonly used technique is center-clipping.
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Figure 2.2: An illustration of the effect of center clipping, reprinted from [2].

The center clipping function is defined as follows [2],

y(n) = clc[x(n)] =


(x(n)− CL) x(n) ≥ CL

0 |x(n)| < CL

(x(n) + CL) x(n) ≤ −CL

(2.1)

where CL is the clipping threshold. Generally, CL is about 50% of the maximum

absolute value of the input signal. This technique tends to flatten the spectrum

of the signal passed to the candidate generators, to be discussed in Section 2.2.2.

Figure 2.2 shows an example of a voiced frame, its center clipped version, and

the difference between the autocorrelation function calculated from the original

signal frame and the center-clipped signal frame. We can see that the desired

peaks become more clear, while the other irrelevant peaks are flattened.

In speech processing, the pre-processing step also includes a voiced/unvoiced

classification function that distinguishes voiced and unvoiced segments of the sig-

nal. Speech is composed of phonemes, which are produced by the vocal cords

and vocal tract. Voiced signals are produced when the vocal cords vibrate during
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the pronunciation of a phoneme. Unvoiced signals, by contrast, do not entail the

use of the vocal cords [19]. Only voiced signals are evaluated by pitch estimation

algorithms.

2.2.2 Generation of Pitch Candidates

Pitch estimation algorithms can be divided into three categories.

• Time domain approaches

• Frequency domain approaches

• Statistical approaches

Time Domain Approaches

Zero-crossing Rate:

The zero-crossing rate (ZCR) represents the rate of sign-changes in the signal

(i.e., the rate at which the signal changes from positive to negative and vice

versa) [20]. This technique is very simple and computationally inexpensive. Zero-

crossing rate is defined as

zcr =
1

T − 1

T−1∑
t=1

Π{stst+1 < 0} (2.2)

where st is the value of the signal at time t, and Π{A} is 1 if the argument A is

true and 0 otherwise. The frequency of the signal (Fsignal) is given by

Fsignal =
zcr ∗ fs

2
(2.3)

where zcr is calculated in Equation 2.2 and fs is the sampling frequency of the

signal. However, under noisy conditions, the performance of this technique is very

poor because low level noise can easily change the sign of a signal.
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Autocorrelation:

This method calculates the dot-product of the original signal and a shifted

version. The autocorrelation function r(τ) of a signal with time lag τ is defined

as follows,

r(τ) =
1

N

N−1∑
n=0

x(n)x(n+ τ) (2.4)

The autocorrelation function always has a global maximum for τ = 0. If the signal

is periodic, the autocorrelation function should have global maxima at multiples of

the period of the signal T0 such that rx(nT0) = rx(0), n = 1, 2, 3... [3]. In practice,

x(t) is usually a non-periodic windowed signal. Hence, no global maxima can

be found outside τ = 0. However, there can still be some local maxima. If the

highest of the local maxima is at a time lag τ , and the value at this point is

above a threshold, the signal is said to have a periodic part [3]. The fundamental

frequency F0 is estimated to be 1/τ .

YIN:

The YIN algorithm uses a difference function based on the autocorrelation

method [21]. While the autocorrelation function aims to maximize the product

between the waveform and its shifted version, the difference function dt(τ) aims

to minimize the difference between the waveform and the shifted version.

dt(τ) =
W∑
j=1

(xj − xj+τ )2 (2.5)

where W is the size of the window.

In order to handle the quasi-periodic nature of pitch in real signals, the YIN

algorithm normalizes the difference function by its cumulative mean and sets a

value of 1 for τ = 0, as

d′t(τ) =

 1 if τ = 0

dt(τ)/[(1/τ)
∑τ

j=1 dt(j)] otherwise
(2.6)
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Figure 2.3: Flowchart of the Praat algorithm, reprinted from [3].

The last three steps involve placing a threshold on the smallest value of τ that

is accepted. Also, parabolic interpolation is used to refine the peak location and

searching around the initial pitch markers to further refine the estimate [17].

Praat:

The basic principle behind Praat is the autocorrelation method. As shown

in Figure 2.3, a small segment of the normalized signal x(t) is first multiplied

by a (Hamming, Hanning) window w(t) resulting in rα(τ). The autocorrelation

function rα(τ) is then calculated using Equation 2.4. However, if we use the peak

picking method introduced in the “autocorrelation method” section, an incorrect

peak will be chosen. In the left bottom figure, the first peak is chosen instead

of the correct peak at 7.14ms. rw(τ) is the normalized autocorrelation of the

window function w(t). To handle the problem, the autocorrelation function rα(t)

is divided by rω(τ). Then time lag T0 of the maximum peak is estimated to be
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Figure 2.4: Flowchart of the HPS algorithm, reprinted from [4].

the period of x(t) [3].

F0 =
1

time lag of the maximum peak× sampling frequency
(2.7)

Frequency Domain Approaches

Harmonic Product Spectrum (HPS):

HPS is a classic pitch detection method based on the fact that the peaks of the

frequency spectrum are located at multiples of the fundamental frequency [4]. In

HPS, the original frequency spectrum is down-sampled by N (N = 2, 3, 4...), and

then all of these spectra are multiplied together. The maximum peak indicates

the fundamental frequency. Figure 2.4 presents the basic work flow of the HPS

algorithm. After downsampling and spectra multiplication, only one prominent

peak is left, which indicates the fundamental frequency.

Cepstrum:

The cepstrum is defined as the inverse DFT of the log magnitude of the DFT

of the signal [5].

C(n) = F−1log|F(x[n]) (2.8)
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Figure 2.5: Flowchart of Cepstrum, reprinted from [5].

Table 2.1: Tolerance range for harmonic ratios [1].
Ratios F0 F1 F2 F3

F1 [1.9 2.1]

F2 [2.8 3.2] [1.42 1.59]

F3 [3.8 4.2] Discarded [1.29 1.42]

F4 [4.8 5.2] [2.4 2.6] [1.59 1.8] [1.15 1.29]

The cepstrum tends to have local maxima at k ∗ T , corresponding to integer mul-

tiples of the glottal period. The log operator on the speech magnitude spectrum

tends to flatten the harmonic peaks in the spectrum and thus leads to more dis-

tinct period peaks in the cepstrum [5]. The independent variable of a cepstrum

graph is called the quefrency. The quefrency is a measure of time, though not in

the sense of a signal in the time domain. For example, if the sampling rate of an

audio signal is 44,100 Hz and there is a large peak in the cepstrum whose quefren-

cy is 100 samples, the peak indicates the presence of a pitch that is 44100/100 =

441 Hz [22].

BaNa:

The BaNa pitch detection algorithm is a recently developed pitch detection

algorithm that combines the idea of peak finding and Cepstrum to select the F0

candidates. BaNa also introduces the idea of a confidence score to select the pitch

among several pitch candidates, and it incorporates the Viterbi Algorithm into

post-processing to eliminate some unlikely candidates.

The algorithm first searches for harmonic peaks above a certain threshold and

then selects the five peaks out of the set that have the lowest frequency. Then it
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calculates the ratio of frequencies for every two harmonic peaks. If any calculated

ratio falls into the tolerance range of the harmonic ratios shown in Table 2.1, a

potential pitch candidate F̃ can be obtained by dividing the harmonic F̂ by its

ratio to F0: F̃ = F̂ /m . The tolerance range idea is inspired by the fact that the

ratios of the frequencies of harmonic peaks are not always integer. In addition,

the pitch value found using the Cepstrum algorithm is also included as one of the

pitch candidates [1].

The BaNa algorithm also has a variation called BaNa music, which is special-

ized in detecting pitch for music. BaNa music takes advantage of the fact that

the harmonics of music have a wider frequency range so that instead of using an

amplitude threshold and selecting the five lowest frequency peaks with an ampli-

tude above the threshold, the five harmonic peaks with the highest amplitudes

are chosen. The advantages of this change will be explained in Chapter 3.

Statistical Approaches

SAFE is an algorithm that utilizes a statistically-based soft-decision multi-band

method. Here soft-decision means that the decision is made by combining informa-

tion from different frequency bands of the signal. On the contrary, hard-decision

means the decision is determined by the most reliable band of the signal [6]. The

algorithm first extracts information from voiced frames. Then it estimates the

value of F0 in a statistical way. Figure 2.6 presents the work flow of the SAFE

algorithm.

After the routine pre-processing stage, the power spectrum of a voiced frame

is denoted by Y and the noise level N is estimated by measuring the initial and

final frames in the utterance. The maximum likelihood estimation of F0 is:

f̂0 = arg max
f0∈SF0

P (f0|Y,N) (2.9)

where SF0 = {fmin, fmin + ∆, ..., fmax} is a set of F0 candidates.



13

Figure 2.6: Flowchart of the SAFE algorithm, reprinted from [6].

Figure 2.7: The SNR spectrum for white noise SNR-20dB, F0=217.4Hz, reprinted

from [6].

Let Yf and Nf denote the power spectrum of the noisy voice frame Y and

noise N at frequency f , respectively. The posteriori SNR at frequency f denoted
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by γf is:

γf = 10 log10

Yf
Nf

. (2.10)

We use γSf and γLf to represent the short-term smoothed and the long-term s-

moothed SNR spectrum, respectively. Figure 2.7 depicts the short-term smoothed

and the long-term smoothed SNR spectrum of a voiced frame. ζf denotes the d-

ifference of these two spectra. The red circles indicate the prominent peaks.

ζf = γSfi − γ
L
fi
, i = 1, ...,M (2.11)

ζ̄f = (γfi − µγ)/σγ, i = 1, ...,M (2.12)

ζ̄f is the normalized SNR difference. An SNR peak is prominent if ζ̄f is greater

than a threshold. After the spectrum analysis stage, we should be able to get all

the prominent SNR peaks Ci in the spectrum.

Before going into the testing phase, a training model is required to be generated

first. In the training phase, since F0 and γf are known, the overall posterior

probability of f0 is:

P (f0|Y,N) = P (f0|C1, ..., CM , N). (2.13)

We assume all the SNR peaks are independent in inferring F0, the posterior prob-

ability can be approximated by a weighted combination of posterior probabilities

P (f0|Ci, N):

P (f0|Y,N) ≈
M∑
i=1

wiP (f0|Ci, N). (2.14)

Given p(f0|Ci, N) is uniformly distributed, according to Bayes’s theorem,

P (f0|Ci, N) =
p(Ci|f0, N)∑

f0∈SF0
p(Ci|f0, N)

(2.15)

Let f denote the frequency of the local SNR peak Ci. Because f is not usually

equal to a multiple of f0, f can be decomposed into a multiple m and a residual

δ as follows [6]:

m = [
f

f0
], δ =

f

f0
−m, (2.16)
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where [ f
f0

] denotes the nearest integer of f
f0

and δ ranges from -0.5 to 0.5.

Given the F0, and the noise level, the probability of Ci being the peak corre-

sponding to F0 is:

p(Ci|f0, N) = p(m, δ, γf , Bf |f,N) = D · p(δ|γf , Bf , N)p(γf |Bf , N), (2.17)

where D is a constant, and Bf denotes the frequency band f resides in. The

derivation in detail is described in [6].

The residual distribution can be approximated by:

p(δ|γf , Bf , N) ≈ p(δ|Qγf , Bf , N) (2.18)

where Qγf denotes the SNR bin to which γf is rounded.

The local SNR distribution can be approximated by:

p(γf |Bf , N) ≈ p(Qγf |Bf , N) (2.19)

p(δ|γf , Bf , N) and p(γf |Bf , N) generated in the training stage are applied to the

testing stage in order to generate P (f0|Ci, N). P (f0|Y,N) can be derived from

Equation 2.14. The resulting F0 contour can be obtained by applying Equation

2.9.

2.2.3 Post-processing

Detection errors sometimes occur in the selection of the pitch of a given frame of

the signal. The most common of these errors are a doubling or a halving of the

fundamental period [18]. Post-processing can help compensate the effect of such

errors. Common methods include smoothing and dynamic programming.

Smoothing: Generally, smoothing is implemented by a median-filter. Cep-

strum incorporates smoothing into the post-processing stage to avoid doubling or

halving errors.



16

Dynamic Programming: The earliest use of dynamic programming in pitch

estimation was reported in [23], Later, it was clearly outlined in [24] how dynamic

programming can be applied to the joint problem of estimating and smoothing

speech parameters. The YIN, Praat, BaNa and SAFE algorithms all introduce

their own cost function and minimize the total cost along the path by using the

Viterbi algorithm.

Let F̃ n
i denote the ith pitch candidate of frame n and Nframe denote the number

of frames in the given speech segment. Let pn denote the index of the chosen pitch

candidate for the nth frame. Hence, {pn|1 ≤ n ≤ Nframe} defines a path through

the candidates. For each path, the path cost is defined to be [1]

PathCost ({pn}) =

Nframe−1∑
n=1

Cost
(
F̃ n
i , F̃

n+1
j

)
, (2.20)

where the function Cost is used to calculate the cost of adjacent frames.

There are many ways to define the function Cost. In BaNa, Cost is defined

by using the pitch differences between the adjacent frames and the confidence

score of the candidates. The confidence score of a candidate is determined by

the number of candidates within a threshold value of each other. The larger the

pitch difference among neighboring frames, the higher the Cost should be. The

complete cost function is defined mathematically as

Cost
(
F̃ n
i , F̃

n+1
j

)
=

∣∣∣∣∣log2

F̃ n
i

F̃ n+1
j

∣∣∣∣∣+ w × 1

V n
i

, (2.21)

where V n
i is the confidence score of the ith pitch candidate of the nth frame [1].

The Viterbi algorithm is also used in Praat, YIN and SAFE. Each pitch esti-

mation algorithm defines a different cost function to find the minimum path. The

implementation of the cost function in detail for each of these algorithms can be

found in [3][21][6].
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Figure 2.8: Spectrogram of an utterance “Three thousand one.”

2.3 Speaking Rate Estimation

Speaking rate is a metric that measures how many words a speaker has pronounced

within a certain time duration. The variation of speaking rate has a negative

impact on the accuracy of automatic speech recognition. However, speech rate

can convey important information to enhance speech understanding. For example,

speech rate is the best predictor of subjective fluency.

A popular method to measure speaking rate involves counting the number of

phonetic elements per time unit. Syllable-based rate estimation is the most widely

used technique for speech rate researchers [25].

Words can be cut into units called syllables. A syllable is typically vow-

el centric, and adjacent vowels are separated by consonants. According to the

Handbook of the International Phonetic Association (IPA), generally vowels form

the nucleus of syllables, whereas consonants forms the boundaries in between [26].

For example, “window” contains two syllables, “win” and “dow”. “w” and “d”

are consonants which separate vowels “in” and “ow”. Though there are some

exceptions like “react” where two vowels are concatenated together, the number

of vowels often equals the number of syllables. Hence, counting the number of

syllables is basically equivalent to counting the number of vowels. In contrast to
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Figure 2.9: The waveform, spectrogram and the energy envelop of an utterance

“Bad.” Illustration of a case that a single syllable displays two peaks, reprinted

from [7].

consonants, vowels exhibit clear formant structure in the spectrum. This charac-

teristic is the foundation of syllable detection. Figure 2.8 is an illustration of the

spectrogram of a speech signal. Brighter colors represent larger amplitudes. We

can see from the figure that the energy is mainly distributed in the vowel sound

and the lower frequency bands.

A simple way to do syllable counting is to perform energy analysis and count

the number of prominent peaks of the long-term energy envelope. The energy

envelope is composed of the energy value within each frame in time order. The

energy within each frame with size w is calculated as follows,

E =
w∑
j=1

x2j (2.22)

where xj is the jth sample inside the frame

However, under noisy environments, many false peaks will appear in the energy

envelope, which leads to false detections.

N.H. de Jong and T. Wempe developed an algorithm based on this simple

approach to automatically measure speaking rate [25]. The algorithm avoids false
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peak detection by setting several thresholds. First, the median value of the energy

envelop is chosen as the peak amplitude threshold. Only peaks above the threshold

are considered as syllable candidates. The algorithm also takes advantage of the

fact that adjacent syllables are often separated by a consonant so that they cannot

be very close. Hence, a peak temporal distance is set to eliminate one of the two

peaks that are too close. In addition, voiced/unvoiced information provided by a

pitch estimation algorithm can help remove peaks that appear in unvoiced frames.

The energy envelope only considers full band energy. As a result, formant

structure or power spectral density, which are very important for syllable identi-

fication, are ignored. Morgan and Fosler-Lussier [27] proposed a sub-band based

method that computes a trajectory that is the average product over all pairs of

compressed sub-band energy trajectories.

xi(n) represents the compressed energy envelope of the ith spectral band. A

new trajectory y(n) is defined as

y(n) =
1

M

N−1∑
i=1

N∑
j=i+1

xj(n)xi(n). (2.23)

where N is the number of bands, and M = N(N − 1)/2 is the number of unique

pairs. The new trajectory is often called a correlation envelope.

Since a vowel has a clearer formant structure, the energy should be more evenly

distributed in each sub-band. In contrast, the energy of a consonant mostly

concentrates in the low frequency band. Hence, the correlation amplitude of

a vowel is maximized while not significantly increasing the contribution to the

envelope from the consonants. As a result, the neighboring syllables should have

a deeper gap in between [7].

D. Wang extends the sub-band idea to the time domain based on the fact that

vowels and sonorant consonants, which constitute the major body of a syllable,

extend over several tens of milliseconds [7]. For each desired frequency sub-band,
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Figure 2.10: Flowchart of the hybrid speaking rate estimator, reprinted from [7].

the energy in each time frame is recalculated using the following equation,

yt =

√√√√ 1

2K(K − 1)

K−2∑
j=0

K−1∑
p=j+1

xt+j ∗ xt+p (2.24)

where K is the temporal window length, and xt, xt+1,..., xt+K−1 represent an

increasing time order of sub-band energy vectors with length K. In this way, each

syllable should have a peak at its center [7].

Wang also points out in [7] that instead of performing spectral correlation on

the full bands, it is better to concentrate on the prominent sub-bands where the

formant structure lies. Figure 2.10 illustrates the work flow of Wang’s proposed

speaking rate estimation algorithm. The choice of sub-bands will be discussed in

Chapter 3.

In Chapter 3, all speaking rate methods that appear in this section will be

tested and evaluated under noisy environments.
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3 Evaluating Acoustic Feature

Extraction Algorithms in

Noisy Environments

In this chapter, we investigate the acoustic feature extraction algorithms described

in Chapter 2 in a range of noisy environments. In particular, we experiment

with a number of pitch estimation and speaking rate detection algorithms in

environments where the acoustic signal is corrupted with additive noise, including

white noise, babble noise, pink noise, and others for different levels of signal-to-

noise (SNR) ratios.

3.1 Speech and Music Signals

In this thesis, we only study monophonic signals, which means that at any time

there only exists one correct pitch value. For speech, only one speaker is speaking.

For music, only one musical note is playing. Polyphonic signals are out of the scope

of our study. Hence, the databases we use are carefully chosen.
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Table 3.1: Evaluated speech databases and their features [1].

Speech

databases

Emotion Number of

speakers

Number of se-

lected samples

(M = male, F

= female)

Has pitch

ground

truth?

LDC [28] various 7 20 (10M/10F) No

Arctic [29] neutral 4 10 (5M/5F) No

Harvard Sen-

tences [30]

neutral 6 10 (5M/5F) No

CSTR [8] neutral 2 100 (50M/50F) Yes

3.1.1 Speech Databases

All speech samples are taken from four widely used English speech databases:

LDC (Linguistic Data Consortium) [28], Arctic [29], Harvard Sentences [30], and

CSTR [8]. We choose approximately the same number of speech samples from

male and female speakers. In addition, we include as many speakers as possible.

Table 3.1 [1] presents the specifications of each of the speech databases we use in

this thesis.

The LDC database is the Emotional Prosody Speech and Transcripts Database

from Linguistic Data Consortium (LDC). It includes speech samples with strong

emotions such as angry, happy and disgust, for which the pitch values may change

dramatically even within a short utterance [1].

The Arctic database consists of around 1150 utterances carefully selected from

out-of-copyright texts from Project Gutenberg. The database includes US English

male and female speakers as well as other accented speakers (Midwest, Ontario,

South Eastern Scottish) [29].

The Harvard Sentences database is a collection of sample phrases that are used
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for standardized testing of voice over IP (VOIP), cellular, and other telephone

systems. They are phonetically-balanced sentences that use specific phonemes at

the same frequency they appear in English [30].

The CSTR database is provided by the University of Edinburgh. This database

includes 50 sentences each from a male and a female speaker. The total length

of all 100 sentences is 5 minutes and 32 seconds. The database also includes the

laryngograph of each sentence, which acts as the F0 ground truth [8]. Ground

truth here means the absolute frequency of the speech signal at a given time. It

serves as the reference for measuring the detection accuracy.

3.1.2 Music Databases

Due to the versatility of timbres generated by various musical instruments, we

experiment with some music samples that can represent all music. Generally,

musical instruments can be classified into the following categories: string, brass,

woodwind, keyboard. To show the overall performance of the pitch detection

algorithms for music, we pick one instrument from each category. Music samples

from violin, trumpet, clarinet and piano are selected to represent string, brass,

woodwind and keyboard instruments, respectively. These music samples can be

downloaded from [31]. All the music samples were recorded in a quiet environment,

and they were transcribed manually so that we know exactly which music note is

playing at any moment.

3.2 Noise Samples

To test the noise resilience of the investigated acoustic feature extraction algo-

rithms, eight types of noise are added to the original acoustic signals (speech

or music) with different SNR levels. The noise database we use is from [32], in
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which we choose six different types of real life background noise: speech babble

(labeled as babble in the figures), destroyer engine room noise (engine), destroyer

operations room noise (operation), factory floor noise (factory), vehicle interior

noise (vehicle), high frequency radio channel noise (highfreq), white noise (white)

and pink noise (pink). To generate noisy speech with a certain SNR value, the

signal energy is calculated only on the voiced part, and the noise is amplified or

attenuated to a certain level to meet the target SNR value [1].

3.3 Pitch Estimation for Noisy Acoustic Signals

In this section, we investigate the performance of several state-of-the-art pitch

estimation algorithms on speech and music signals in various noisy environments

and for a wide range of SNR values. The following six algorithms are chosen

because of their popularity and good performance for clean signals: BaNa [1],

YIN [21], HPS [4], Praat [3], Cepstrum [22], and SAFE [6]. These algorithms

have been described in detail in Chapter 2. The source code for BaNa, YIN, HPS,

Cepstrum, and SAFE can be obtained from [33][34][35]. Praat is a free software

available at [36].

3.3.1 Experiment Settings

In order to detect pitch in an acoustic signal, the signal is broken up into overlap-

ping frames, and a pitch value is estimated for each frame. In our experiments,

we set the frame length to 60 ms, with a frame shift set to 10 ms for all algorithms

except YIN in order to obtain smooth pitch detection results [1]. For YIN, we use

its default settings of which the minimum frequency is set to 30Hz, the maximum

frequency is set to one fourth of the sampling frequency, the frame length is set

to the sampling frequency fs divided by the minimum frequency, and the frame

shift is set to 32 samples.
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Figure 3.1: Speech waveform and the auto-labeled ground truth derived from

three algorithms for one speech utterance.

We extract the pitch contour of a speech or music signal using each algorithm

and then compare the results with the ground truth pitch values. For speech, since

CSTR is the only database that provides F0 ground truth, we must generate the

ground truth from clean versions of the speech for the other databases. For music,

since we know what notes are played at different times, we can obtain the ground

truth from the notes. Given the ground truth, we can evaluate the performance

of the different pitch estimation algorithms under noisy environments.

Figure 3.1 presents the pitch contours of a clean utterance “three thousand

six” generated from BaNa, YIN and Praat. For one frame, if the estimated pitch

values of the three algorithms are within 10% of each other, we assume that this

frame is voiced. For each voiced frame, F0 ground truth is determined by taking

the average the three estimated pitch values.

The evaluation metric we used in pitch estimation is defined as follows,

accuracy =
Number of correctly estimated voiced frames

Total number of voiced frames
× 100% (3.1)

For each frame, the pitch is estimated correctly, if

| pitch estimated

F0 ground truth
− 1| < error tolerance (3.2)
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For the Arctic, Harvard Sentences and LDC databases, the error tolerance is

set to 10%. For the CSTR database, the error tolerance is set to 20% in order to

be consistent with the that used in the SAFE experiments [1].

3.3.2 Pitch Estimation for Speech

We tested the BaNa, YIN, HPS, Cepstrum, and Praat pitch estimation algorithms

on the speech signals in the Arctic, Harvard Sentences, CSTR and LDC databas-

es. For BaNa, Cepstrum and Praat, according to the frequency range of human

speech, we set the minimum frequency to 50Hz and the maximum frequency to

600Hz. For YIN, we use its default settings described in Section 3.4.1. No param-

eters need to be set for HPS. Pitch estimation accuracies of all tested algorithms

are evaluated at 0dB, 3dB, 7dB, 10dB, 15dB and 20dB SNR levels for each of the

8 noise types. The accuracy values are averaged over all 8 types of noise in the

figures. The SAFE algorithm and the BaNa algorithm are two pitch estimation

algorithms designed to be robust to noise. We tested both of these algorithms on

the CSTR database at 0dB, 10dB and 20dB .

Figure 3.2 presents the pitch estimation performance of all the pitch estimation

algorithms on the LDC database. BaNa achieves the best accuracy of 70.0% at

0dB, an improvement over the second best algorithm YIN of around 10%. To

show the benefit of adding the pitch candidate found by the Cepstrum method to

the candidates derived from the harmonic ratios, we also show the pitch detection

accuracy of the LDC database for the BaNa algorithm without the Cepstrum

candidate, which is denoted as BaNa-noCepst in the figure. The accuracy of

BaNa-noCepst is around 68%, which is still better than YIN’s 59% and Praat’s

35% at 0dB. YIN should have room for improvement if the parameter settings

such as frame length, max frequency are optimized such that its performance is

close to Bana’s.
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Figure 3.2: Pitch detection accuracy of the different algorithms for the LDC

database.

Figure 3.3: Pitch detection accuracy of the different algorithms for the Arctic

database.

In Chapter 2, we discussed how both BaNa and HPS exploit the fact that

spectral peaks appear at mutiples of the fundamental frequency. From Figure 3.2,
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Figure 3.4: Pitch detection accuracy of the different algorithms for the Harvard

Sentences database.

Figure 3.5: Pitch detection accuracy of the different algorithms for the CSTR

database.

we can see that HPS’s accuracy is much worse than BaNa. At 20dB SNR, the

accuracy of HPS is only around 70% compared with BaNa’s 98%. One reason

why HPS performs poorly is that it assumes all peaks should be at multiples
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Figure 3.6: Pitch detection accuracy of BaNa and YIN for the LDC database with

eight types of noise at 0dB.

of the fundamental frequency. However, in real speech, the ratios of harmonic

frequencies are not exactly integers. In contrast, BaNa introduces the idea of a

tolerance range (Table 2.1) to find the real harmonic peaks.

Praat achieves very good pitch estimation accuracy when the SNR value is

high, reducing the accuracy by a mere 5% and 3% compared with BaNa’s accuracy

value at 15dB and 20dB, respectively. However, the performance of Praat degrades

most quickly among all the selected algorithms. Thus, Praat may not be as robust

as the other competing algorithms to noisy environments. In addition, Praat has

an in-built voiced/unvoice detection function. At low SNR levels, some voiced

frames will be detected as unvoiced if we keep using the settings for a clean

environment. This is one of the reasons why Praat does not perform well at low

SNR levels. For Cepstrum, since the algorithm is designed for a clean environment

and no special techniques have been used to handle noise, it is reasonable that

Cepstrum does not have as good a performance as BaNa and YIN.
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Figure 3.6 shows a performance comparison between the two top performing

algorithms (BaNa and YIN) for all eight types of noise at 0dB. It is quite clear

from this graph that BaNa outperforms YIN for all eight types of noise.

Figure 3.3, Figure 3.4 and Figure 3.5 present the evaluation results for the

Arctic, Harvard Sentences and CSTR databases, respectively, which are similar

to the results for the LDC database. At 0dB SNR, the pitch estimation accuracy

of BaNa is 86% for the Arctic database, 79% for the Harvard Sentences database

and 65% for the CSTR database.

Hence, we conclude that BaNa is the most accurate and robust algorithm for

speech pitch estimation among all the selected algorithms under a range of noise

conditions.

SAFE is a recently developed pitch estimation algorithm that claims to achieve

a very high accuracy for low SNR values. Here, we compare SAFE with BaNa,

the most robust algorithm in the previous evaluations. The CSTR database is

used for the evaluation of the SAFE algorithm in the original paper describing

SAFE [6], so we use the same database here. Because the SAFE algorithm needs

to apply a training model specifying the noise type and SNR level before testing

new samples, we simply use the training models provided by the author. In [6],

the SAFE algorithm is only trained on white noise and babble noise, so we only

compare the results for these two types of noisy speech. In the comparison, we

also adopt the SNR values provided by the SAFE paper. In order to ensure

that the comparison is fair, all the settings of the two algorithms such as frame

length, frame skip size, minimum frequency and maximum frequency are set to

the same values as the previous evaluations. The error tolerance is set to 20% to

be consistent with the SAFE paper [6].

The results are presented in Figure 3.7 and Figure 3.8, for white and babble

noise, respectively. In addition to reporting the results from the SAFE paper [6],

we rerun the SAFE algorithm using the code downloaded from [35]. The rerun
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Figure 3.7: Pitch detection accuracy of BaNa and SAFE for the CSTR database [8]

for speech with babble noise.

results of SAFE (denoted as “SAFE rerun”) are slightly worse than the results

presented in [6]. One possible reason is that the settings of SAFE used in [6] are

different from those in our experiment. Even so, the rerun results of SAFE are

better than the results of BaNa, especially for speech corrupted by babble noise.

However, before running the SAFE algorithm, we need to know the noise type

and SNR level in order to apply the correct training model, while BaNa does not

require any prior knowledge of the noise type or SNR level. Therefore, SAFE can

provide more accurate pitch detection accuracy in noisy environments, but BaNa

has the advantage of being suitable for a range of environments with no training

or parameter setting required based on the noise type or the SNR level.

3.3.3 Pitch Estimation for Music

The spectral characteristics of speech and music are quite different. Music has

a much wider frequency range (30Hz-4000Hz) than speech (50Hz-600Hz). Addi-
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Figure 3.8: Pitch detection accuracy of BaNa and SAFE for the CSTR database [8]

for speech with white noise.

tionally, the vibration model of each instrument is different and thus produces

different timbre.

For pitch estimation for music, the ground truth is manually transcribed by

mapping the music signal at a given time to a musical note. The absolute frequen-

cy of each musical note is fixed. For example, A4 maps to 440Hz. We assume that

the frequency is constant from the starting point to the ending point of any mu-

sical note. We also remove frames in which two or more fundamental frequencies

exist due to echo or cords. Thus, we ensure that the music we evaluate is mostly

monophonic. Later we talk about fast tempo music having overlapping F0 due

to dying out of the previous note.

Since the purpose of music pitch estimation is to map sound to a musical note,

the frequency difference between the estimated pitch and the ground truth should

not exceed a minor second (for example, C to C#), otherwise an error occurs.

Hence, the error tolerance when evaluating pitch detection for music is set to a

more stringent 2.5% compared to the 10% we used for speech evaluation. 2.5%
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Figure 3.9: Pitch detection accuracy of BaNa and BaNa music for a piece of violin

music with eight types of noise at 0dB.

frequency deviation is around half of a minor second.

As mentioned in Chapter 2, the BaNa music algorithm is a variation of the

original BaNa algorithm. The only difference is that instead of using an amplitude

threshold and selecting the five lowest frequency peaks with an amplitude above

a threshold, the five harmonic peaks with the highest amplitudes are chosen.

The reason for the change is that noise can generate a lot of peaks with high

amplitude in low frequency band. Thus the harmonic peaks may not be selected

by the original BaNa algorithm. Fig 3.9 depicts the pitch detection accuracy of

BaNa and BaNa music for a piece of violin music with eight types of noise at 0dB.

We can see that this minor change significantly improves the estimation accuracy

for almost all types of noisy music. Hence, we use BaNa music instead of BaNa

for music evaluation.

We use the same experiment settings as that used in the evaluation of pitch

estimation in noisy speech, except that we change the estimation range for BaNa,
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Figure 3.10: Pitch detection accuracy of the different algorithms for a piece of

clarinet music.

Cepstrum and Praat from 50Hz-600Hz to 50Hz-4000Hz. For YIN, we still use its

default settings described in Section 3.4.1. No parameters need to be set for HPS.

SAFE is not evaluated for music because there is no discussion about music in [6],

thus no training model for music is provided.

Figures 3.10 to 3.12 show the pitch detection accuracy of the different algo-

rithms for clarinet, trumpet and violin, respectively, averaged over the eight types

of noise. All figures show that the BaNa algorithm has the highest pitch estima-

tion accuracy among all the algorithms. At 0dB SNR level, BaNa leads the second

highest accuracy by 30%, 30%, and 20%, respectively, for clarinet, trumpet and

violin. BaNa is also the best performer for all SNR levels.

In order to see how the tempo of music affects the pitch estimation accuracy,

we select one piece of fast tempo piano music and one piece of slow tempo piano

music. The piece of fast tempo piano has 3.4 notes per second, and the piece

of slow tempo piano has one note per second [1]. Figure 3.13 shows the pitch
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Figure 3.11: Pitch detection accuracy of the different algorithms for a piece of

trumpet music.

Figure 3.12: Pitch detection accuracy of the different algorithms for a piece of

violin music.
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Figure 3.13: Pitch detection accuracy of the different algorithms for a piece of

fast tempo piano music.

Figure 3.14: Pitch detection accuracy of the different algorithms for a piece of

slow tempo piano music.
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estimation accuracy for fast tempo piano music. The results show that BaNa

performs much better than all the other algorithms. The average gap between

BaNa and the second best algorithm is around 25%. At 20dB, BaNa achieves

around 80% accuracy, while all the other algorithms are below 40%. One possible

reason is that the music is too fast to be completely monophonic. Echoes of all

notes are mixed together so that pitch estimation becomes very difficult. This

result shows that BaNa is the best pitch estimation algorithm for fast tempo

music.

We also observe that HPS achieves a huge improvement for pitch estimation in

music compared with speech. We believe that the improvement is caused by more

clear structure of harmonics in music compared with speech. We choose BaNa,

YIN and HPS for a detailed comparison with eight different types of noised at

0dB SNR value. From Figures 3.15 to 3.19, we can see that BaNa achieves the

highest pitch estimation accuracy for almost all pieces of music with all eight

types of noise. As shown in Fig 3.18, BaNa achieves over 70% accuracy for high

frequency noise and white noise, while the other algorithms only achieve below

35%. Therefore, we conclude that the BaNa algorithm is also the best pitch

estimator for noisy music among all selected algorithms.

3.4 Speaking Rate Estimation for Noisy Acous-

tic Signals

In Chapter 2, we discuss several approaches to measure the speaking rate of a

speech signal. Although researchers have tested the different algorithms on speech

databases, in most of the experiments, the testing data is clean. In this section,

we investigate all the speaking rate estimators described in Chapter 2 in noisy

environments.
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Figure 3.15: Pitch detection accuracy of BaNa, YIN and HPS for a piece of clarinet

music with eight types of noise at 0dB.

Much of the research on speaking rate estimation uses the ICSI Switchboard

corpus [37]. This corpus consists of 5757 utterances lasting for four hours in total.

All utterances were phonetically hand transcribed by linguists. However, due to

limited computation power, it takes a huge amount of time to process all the data.

Also, we came across some compatibility problems when trying to read the WAV

files from the ICSI Switchboard corpus. Therefore, instead we decide to choose

the CSTR database introduced in Section 3.1 as our testing corpus. The CSTR

database is composed of 100 utterances with transcriptions. We manually count

the number of syllables for each utterance to determine the ground truth. The

number of syllables of all 100 utterances ranges from 5 to 20. Each utterance lasts

for around 2 to 4 seconds.

The noisy speech files generated in Section 3.2 are used here. We only select

those speech signals that are corrupted by babble and white noise at 0dB, 10dB

and 20dB SNR. Thus, including the clean speech files, a total of 700 files are
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Figure 3.16: Pitch detection accuracy of BaNa, YIN and HPS for a piece of

trumpet music with eight types of noise at 0dB.

evaluated (100 clean files plus 300 files for each type of noise).

Three speaking rate estimators are introduced in Chapter 2. The first estima-

tor developed by N. H. de Jong and T. Wempe is written in Praat script. The

method uses the full-band energy to generate the energy envelope, so we call this

approach the “full band estimator.” The Praat code for speaking rate estima-

tion is available here [38]. The second speaking rate estimator, developed by N.

Morgan and E. Fosler-Lussier takes advantage of formant structure information

of human voice and adopts a sub-band energy correlation method. We call this

approach the “sub-band estimator.” The final speaking rate estimator, developed

by D. Wang, extends the correlation idea from the frequency domain to the time

domain, thus we call this approach “hybrid estimator.” The code for the sub-band

and hybrid estimators is not available on the web. Hence, we develop MATLAB

code based on the algorithms described in [27] and [7]. The MATLAB code for

all speaking rate estimation algorithms will be available at [33].
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Figure 3.17: Pitch detection accuracy of BaNa, YIN and HPS for a piece of violin

music with eight types of noise at 0dB.

3.4.1 Experiment Settings

In Section 2.3, we find that before using a selected speaking rate estimator, we

need to determine several parameters. For all three estimators, we need to set

a peak amplitude threshold and a threshold defining the amplitude difference

between a peak and its preceding local minimum. For the sub-band and hybrid

estimators, the number of selected sub-bands also needs to be determined. For

the hybrid estimator, temporal correlation window length needs to be set.

We use the default settings for the full band estimator as provided by the

author of the Praat script. For the sub-band and hybrid estimators, the parameter

values are consistent with the settings in [7].

In [7], the author points out that the number of selected sub-bands (M) can

affect the performance of the speaking rate estimator. Therefore, we test two

sub-band estimators with M = 4 and M = 12. The hybrid estimator also uses 12
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Figure 3.18: Pitch detection accuracy of BaNa, YIN and HPS for a piece of fast

tempo piano music with eight types of noise at 0dB.

sub-bands. These two parameters are also used in [27] and [7]. Details about the

boundary of each sub-band can be found in [27] and [39].

3.4.2 Evaluation Metrics

The ground truth indicates the number of syllables in the corresponding sentence.

The size of the ground truth is 100 because there are 100 sentences in the CSTR

database. Three evaluation metrics are used in determining the performance of the

speaking rate estimation algorithms. All three metrics measure how the estimated

results deviate from the ground truth.

The correlation coefficient measures the similarity between the estimated sylla-

ble count generated by an estimator and the ground truth. The more the estimated

result matches the ground truth, the closer the correlation coefficient approaches

a value of 1.
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Figure 3.19: Pitch detection accuracy of BaNa, YIN and HPS for a piece of slow

tempo piano music with eight types of noise at 0dB.

We also compute the mean square error between the syllable count and the

ground truth, which can best be described as the accuracy of the estimator.

MSE% = (
Estimated syllable count−Ground truth

Ground truth
)2 × 100% (3.3)

The standard deviation of syllable count difference of all 100 sentences is also

calculated to measure the stability of the different estimators.

3.4.3 Evaluation of the Speaking Rate Estimation Algo-

rithms

We test all three estimators on clean and noisy speech files and calculate the

three evaluation metrics described in Section 3.4.2. The results are summarized

in Tables 3.2 3.4. The bold number in each row indicates the best estimator
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Table 3.2: Correlation Coefficient, the more accurate the estimator is, the closer

the value approaches one.

Correlation Full band Sub-band

M=4

Sub-band

M=12

Hybrid

Clean 0.8971 0.9043 0.9027 0.8782

0dB babble noise 0.6256 0.5278 0.4312 0.6582

10dB babble noise 0.82 0.7751 0.7863 0.5915

20dB babble noise 0.7944 0.8648 0.8453 0.8035

0dB white noise 0.5996 0.5974 0.5953 0.5856

10dB white noise 0.882 0.8368 0.8946 0.842

20dB white noise 0.9072 0.9149 0.9113 0.8459

for a certain situation (e.g., 0dB white noise). It is surprising that no single

estimator demonstrates a big advantage over the other estimators. For example,

in Table 3.3, the best estimators for 0dB babble noise, 10dB babble noise, and

20dB babble noise are the full-band estimator, the sub-band estimator M = 12,

and the sub-band estimator M = 4, respectively. Since the sub-band M = 4,

the sub-band M = 12 and the hybrid estimator all use sub-band correlation, we

can treat them as one category to compare against the full band estimator. We

see from Table 3.3 that the full band estimator achieves the highest accuracy for

0dB babble noise only. Thus, speaking rate estimation can benefit from sub-band

correlation in noisy speech.

The mean square error (MSE) of the hybrid estimator [7] is 5.32% using the

optimal parameters. In our experiments, the MSE% of the full-band, the sub-

band M = 4, the sub-band M = 12, and the hybrid estimator are 5.17%, 4%,

3.99% and 4.04%, respectively.
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Table 3.3: Mean Square Error. Ideal value will be 0 if the estimator is perfect.

Mean square er-

ror(%)

Full band Sub-band

M=4

Sub-band

M=12

Hybrid

Clean 5.17 4 3.99 4.04

0dB babble noise 11.78 22.79 24.57 36.02

10dB babble noise 8.10 7.46 6.85 25.57

20dB babble noise 8.83 6.74 7.19 8.47

0dB white noise 44.53 47.18 50.43 25.55

10dB white noise 8.93 7.54 5.27 9.09

20dB white noise 5.48 2.84 3.30 5.79

Table 3.4: Standard Deviation. A stabler estimator should give smaller value.

Standard deviation Full band Sub-band

M=4

Sub-band

M=12

Hybrid

Clean 1.5692 1.1987 1.1794 1.2988

0dB babble noise 2.231 3.243 3.2474 2.66

10dB babble noise 1.4859 1.7984 1.7628 2.3462

20dB babble noise 1.75 1.2589 1.4101 1.4426

0dB white noise 3.165 3.2208 3.2275 2.4303

10dB white noise 1.8015 1.9574 1.57 1.6098

20dB white noise 1.5859 1.0333 1.1254 1.3371

We observe that at the 10dB and 20dB SNR levels, the estimation accuracy

(measured by MSE%) of all four estimators for babble and white noise is just

slightly worse than that for clean speech. For some odd cases, the accuracy for
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Figure 3.20: Scatter plots of detected syllable numbers versus the ground truth

for the 100 utterances corrupted with 0dB white noise. Full band estimator.

noisy speech is even better than that for clean speech. For example, in Table 3.3,

the MSE of white noise 20dB for the sub-band M = 4 estimator is 2.84%, better

than the 4% MSE for clean speech. We can infer that the accuracy of the esti-

mators is not reliable to detect all syllables correctly. The noise causes a small

number of false detections, which helps improve the accuracy.

We also notice that at the 0dB SNR level, all estimators have very poor per-

formance, especially for white noise. Figures 3.20 to 3.23 present scatter plots

of the detected syllable number versus the ground truth for the 100 utterances

corrupted with 0dB white noise.

From Figures 3.20 to 3.23, we can see that, with the exception of hybrid es-

timator, the other three estimators under count the syllables for all 100 testing

cases. One possible explanation is that the parameter settings mentioned in Sec-

tion 3.4.1 are only optimal for clean data. At 0dB SNR level, the noise adds many

false peaks with large amplitude between two syllable peaks, such that syllable

peaks are not detected because of settings such as minimum peak distance.
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Figure 3.21: Scatter plots of detected syllable numbers versus the ground truth

for the 100 utterances corrupted with 0dB white noise. Sub-band M=4 estimator.

Figure 3.22: Scatter plots of detected syllable numbers versus the ground truth for

the 100 utterances corrupted with 0dB white noise. Sub-band M=12 estimator.

The hybrid estimator is the most complex among all four estimators evaluated.

However, its performance is not the best in our experiment, which contradicts the
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Figure 3.23: Scatter plots of detected syllable numbers versus the ground truth

for the 100 utterances corrupted with 0dB white noise. Hybrid estimator.

testing results presented in [7]. Since we have written our own code to implement

the estimator, there may exist some differences between our code and the original

code, so the optimal settings in [7] may not apply to our case. To show the

robustness of the hybrid estimator, a noisy utterance corrupted with 0dB white

noise is picked from the speech corpus randomly to evaluate.

Figure 3.24 and Figure 3.25 display the waveforms of the utterance “I can’t

move my legs.” Figure 3.24 is the clean version, while Figure 3.25 is the version

that is corrupted by 0dB white noise. Figure 3.26 to 3.29 present the envelopes of

the noisy utterance generated by the full band estimator, the sub-band M = 4 es-

timator, the sub-band M = 12 estimator, and the hybrid estimator, respectively.

There should be five detectable syllables for this utterance. The envelope gener-

ated by all estimators except the hybrid one has numerous fake peaks. Since the

hybrid estimator uses a temporal correlation window to smooth the envelope, only

the five dominant syllable peaks are detected. Theoretically, the hybrid estimator

should have the best performance in our experiments given optimal parameter
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Figure 3.24: Clean speech. “I can’t move my legs.”

settings. Parameter selection is a tedious process and takes a large amount of

time. Hence, we leave optimal parameter selection for speaking rate estimation as

future work. In addition, the CSTR database is relatively small compared with

the ICSI Switchboard speech corpus, which contains more utterances and has

more speaking rate variation. We will test the ICSI Switchboard speech corpus in

the future as well to validate our results.
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Figure 3.25: Noisy speech with 0dB white noise. “I can’t move my legs.”

Figure 3.26: Envelope of the full band estimator.
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Figure 3.27: Envelope of the sub-band M=4 estimator.

Figure 3.28: Envelope of the sub-band M=12 estimator.
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Figure 3.29: Envelope of the hybrid estimator.
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4 Conclusions and Future Work

In this thesis, we discussed two important acoustic features of speech and music:

pitch and speaking rate. We introduced several classic and state-of-the-art feature

extraction algorithms for both pitch estimation and speaking rate estimation. We

evaluated and compared the performance of the selected pitch and speaking rate

estimation algorithms in noisy environments.

For the evaluation of pitch estimation algorithms in noisy environments, we

tested BaNa, YIN, HPS, Cepstrum, and Praat on speech and music signals. We

concluded that BaNa achieves the highest pitch estimation accuracy for all tested

speech databases and music databases. We also compared the performance of

BaNa and the recently developed SAFE algorithm on the CSTR database. We

concluded that SAFE can provide more accurate pitch detection accuracy in noisy

environments, but BaNa has the advantage of being suitable for a range of envi-

ronments with no training or parameter setting required based on the noise type

or the SNR level.

For the evaluation of speaking rate estimation algorithms in noisy environ-

ments, we discussed the full-band estimator, the sub-band estimator, and the

hybrid estimator. From the experiments, we concluded that speaking rate estima-

tion can benefit from using sub-band correlation. Although the hybrid estimator
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did not achieve the highest accuracy among all the speaking rate estimators in the

experiment because of non-optimal parameter settings, we demonstrated a case

that only the hybrid estimator can effectively avoid fake peak detection under low

SNR noisy environments, such that the performance is improved compared with

the other speaking rate estimators.

Many things need to be improved in the future. For the evaluation of the

pitch and speaking rate estimation algorithms, we only evaluated the estimation

accuracy. However, so far we have not evaluated the time complexity of each

algorithm, which is crucial for software systems. For the evaluation of speaking

rate estimation algorithms, we did not use the optimal parameter settings for

all selected estimators. Thus, our experiment may be biased. Also, we need to

evaluate the performance of the algorithms on a larger database such as the ICSI

Switchboard in the future to validate our experiment results.

Formant, another important acoustic feature, is not discussed here. Since not

many databases provide the ground truth for formants, and Labeling the formants

manually from the spectrogram requires a huge amount of time, we leave the

evaluation of formant detection in noisy environments as future work.

Research such as speech emotion detection extracts pitch and speaking rate

statistics in order to classify the emotions of the speech. We can apply different

combinations of feature extraction algorithms to see how robust feature extraction

algorithms help improve the performance of speech emotion detection in noisy

environments.
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