
Adaptability in Wireless Sensor Networks Through

Cross-Layer Protocols and Architectures

by

Christophe J. Merlin

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Wendi B. Heinzelman

Department of Electrical and Computer Engineering

Arts, Sciences and Engineering

School of Engineering and Applied Sciences

University of Rochester

Rochester, New York

2009

ii

Curriculum Vitae

The author was born in Vendôme, France, on March 1, 1980. He attended the Institut

National des Sciences Appliquées de Rennes, France from 1998 to 2003 and gradu-

ated with double degrees of Bachelor of Science and Master of Science in Electrical

Engineering. He began graduate studies at the University of Rochester in 2004. He

has since pursued his research in wireless sensor networks under the supervision of Dr.

Wendi Heinzelman and received his Master of Science degree in Electrical Engineering

in 2006.

iii

Acknowledgements

The present dissertation is a testimony to Dr. Wendi Heinzelman’s invaluable support

over the years. I would like to thank her for giving me the opportunity to pursue re-

search in the exciting field of wireless communications.

I would also like to express my thanks to Professors Mark Bocko, Azadeh Vosoughi,

and Henry Kautz for acting as members of my thesis committee.

Over the years at the University of Rochester, I have had the pleasure to work

with exceptional colleagues in the Wireless Communications and Networking Group.

Among them, I would like to specifically acknowledge Mark Perillo, Tolga Numanoglu,

and Stanislava Soro for their help and friendship. I have benefited from collaboration

with everyone in the laboratory.

I also would like to thank my family and friends, most of all my soon-to-be wife

Catherine, for offering encouragement and patience as I finished my degree. I would

like to express my gratitude to my parents for their strong values and the courage they

showed in supporting my move to America.

This research was made possible financially in part by the National Science Foun-

dation through grant CNS-0448046.

iv

Abstract

Complex applications and increased sensor capabilities will help proliferate wireless

sensor networks into everyday life. However, as sensor nodes are battery-operated,

sensor networks will require protocols to spare every possible bit of energy. This can

be accomplished through cross-layer protocol optimizations that specialize the proto-

cols for specific application requirements. However, as researchers continue to con-

tribute to the field of sensor networks, protocols will evolve, and more efficient work

will replace older ideas. Therefore, flexibility and eased maintenance of the network

will be required to make sensor networks feasible for new deployments and customers.

Thus there are competing goals of energy-efficiency, achieved by specialization through

cross-layer protocol design, and flexibility, achieved through modularity in a layered

protocol design.

My thesis shows that these competing goals can be balanced by the use of cross-

layer information exchange that enables the protocols (and hence the network) to adapt

to current application and network conditions. Adapting the protocols via cross-layer

information exchange allows the network to make best use of the limited energy re-

sources of the sensor nodes while maintaining required application quality of service

and retaining a flexible protocol stack. In support of this thesis, we have (1) performed a

case-study comparing cross-layer designs with a layered design, (2) designed and eval-

uated an architecture that enables the sharing of information across traditional stack

boundaries, (3) proposed a solution to manage the bidirectional flow of information be-

tween middleware and the protocol stack, (4) demonstrated the advantage of allowing

a sensor network middleware to exploit this cross-layer information to maximize the

time when application quality of service is met, and (5) developed various techniques

at the MAC layer to take advantage of the availability of this cross-layer information

to extend node lifetime. With the standardization of cross-layer information exchange

v

provided by our new architecture, and the many example protocol adaptations provided

in this dissertation, one can envision new designs at all protocol levels, making sen-

sor networks truly adaptive to changes in both application requirements and network

conditions.

Contents

1 Introduction 1

1.1 Overview of Wireless Sensor Networks 2

1.2 Research Motivation . 4

1.3 Research Contributions . 5

1.4 Thesis Structure . 6

2 Related Work 8

2.1 Layered Protocol Stack . 8

2.1.1 Node Activation . 8

2.1.2 Routing . 9

2.1.3 Medium Access Control . 9

2.2 Cross-layer Protocol Stack . 12

2.2.1 Cross-Layer Protocol Limitations 13

2.2.2 Cross-Layer Protocols . 14

2.3 Adaptability in Wireless Sensor Networks 15

2.4 New Architectures . 16

2.5 Services . 18

2.6 Middleware for Managing Cross-Layer Protocols 20

3 Gains and Limitations of Cross-Layer Designs 22

3.1 Introduction . 22

3.2 DAPR: A Cross-Layer Protocol . 23

3.2.1 Route Discovery Phase: Selecting Minimum Application Cost

Paths . 23

3.2.2 Role Discovery Phase: Providing Maximum Coverage 25

vi

vii

3.2.3 Integration with the MAC and Physical Layers 25

3.3 Simulation Scenarios and Results . 26

3.3.1 Methodology: the Discrete and Continuous Cases 26

3.3.2 Continuous Monitoring of a Region 27

3.3.3 Discrete Monitoring of a Region 30

3.3.4 Non-uniform Node Deployment 33

3.4 Gains of Cross-Layering Within the Same Protocol 35

3.4.1 Advantages and Drawbacks 35

3.4.2 Additional Results: the Impacts of Cross-Layering 37

3.5 Discussion of the Usefulness of Cross-Layering 42

3.6 Summary . 43

4 A New Cross-Layer Information-Sharing Sensor Network Protocol Archi-

tecture 45

4.1 Introduction . 45

4.2 Architectural Approaches . 48

4.2.1 MobileMan: Subscription to an Abstracted Database 49

4.2.2 CrossTalk: A Common Database for MANET 50

4.2.3 SNA: Abstraction of Lower Layers and Basic Functions 52

4.2.4 Chameleon: Abstraction of Communication Protocols 53

4.2.5 XLM: The Counterpart—Fused Layers 53

4.3 Architecture Comparisons . 54

4.3.1 Flexibility . 55

4.3.2 Information Freshness . 57

4.3.3 Overhead . 58

4.3.4 Simplicity . 58

4.4 X-Lisa, a New Architecture for Cross-Layer Information Sharing 59

4.4.1 The Need for a New Architecture 59

4.4.2 A New Unifying Architecture 60

4.4.3 Information Sharing Structures 61

4.4.4 Event Signaling . 66

4.4.5 Information Exchange . 66

4.4.6 Maintenance of the Neighbor Table 68

viii

4.4.7 Important Services . 69

4.5 Implementation Details . 70

4.5.1 Components in TinyOS . 70

4.5.2 Information Storage . 72

4.5.3 DAPR and the Proposed Architecture 73

4.5.4 GFG / GPSR and X-Lisa . 78

4.6 Results . 78

4.6.1 Modus Operandi . 80

4.6.2 Qualitative Study: The Expressiveness of X-Lisa 81

4.6.3 Quantitative Study: Measurable Cross-Layer Improvements . . 84

4.7 Discussion . 87

4.7.1 X-Lisa Extends the Desirable Properties of Existing Architectures 88

4.7.2 To Use or Not to Use X-Lisa 89

4.7.3 The Size of X-Lisa . 90

4.7.4 The Most Gain for the Cost 91

4.8 Summary . 91

5 Supporting Proactive Application Event Notification to Improve Sensor

Network Performance 93

5.1 Goals and Challenges of WSN Architectures 95

5.2 Middleware Support . 96

5.2.1 General Ideas . 96

5.2.2 Integration Into an Information-Sharing Architecture 97

5.2.3 Composite Query Registration and Deregistration 100

5.2.4 Interest Registration and Deregistration 101

5.2.5 Query Notification . 101

5.3 Evaluation of Middleware Support . 103

5.3.1 Middleware Interpreter Only 103

5.3.2 X-Lisa with Middleware Interpreter 108

5.4 Summary . 114

6 Middleware for Supporting Protocol Adaptation 117

6.1 Introduction . 117

ix

6.2 MiLAN: a Sensor Network Middleware 118

6.3 Managing DAPR Through MiLAN . 119

6.3.1 Overview of MiLAN/ DAPR Combination 120

6.3.2 Routing: New Variable-based Cost 122

6.3.3 Node Activation: a Distributed Process 123

6.4 Results . 123

6.4.1 One Variable with Low QoS Requirements 125

6.4.2 QoS Increase with a Middleware 127

6.4.3 Change of Query Interval . 128

6.5 SRI: A General Cost Function . 132

6.6 Summary . 132

7 Schedule Adaptation of the Low-Power-Listening MAC Protocol Family 134

7.1 Introduction . 135

7.2 MiX-MAC: A Highly Adaptable MAC Protocol 137

7.2.1 Principles of MiX-MAC . 137

7.2.2 X-MAC: A Short Preamble MAC Protocol 138

7.2.3 MX-MAC: a LPL Variant of CSMA-MPS Compatible with X-

MAC and SpeckMAC Schedules 139

7.2.4 SpeckMAC-D: Repeating the Data Packet 140

7.2.5 Lifetime Calculation . 140

7.3 Fine Tuning Channel Probing Protocols 142

7.3.1 Adapting the Channel Probing Interval ti 143

7.3.2 Adapting the Packet Transmission Schedule 145

7.4 Simulation Comparison of MAC Protocol Scheduling Techniques . . . 146

7.4.1 Performance Comparison . 147

7.4.2 MiX-MAC: Adapting the MAC Schedule to Conditions in the

Network . 153

7.5 TinyOS Implementation of LPL Protocols 154

7.5.1 Debugging at the MAC Level 156

7.5.2 Reconstruction Model . 156

7.5.3 Protocol Design Choices . 160

7.5.4 Determination of the Switching Thresholds 163

x

7.5.5 Reliable Throughput or Goodput 164

7.5.6 MiX-MAC Achieves the Upper Bound of Node Lifetime 166

7.6 Discussion and Summary . 177

8 Node Synchronization Along a Path 181

8.1 Synchronization Over a Unidirectional MX-MAC Link 182

8.1.1 Principle . 182

8.1.2 Synchronization Process . 184

8.1.3 Urgent Packets . 186

8.1.4 Pipelining of Packets on a Synchronized Path 187

8.2 Synchronization Over a Bidirectional Path 187

8.3 Path Synchronization With Multiple Sources 189

8.3.1 Synchronization Over Several Unidirectional Paths and Con-

flict Resolution . 189

8.3.2 Strategy . 190

8.4 Simulation and Implementation of Synchronization Principles 192

8.4.1 Simulations . 192

8.4.2 Implementation on Tmote Sky 199

8.4.3 Combined Effects of MiX-MAC and Node Synchronization . . 201

8.4.4 Multi-Source Synchronization Implementation 203

8.5 Summary . 204

9 Duty Cycle Control for Dynamic Adaptation of Low-Power-Listening MAC

Protocols 207

9.1 Estimation and Control for Multi-variable Systems 208

9.1.1 Background . 209

9.1.2 The Adaptive Regulator . 210

9.1.3 Evaluating the Target Energy 215

9.1.4 Algorithm for ti Control . 216

9.1.5 Preliminary Guidelines for an Implementation 216

9.2 ti Control For Multi-Hop Networks 219

9.2.1 Challenges Introduced By Multi-Hop Control 219

9.2.2 Node Synchronization Along a Path 220

xi

9.2.3 Impact on the Energy Component of J 221

9.2.4 Practical Considerations . 221

9.2.5 Simulation Results . 223

9.3 ti Control for Multi-Hop Networks With Multiple Sources 226

9.3.1 ti Control For Synchronized Paths With Multiple Sources . . . 226

9.3.2 Simulation Results . 227

9.4 Summary . 227

10 Conclusions and Future Directions 230

10.1 Summary of Contributions . 230

10.2 Future Directions . 231

Bibliography 233

List of Tables

4.1 Qualitative comparison of existing architectures (given without order

of importance). 55

4.2 A neighbor table is kept at every node i with non-predetermined fields.

It keeps information about the node itself (for vertical cross-layering)

and each of its neighbors j (for horizontal cross-layering). 62

4.3 The default fields of the neighbor table. 63

4.4 A sink table is kept at every node with information about each sink j in

the network. 64

4.5 A message pool is kept at every node. 65

4.6 A packet with a CLOI information vector piggy-back (TOS Msg fields

not included). 67

4.7 Example of a routing packet definition. The application layer may dis-

pose of the space defined by data. The MAC protocol only sends the

used bytes (S) in the packet, and discards those that are not in use (X). . 72

4.8 The MAC protocol only ignores bytes placed at the end of a packet

(designated by X). If two fields of varying size are defined, the MAC

sends a section filled with unused and unassigned bytes (U). 72

4.9 CLOI rearranges bytes in order to place all unused bytes at the end of

a packet. The MAC protocol may then discard the unused bytes. 73

4.10 Selected metrics comparing the behaviors of XLM / X-LISA and XLM / LPL / X-

LISA. 83

5.1 Some of the fields of the Middleware Interpreter with their TinyOS

primitive type and an example. 99

5.2 Composite Query Stored within the Middleware Interpreter 101

xii

xiii

5.3 Query Notifications and Status Based on the Preexisting Status of a

Query and Whether Its Conditions Are Met Upon an Update in the

Neighbor Table . 103

5.4 Application requirements for Middleware Interpreter only scenario . . . 105

6.1 Detailed calculation of the application costs for 4 sensors and 2 vari-

ables. The final costs reflect that the same importance is granted to

a precision of 0.5 and 0.9—the application has no use for a precision

higher than 0.5 and lower than 1.0. The tables at the bottom give the

values of P and W . 124

7.1 Notations and values for the CC2420 radio. 141

7.2 Time and energy analysis of X-MAC (X) and SpeckMAC-D (S) for

unicast transmissions. 142

7.3 CC2420 Radio Parameters . 147

7.4 Actual radio model under TinyOS. S designates the packet size in bytes.

Units are µJ and ms. 159

7.5 Look up table to determine which protocol (SpeckMAC-D (S), X-MAC

(X), or MX-MAC (M)) performs best in terms of lifetime. 175

8.1 Energy Consumption and Packet Delay. 198

List of Figures

2.1 (a) Layered structure. (b) Cross-layer structure with fused layers. (c)

Cross-layer structure with information exchange between layers. 13

2.2 Time diagram of the message delay estimation. The sender may mea-

sure the delay as (t1−2− t1−1)− (t2−2− t2−1) or (t1−4− t1−3)− (t2−4−
t2−3). The receiver can estimate the packet delay as (t2−3 − t2−2) −
(t1−3 − t1−2). 19

3.1 (a) DAPR rounds consist of three phases. (b) A sensor checks whether

its coverage is overlapping with that of others during the role discovery

phase. Sensor 2 is not needed to cover the rectangular area. 24

3.2 Continuous monitoring: network coverage over time for modified DAPR

(Cac(Si) ∝ 1
ǫrem

) and PEAS, given for 25, 50, 75, 100, and 125 nodes in

(b). (a) is the coverage percentage as a function of time for 100 nodes.

DAPR outperforms PEAS, and the contention incurred by 802.11 causes

nodes to wrongly decide to sleep in the first moments of the simula-

tion. DAPR+RTdma, as a fully cross-layer design, prevents deactiva-

tion mistakes. 28

3.3 Continuous monitoring: network coverage over time for DAPR with its

original (Cac(Si) ∝ 1
Σǫrem

) and modified (Cac(Si) ∝ 1
ǫrem

) costs, given

for 25, 50, 75, 100, and 125 nodes in (b). (a) is the coverage percentage

as a function of time for 100 nodes. With RTdma, the original cost

allows for gains of 3% to 15% over the energy cost. 30

xiv

xv

3.4 Continuous monitoring: network coverage over time for DAPR with

original cost (Cac(Si) ∝ 1
Σǫrem

) and PEAS, given for 25, 50, 75, 100,

and 125 nodes in (b). (a) is the coverage percentage as a function of

time for 100 nodes. For this application, PEAS is greatly outperformed,

and the MAC level inefficiencies of DAPR are no longer observed. . . . 31

3.5 Discrete monitoring: network coverage over time for DAPR and PEAS,

given for 25, 50, 75, 100, and 125 nodes in (b). (a) is the coverage

percentage as a function of time for 100 nodes. For this application,

DAPR outperforms PEAS for coverage > 85% but the low overhead of

PEAS guarantees a longer lifetime for mid-to-low range coverage. . . . 32

3.6 d) shows a typical node deployment for discrete monitoring (the inner

and outer radii are 70 m and 100 m). a), b) and c) are the network

coverage over time for 125 nodes for 70%, 80%, and 90% of the nodes

deployed in the ring. e) is the difference in lifetime (LifetimePEAS −
LifetimeDAPR in seconds) for various ρ at 90%, 70%, and 50% cov-

erage. As the non-uniformity of the deployment increases, so does

DAPR’s relative performance. 34

3.7 Continuous monitoring: network coverage over time for cross-layer,

hybrid, and layered modified DAPR using the energy cost 1
ǫrem

. (b)

is the network lifetime for 25, 50, 75, 100, and 125 nodes. (a) is the

coverage percentage as a function of time for 125 nodes. The fully

cross-layer and hybrid designs perform similarly for high-range cover-

age, and the only significant difference happens for low-range coverage. 36

3.8 The numbers represent: NodeId in circles, Individual Cost - Cumulative

Cost. Recall that nodes with the smallest cost forward the query first. If

nodes 3 and 4 have overlapping sensing areas, node 4 (individual cost of

20) will activate but is part of a path with higher cost than 3 (individual

cost of 25). Node 7 will thus route its packets through 4, using a less

efficient route than if 3 had activated. 37

xvi

3.9 Continuous monitoring: network coverage over time for cross-layer,

hybrid, and layered DAPR, given for 25, 50, 75, 100, and 125 nodes

in (b). (a) is the coverage percentage as a function of time for 125

nodes. The cross-layer and hybrid show no significant difference in

lifetime. 39

3.10 Discrete monitoring: network coverage over time for cross-layer, hy-

brid, and layered DAPR with original cost, given for 25, 50, 75, 100,

and 125 nodes in (b). (a) is the coverage percentage as a function

of time for 125 nodes. No significant difference is observed between

cross-layer and hybrid designs. 40

3.11 Continuous monitoring in a non-uniform deployment with 90% of the

nodes at the periphery: network coverage over time for cross-layer, hy-

brid, and layered DAPR, given for 25, 50, 75, 100, and 125 nodes in (b).

(a) is the coverage percentage as a function of time for 125 nodes. No

significant lifetime gain is obtained for cross-layer DAPR over the hy-

brid scheme even though the non-uniformity should advantage the former. 41

4.1 Classification of some architectures for MANET and WSN. Mobile-

Man abstracts a data base through signaling, as highlighted by the dot-

ted circle. 50

4.2 X-Lisa: An information-sharing sensor network architecture for cross-

layer optimizations. This architecture retains a layered design while

providing flexible information repositories as well as services to sup-

port the protocols. 61

4.3 The X-Lisa architecture in TinyOS. The shaded area corresponds to

CLOI. Implementations are in large characters and delimited by solid

line frames. Each component is bounded by a dashed line, and its name

appears vertically. 71

4.4 The original XLM (a), was broken into a layered scheme (XLM / X-

Lisa) (b), and its MAC layer was replaced (c). Arrows show packet

exchanges between layers, and squares information exchange. 82

4.5 Simulated network topology (units in meters). The nominal radio range

is 30 m. 83

xvii

4.6 Comparison of the impact of DAPR and DAPR + X-Lisa on the net-

work for 5 and 10 nodes. The numbers on the graph are the relative

change from DAPR to DAPR + X-Lisa. 86

4.7 Comparison of the QoS of DAPR and DAPR + X-Lisa on the network

for 5 and 10 nodes. The numbers on the graph are the relative change

from DAPR to DAPR + X-Lisa. 87

5.1 New X-Lisa architecture with middleware support. 98

5.2 Event filtering and notification process: 1. A service or protocol up-

dates the neighbor table. 2. If the field is of interest, and the new value

is different from the old one, it is submitted to the MI. 3. The MI checks

conditions realizing a query. 4. The MI notifies subscribing protocols

and services that the query has fired. 102

5.3 Topology of the (a) health monitor, and (b) room monitor test network. . 104

5.4 Comparison of the (a) delays (b) PDR for the patient monitoring sce-

nario with and without the Middleware Interpreter. 107

5.5 Comparison of the number and nature of packets on the network for the

low mobility scenario with and without X-Lisa. 110

5.6 Comparison of the (a) delays and (b) packet delivery ratios for the room

monitoring scenario with low node mobility with and without X-Lisa. . 112

5.7 Comparison of the number and nature of the packets on the network for

the room monitoring scenario with high node mobility with and without

X-Lisa. 113

5.8 Comparison of the (a) delays and (b) packet delivery ratios for the room

monitoring scenario with node high mobility with and without X-Lisa. . 115

6.1 Overview of MiLAN. A and B start when the application starts or

changes its state depending on data received from the sensors. C is

the normal mode of operation when conveying the sensors data to the

application. 119

xviii

6.2 Nine sensors are monitoring two different entities (e.g., two different

soldiers in range of one another). The required precisions for the two

variables of interest are 1.0 and 0.9, with a tolerance of 0.2. Three

cases are possible: only the first entity (with sensors represented by

circles), only the second entity (with sensors represented by stars) or

both entities are of interest. 125

6.3 Node remaining energy over time. All three nodes are able to monitor a

single variable with precisions 0.1, 0.5, and 0.9. The QoS requirement

is 0.1. a) and b) have different P vectors. 126

6.4 A measure of the QoS differences between a system with MiLAN man-

aging DAPR and a system designed for the strictest QoS. The graph at

the bottom shows the application QoS requirement. 127

6.5 (a) Lifetime of the network as defined by the time when the network

was first incapable of providing a coverage of xF % for different but

fixed values of the query length interval. (b) zooms on the results for

high-range coverage. 129

6.6 (a) Lifetime of the network as defined by the time when the network

was last capable of providing a coverage of xL% for different but fixed

values of the query Length interval. (b) zooms on the results for high-

range coverage. 130

6.7 Network QoS response of the adaptive (a) and fixed (b) query length

schemes to the application needs (c). 131

7.1 MAC schedule for B-MAC, X-MAC, MX-MAC, and SpeckMAC-D. . . 136

7.2 Lifetime as a function of ti for SpeckMAC-D and X-MAC for various

ratios of transmissions vs. receptions. 144

7.3 Adapting the node’s schedule to packet types. 146

7.4 Node’s lifetime for X-MAC, MX-MAC, SpeckMAC-D and SpeckMAC-

D-ACK with a fixed n. All packets sent are (a) broadcast, (b) unicast. . 149

7.5 Node’s lifetime for X-MAC, MX-MAC, SpeckMAC-D and SpeckMAC-

D-ACK with a fixed n. All packets sent are unicast, and m = n + 1. . . 151

xix

7.6 Node’s lifetime for X-MAC, MX-MAC, SpeckMAC-D and SpeckMAC-

D-ACK with a fixed n. All packets sent are unicast, and the packet size

has doubled to 80 bytes. 152

7.7 5 nodes attempt to send 10 packets at a rate 1/5 for various ti values.

(a) gives the packet delivery ratio, (b) the channel usage, and (c) the

average delay. 153

7.8 Node lifetime as a function of ti for MiX-MAC, X-MAC, MX-MAC

and SpeckMAC-D. The packets are 20% broadcast / 80% unicast (a)

and all unicast (b), sent at a rate r = 1
10

. 155

7.9 Picture of the acquisition board set up to measure the current drawn

from the mote. 157

7.10 Current drawn by the Tmote Sky during a medium probe (a), a 40 B

packet transmission (b), and a 40 B packet reception (c). 158

7.11 Relative difference between real life scenarios and their prediction through

the reconstruction model. 160

7.12 Probability to successfully hear an ongoing stream of packets as a func-

tion of the packet size (L) and t2CCAs, for an RX / TX switch time

tswitch = (a) 770 µs (SpeckMAC), and (b) 1, 350 µs (X-MAC / MX-

MAC). 168

7.13 Comparison of the packet delivery ratio of the MAC schedules as a

function of packet size and time between CCAs. 169

7.14 Throughput for ti values of 250 ms, 500 ms, and 1 s. 170

7.15 Comparison of the lifetime of SpeckMAC and MiX-MAC. The two

schedules only differ by the time between their CCAs. In (b) we assume

that the receiver notifies the sender of the reception of packets through

piggy backed or stand-alone ACKs. (a) assumes no such mechanism. . . 171

7.16 Comparison of the MX-MAC and X-MAC schedules for 15 B unicast

packets for scenarios where the node is mostly sending (a), and mostly

receiving (b). 172

7.17 Comparison of the MX-MAC and X-MAC schedules for 40 B unicast

packets (a) and 100 B packets (b) when the node is mostly sending. . . 173

xx

7.18 Comparison of the MX-MAC and X-MAC schedules for 40 B broad-

cast packets (a) when the node is mostly receiving, and 15 B packets

(b) when the node is mostly sending. 174

7.19 A simple mapping function lets the protocol switch between schedules

in order to increase the lifetime. 176

8.1 Synchronization principle for (a) two (b) three nodes running an int-

LPL protocol. 183

8.2 Node 0 pipelines packets and increases the packet rate. 187

8.3 Bidirectional path synchronization time line. 188

8.4 (a) Synchronized nodes along two parallel paths: nodes {10, 11, 12, 30}
form one path, and {20, 21, 22, 30} another one. The dotted lines indi-

cate that the nodes can communicate with each other (and thus inter-

fere). (b) Mitigation of the problem. 189

8.5 A multi-hop network with two sources k − 10 and k − 11. 191

8.6 On the path {1, 5, 4, 3, 10}, the nodes synchronize correctly after only

a few packets. 193

8.7 (a) Packet delay on the same path as Figure 8.6. (b) Same configuration,

but packets 7 through 15 are marked as urgent. 195

8.8 Delay on the same path as Figure 8.6 for bidirectional packets. 196

8.9 (a) Packet delay for with (a) branch synchronization (b) regular syn-

chronization. 197

8.10 Packet delay over the same path of the implementation (failed packets

do not reach the eventual destination and are not counted in the average

delay). 201

8.11 (a) Delay of non-urgent and urgent packets over a synchronized path.

(b) Time line of transmissions of an urgent packet. 202

8.12 Packet pipelining: node 0 sends a new packet every 2ti. Transmissions

end up being staggered. 203

8.13 Comparison of the lifetime of nodes running MiX-MAC with and with-

out node synchronization. 204

xxi

8.14 (a) Successful path synchronization for two nodes sending data packets

to a common destination. The packet rates are 1/20 and 1/10 pkt.s−1.

(b) The reduction in packet delay. 205

9.1 Representation of the system with input / output and its controller. . . . 209

9.2 (a) Evolution of ti(t) as the packet rate increases and then decreases

when only packet loss is considered. (b) Packet loss in the same scenario.213

9.3 (a) Nodes are in range of one another. (b) A receiver has several de-

scendants. (c) A sender has several destinations (rare case). 218

9.4 Comparison of (a) the evolution of ti and (b) the dropped packets for

the controlled and non-controlled cases when the energy is evaluated. . 224

9.5 Comparison of (a) the evolution of ti and (b) the dropped packets for the

controlled and non-controlled cases when the energy is not evaluated as

per Section 9.1.3.2. 225

9.6 Comparison of (a) the evolution of ti, (b) the dropped packets and (c)

the energy consumed for the controlled and non-controlled cases for

two sources in a multi-hop network. 228

Chapter 1

Introduction

Wireless sensor network applications are becoming increasingly popular with the ad-

vent of affordable low power sensor platforms, or motes. The miniaturization of these

platforms and the availability of numerous types of sensor nodes have allowed new

deployments for increasingly complex applications. Various sensors may be attached

to the motes, allowing the deployment of sensor networks in the fields of health care,

room / building monitoring, and target tracking, among others. Because it is imprac-

tical and sometimes hazardous to replace batteries in the sensor nodes, the search for

very low power hardware and protocols is still relevant today.

New protocols for sensor networks are frequently proposed, and many bring im-

provements in lifetime, quality of service to a user, or convenience to a programmer.

Over the planned lifetime of a wireless sensor network, often measured in years, new

protocols may replace older ones and provide increased performance or network lifes-

pan. Thus it is important to allow improved protocols to replace existing ones, even in

already deployed networks.

Over the years, cross-layer designs, which let two or more protocols from non-

adjacent layers function in concert, have become very popular. Since these tend to

sacrifice generality for performance improvements, the two goals of modularity, which

provides flexibility in protocol updates, and specialization, which uses the specificities

of a network to improve performance, are conflicting. With these considerations in

mind, this thesis proposes a new sensor network architecture that standardizes cross-

layer interactions, necessary to sustain further development of this field. In fact, mod-

1

2

ular cross-layering supports protocols that can save a great deal of energy to support

service to the end user for longer periods of time.

Today, wireless deployments are ubiquitous and provide users with internet access

or phone services almost everywhere. Information technology is now a new industry

fueling human progress. With the right platform and architecture, sensor networks have

a similar chance to spawn the next information revolution.

1.1 Overview of Wireless Sensor Networks

Wireless sensor networks are formed from small self-powered devices, consisting of

one or more sensors, a microprocessor and one or several radio transceivers. The sen-

sors include an analog-to-digital converter, and the microprocessor can be a micro-

controller or a low power processor. The sensor node uses an energy source, usually

with very limited capacity. It may not be possible to replenish the node batteries during

the expected lifetime of the network.

The protocol stack is located in the software of the processor, except for the physi-

cal layer, which is typically implemented by the radio hardware and its controller. The

other protocols, Medium Access Control (MAC), routing and transport, may be pro-

grammed using portable operating systems such as TinyOS [1] [2], Java [3], M∧NTIS

OS [4], etc. To sustain the communication protocols, services are often required, for

example services for finding the location of a node, its remaining energy, and link qual-

ity to neighbors. This thesis addresses how protocols and services are organized and

how they can work together in a structured manner to serve the application and the end

user with better quality of service (QoS) for extended periods of time.

Sensors in the network are able to sense the environment and report relevant data to

a location capable of analyzing it. In the maturing technology of wireless sensor and

actuator networks, some nodes may be fitted with devices that are able to act upon the

environment they are in. Such networks may function in closed-loop form, without any

intervention from humans. This is particularly needed in hazardous areas and remote

locations.

Applications for wireless sensor networks are countless with existing deployments

in the fields of environment monitoring including agriculture, industrial safety and man-

3

ufacturing processes, health care, battlefield awareness, and many others.

For instance, sensor networks could be used to monitor patients from their homes.

In addition to the evident health benefits for patients feeling more comfortable amidst

the support of their families, remote monitoring could help cut costs by redirecting med-

ical attention towards urgent care. Imagine that an oxygen sensor, a heart rate probe,

a blood pressure gauge, an ECG sensor, etc. can be attached to a patient who is then

discharged from the hospital. The combination of sensors can monitor his/her health

continuously. In case of an emergency such as an abnormally high heart rate, medicine

could be automatically administered to the patient through IV perfusion or drip. If the

health of the patient is not observed to improve, the sensor network may summon an

ambulance to the home of the patient. Inside the hospital, prognostic systems may warn

doctors of the deteriorating condition of patients.

On a battlefield, soldiers may be equipped with the same health monitoring sys-

tem, and their number could create a multi-hop network that relays critical information

about the front line and the health of the troops. When the condition of a wounded sol-

dier quickly deteriorates, the sensor network may relay information to the headquarters

miles away. A medic could be sent out to the location of the person in need. Further-

more, the sensor network may help assess which critical areas are being weakened by

the fast rate of casualties to a platoon.

As another application, consider new advances in the processing of materials. Man-

ufacturers are engineering new alloys and resins for the space, aviation, and automo-

tive industries. Aluminum foam [5] is being introduced into car manufacturing as a

light component able to absorb high shock by collapsing millions of aluminum cells

on themselves. Advanced metallurgy processes, such as the one for aluminum foam,

require very precise procedures and concentrations. Sensors deposited at the bottom of

a furnace may sense the exact composition of the compound in their direct location and

prompt local actuators to introduce very fine amounts of the needed components.

These and many other applications all require a high degree of support for appli-

cation QoS from the sensor network, while simultaneously requiring long lifetimes on

the limited sensor batteries. Meeting these goals is a challenging problem, which is

addressed in this thesis.

4

1.2 Research Motivation

Wireless sensor networks present many challenges that make research in this field both

demanding and exciting. Obstacles include the following:

• Sensor nodes have very small energy supplies, which are either available from

network deployment, or obtained by small amounts of energy scavenging.

• Wireless sensor networks are dynamic, either because nodes are mobile or be-

cause links between two neighbors may be broken or created. In harsh envi-

ronments, nodes may also be disabled. The consequence is that communication

between nodes is inherently unreliable.

• Individual sensor nodes have limited bandwidth, compute power, and memory,

thus imposing specific constraints on programmers.

• Wireless sensor networks may comprise many sensor nodes; protocols need to

scale to hundreds of nodes.

• The multiplicity of applications for wireless sensor networks has often led to a

plethora of protocols whose information must be coordinated and processed.

• Wireless sensor networks are data-oriented, where individual nodes are only as

important as their contribution to the application.

Following this last point, sensor networks support applications that require certain

quality of service (QoS). Cross-layer improvements have been shown [6] [7] [8] to

allow protocols to more closely meet the QoS requirements for extended periods of

time.

Cross-layer designs may be best understood by explaining their opposite—layered

schemes. The latter prevent communication between non-adjacent layers in the pro-

tocol stack and limit interactions between two adjacent layers to function calls and

returns. Cross-layer protocols violate these principles and use information available at

two or more levels in the stack to improve the network performance and / or lifetime.

At one extreme, the multiplication of cross-layer interactions within a protocol stack

can lead to “spaghetti” designs, whereby the modification of one aspect in a protocol

5

may have unforeseen consequences within many other protocols. Consequently, reg-

ulation of the exchange of information between protocols and the application is a key

aspect of this thesis.

1.3 Research Contributions

This dissertation addresses the benefits and issues associated with cross-layer designs.

The specific contributions include the following:

• The gains and limitations of cross-layer interactions are studied, and comparisons

with layered interactions are performed to help draw conclusions as to which

cross-layer interactions are beneficial.

• A new sensor network architecture called X-Lisa (Cross-Layer Information Shar-

ing Architecture) is proposed. X-Lisa standardizes a specific type of cross-

layer design, cross-layer information-sharing, while retaining a modular protocol

stack. This architecture offers a new perspective on cross-layering by organizing

the information shared between layers. It also lets each protocol focus on its core

task, by organizing and providing key services to all protocols in the stack.

• While X-Lisa shows the advantage of adapting protocols based on current net-

work conditions, protocols can similarly benefit from adaptation based on current

application conditions and requirements. In particular, if protocols are proac-

tively informed of the status of active queries in the network, they can adjust their

behavior accordingly. Using this approach, the improvement in overall quality of

service provided by the network can be significant. We augment X-Lisa with a

Middleware Interpreter for managing application queries and performing event

notification.

• With the availability of important network information at all layers in the stack,

protocols may tune their internal parameters to improve network performance.

An example of such protocol tuning is provided using a sensor network middle-

ware that helps determine the nodes that are important to an application.

6

• Many improvements can be observed when using cross-layer information at the

MAC layer. “Low-Power-Listening” (LPL) MAC protocols are investigated, and

several techniques to adapt them to conditions on the network are proposed. Sim-

ple information about the packet size or the ratio of packets sent to packets re-

ceived, can be used to improve the lifetime of a sensor node at practically no cost

by appropriately selecting the MAC schedule of a protocol. Additionally, implicit

synchronization of the wake-up schedules of nodes on a slowly changing path can

be achieved without overhead with a subfamily of the LPL MAC protocols. With

our third technique, dynamic adaptation of the duty cycle of these protocols can

lead to substantially lower energy consumption and a higher packet delivery ratio.

We simulated several LPL MAC protocols in Matlab, and we implemented them

in TinyOS. Several interesting results arose from these experiments: we observed

the differences seen between simulation and deployment results, inferred which

assumptions were valid, and noted the importance of some design parameters.

1.4 Thesis Structure

Chapter 2 surveys the current state of research in relevant areas of wireless sensor

network research and provides background on the state-of-the-art protocols to which

our proposed schemes are compared. Chapter 3 evaluates the gains and limitations of

cross-layer designs, and examines the source of the improvements. Chapter 4 presents

X-Lisa, a new sensor network cross-layer architecture that enables both flexibility and

protocol specialization. Following the observations of Chapter 3, X-Lisa provides a

standardized model for cross-layer interactions between protocols, and it opens the door

for new and improved protocols by sharing information with all the layers in the stack.

This allows protocols to dynamically adapt to changing conditions in the network, pro-

viding better QoS or longer lifetime. Taking X-Lisa one step further, Chapter 5 presents

a Middleware Interpreter that channels information between middleware and protocols

to enable the protocols to constantly adapt to dynamic application requirements. The

Middleware Interpreter proactively notifies protocols of query events, removing the

burden of query monitoring and notification from middleware. In addition to condi-

tions in the network, protocols can make decisions based on the application require-

7

ment. This allows middleware to convey the application needs to the protocols, which

can tune knobs to meet the required quality of service. Chapter 6 studies one example,

and shows how middleware can provide important information to cross-layer protocols.

With all the information provided by X-Lisa and the Middleware Interpreter, protocol

behavior can be improved greatly. One example is MiX-MAC, a novel LPL MAC pro-

tocol proposed in Chapter 7. MiX-MAC selects the MAC schedule best adapted to

the conditions in the network. After adapting the MAC schedule of our protocols, we

stagger node wake-up schedules to reduce packet delivery delay and energy consump-

tion in Chapter 8. In Chapter 9, the duty cycle of the MAC protocol is dynamically

adapted using principles of control theory. Together with MAC schedule adaptation

and path synchronization, duty cycle control enables LPL MAC protocols to be utilized

for networks with potentially high traffic loads. Chapter 10 concludes this dissertation.

Chapter 2

Related Work

This chapter provides background on the issues addressed by this thesis. We survey the

literature related to cross-layer designs, protocols, services, and middleware.

2.1 Layered Protocol Stack

In this section, we provide background on various protocols used in a layered protocol

stack, including node activation, routing and MAC.

2.1.1 Node Activation

Node deployments are usually non-uniform: node densities may vary over the region

of interest, and not all the nodes may have the same sensing capabilities or compute

resources. During the runtime, some nodes may have less remaining energy because

of their location in the network (close to the stimuli or the base station, for instance).

Redundancy between active nodes wastes precious energy of nodes that may be critical

to QoS at a latter point in time. A node activation protocol turns off nodes that are not

needed because the application goals are already met.

In [9], Ye et al. proposed using local redundancy to lengthen the network lifetime

through a protocol called PEAS. The basic idea driving PEAS is that nodes located in

densely covered regions can be turned off for long periods of time without significantly

degrading the network coverage. All nodes go through a non-periodic wake-up round

where they probe for active neighbors. If an active node overhears a probe, it sends

8

9

a probe reply to the inquiring sensor. Only when the probe remains unanswered does

the node activate—once active, it never goes back to sleep, unlike PECAS [10], an

extension to PEAS by Gui et al. PEAS does not guarantee full network coverage as

nodes only activate based on unanswered probes—which depend on the transmission

range and not the sensing range.

2.1.2 Routing

Under the node activation protocol is the routing protocol whose role is to guide a

packet from a source node to a destination, over one or more hops. Proactive routing

protocols establish routes before a packet is even created and sent, while reactive pro-

tocols only do so as needed. In this section, we describe only a few of the many routing

strategies that have been proposed.

Ye et al. proposed GRAB in [11], in which a cost metric field is established. Packet

routing simply follows the path with steepest gradient that provides the minimum path

cost. Because no consideration may be given to the quality of a link, unreliable paths

may be used. GRAB routes packets along several parallel paths to increase robustness.

GFG [12] and GPSR [13] were seminal works in geographic routing. Packets are

forwarded in a greedy manner towards the destination. Specifically, each node knows

the location of its neighbors, and is able to elect a packet’s next-hop as the closest

node to the packet destination. If a node is the closest to the destination, but out of

communication range, the right-hand rule applies: the packet received from a neighbor

is transmitted to another node such that the angle between the three is positive.

In [14], Perkins et al. proposed AODV, a reactive routing protocol that establishes

a route to a destination by flooding a route request “RREQ”. Upon receiving a RREQ

packet, nodes check their route tables for a known path to the destination. If one exists,

they send a route reply to the source of the packet. AODV ensures that routes contain

no loops and that the information between nodes is fresh.

2.1.3 Medium Access Control

MAC protocols help organize access to the common channel by neighbors in order to

communicate. In this section, we only present MAC protocols that are related to the

10

work addressed in this dissertation, specifically focusing on the family of “Low-Power-

Listening” MAC protocols.

In [15], Langendoen surveys existing MAC protocols and proposes a taxonomy

based on whether they utilize completely random access, slotted random access, or

frames. Random access MAC protocols, of which Low-Power-Listening (LPL) and

Preamble Sampling (PS) solutions are two examples, present the benefit of flexibility

without the requirement for clock synchronization. LPL and PS differ in which existing

MAC solution channel probing was added to: LPL is the result of a combination of

channel probing with CSMA, and PS with ALOHA. Langendoen identifies the main

downside of LPL and PS MAC protocols as often wasting energy in idle listening and

collisions. Our work, described in Chapters 7-9 aims at correcting this drawback.

Aloha with Preamble Sampling (PS) was one of the first channel probing schemes

proposed for wireless sensor networks [16]. In this approach, packets are sent with a

preamble greater than or equal to the channel check interval ti. Nodes periodically

wake up and sense the medium. If the channel is busy, the probing node stays in

receive mode until the data packet transmission is complete. Otherwise, the probing

node goes back to sleep. El-Hoiydi developed an analytical model for Aloha with PS

and studied its performance using four metrics: throughput, delay, power consumption,

and lifetime. The transmit and receive powers assumed by El-Hoiydi in [16] led the

author to recommend limiting the use of Aloha with PS.

Following Aloha with PS, El-Hoiydi et al. introduced WiseMAC [17], a MAC

protocol that reduces the preamble length before sending a data packet by exchanging

wake-up schedules between neighbors. However, WiseMAC as originally proposed

(like B-MAC) cannot be implemented on 802.15.4 radios1. Moreover, piggybacking

scheduling information to acknowledgment frames, as required by WiseMAC, sup-

poses that hardware acknowledgments may not be used. Hardware ACK frames are

considerably faster than software acknowledgments (by a factor of two to five depend-

ing on packet size and code optimization) and allow the radio to return to sleep much

earlier, resulting in significant energy savings. For these reasons, and because it is clas-

sified under the PS family of MAC protocols, it was not included in most of our study

1An updated version of WiseMAC was proposed for 802.15.4 compliant radios, where a repetition of

frames, similar to SpeckMAC’s schedule, replaced a long preamble.

11

in Chapter 7. We show that explicit scheduling between nodes is unnecessary because

it can be achieved implicitly with X-MAC, C-MAC, or MX-MAC.

B-MAC [18] with Low-Power-Listening (LPL) was the first MAC protocol to in-

troduce channel probing schedules for recent radios. Polastre et al. provide a model

for LPL with strong consideration for the target radio. The authors thoroughly com-

pare B-MAC to S-MAC [19] and T-MAC [20]. To curb limitations imposed on the

receiving node to stay awake for the time of the preamble, Polastre et al. propose send-

ing packets with half-sized preambles. Post-B-MAC protocols include X-MAC [21]

and SpeckMAC-D [22]. Both protocols are of the channel probing family and tried to

improve the low power listening scheme presented by B-MAC. They are discussed in

detail in Chapter 7.

Although more recent, C-MAC [23] uses the same schedule as X-MAC and is there-

fore included in our work under the same principles that govern X-MAC.

In [22], Wong and Arvind also propose SpeckMAC-B, which is compared, along

with SpeckMAC-D, to B-MAC. The SpeckMAC protocol family is intended for minia-

ture motes called specks and will be detailed in Chapter 7. SpeckMAC-B stands for

Back off and replaces the long preamble with a sequence of wake up packets contain-

ing the destination target and the time when the data packet will be sent. This allows

receiving nodes to sleep for the remainder of ti and activate just in time for data re-

ception. However, this scheduling assumes fine time synchronization between nodes,

which we do not presuppose in our work. Wong and Arvind develop a model for Speck-

MAC protocols and study their impact on the ProSpeckz platform (a larger speck of size

one square inch), while comparing them to B-MAC.

Finally, Lu et al. proposed DMAC [24], a MAC protocol whose goal, much like

ours in Chapter 8, is to stagger wake-up schedules over paths of a data-gathering tree.

DMAC defines receive and transmit slots for unicast packet exchange at every node.

In order to achieve synchronization, the slots are staggered along paths through the ex-

plicit exchange of schedules among neighbors. Because a node must know the Rx / Tx

slots of its neighbors, DMAC requires local time synchronization. Additionally, broad-

cast packets from the data sink to the leaf nodes are only supported in specific slots,

which may cause increased latency and energy waste when these slots are not used.

Our transmit / receive schedule synchronization approach conserves synchronization

12

for these centrifugal flows. The improvements obtained by DMAC are significant and

convincing, and we faced many of the same hurdles as Lu et al. However, our scheme

achieves similar results without the overhead and limitations supposed by DMAC and

comes at specifically no additional cost when a subset of the LPL MAC protocols are

used within the scope of applications chosen for D-MAC.

Much like DMAC, Keshavarzian et al. propose to stagger wake-up schedules for

random access protocols [25]. Several cases, depending on the direction (forward or

backward) of the traffic, are considered. In the forward case, all nodes wake up at the

same time every T s causing large delivery delays of hT , where h is the number of

hops. The “shifted even and odd” pattern alleviates this problem somewhat: all nodes

shift their wake-up schedule by T /2 with respect to their previous hop. At worst, the

delay is (h + 1)T/2. The ladder pattern, much like DMAC, forces nodes to wake up

only a few milliseconds after their previous hop. Multi-parent ladders accounts for

the case when networks have multiple branches: the inter-wake-up time T is divided

to accommodate various branches. Whether compared to this work or to DMAC, our

scheme achieves similar results without the overhead and limitations supposed here and

comes at specifically no additional cost when the already popular X-MAC, C-MAC or

MX-MAC LPL protocols are used within the scope of applications chosen by Lu et al.

and Keshavarzian et al.

2.2 Cross-layer Protocol Stack

In [26], Srivastava et al. provide a definition of cross-layer designs and a survey of

existing cross-layer models. The authors define cross-layer interactions as back-and-

forth information flows, merging of adjacent layers, design coupling without a common

interface, and vertical calibration across layers. They also list implementations for

cross-layer interactions: explicit interfaces between different layers, shared database,

and heap organization. Chapter 4 shows that our work falls into the second category by

defining a set of data structures and services, and it offers an information propagation

paradigm as well as lower level abstractions.

Figure 2.1 shows an example of a layered structure: communication between pro-

tocols are limited to adjacent layers and through function calls and returns. Cross-layer

13

Channel

Layer 1

Layer 2

Layer 3

Layer 4

(a)

Channel

Layer 4

Layer 1

Layer 3 +

Layer 2

(b)

Channel

Layer 1

Layer 2

Layer 3

Layer 4

(c)

Figure 2.1: (a) Layered structure. (b) Cross-layer structure with fused layers. (c) Cross-

layer structure with information exchange between layers.

structures violate this principle.

2.2.1 Cross-Layer Protocol Limitations

There are several reasons that motivate violating layered architectures: unique hurdles

present only in wireless sensor networks, opportunities created by the spatial concur-

rency of the medium, and specific goals of the various applications and end users.

However, the multiplication of interfaces and direct links between layers has many

drawbacks, such as:

• Architecture violations render the protocols hard to maintain and complicate in

situ updates.

• Some violations can have unforeseen effects on the performance of the network

if they are not carefully studied, as was argued in [27].

• If too many architecture violations are introduced in the design, the architecture

no longer represents the actual system and its significance is weakened.

Work by Kawadia et al. [27] offers a concrete comparative look at cross-layer and

layered designs. This work makes the case that unintentional cross-layer interactions

can have detrimental consequences on system performance. Creating a cross-layer ar-

14

chitecture requires caution because of the numerous interactions of the layers (creating

a spaghetti design).

Some cross-layer protocols have nonetheless provided improvements over layered

designs.

2.2.2 Cross-Layer Protocols

In Chapter 3, we compare PEAS to DAPR [6] (Distributed Activation with Predeter-

mined Routes) which is a joint routing and node activation protocol proposed by Perillo

et al. In [6], the target application is area coverage. DAPR assigns an application cost

that quantifies the importance of a node to the coverage task: the higher the cost, the

more important a node is to the coverage of a sparsely monitored area. Before packets

can be routed, the data sink floods a query, which sets up routes with smallest cumu-

lative costs. Packets are then routed along paths of smallest cost, while nodes whose

coverage is not required deactivate, the ones with higher cost having the first chance

to turn off. Through cross-layer improvements, the network is able to serve the appli-

cation longer by utilizing nodes in areas that are more densely monitored. Additional

details of DAPR are provided in Chapter 3. DAPR is an example of layer fusion, as

illustrated by Figure 2.1(b): node activation decisions are based on metrics used by the

routing protocol. The two functions are also coordinated in a cross-layer fashion.

In [28], the MAC layer is a time-division based scheme where slots are further di-

vided in sections, one of which contains control information that enables neighboring

nodes to synchronize appropriately. The routing protocol (ESR) builds a connected

set of active nodes, each sensor making a decision on its own role based on local in-

formation exchanged in the control section (TC) in time slots of the MAC layer. In

addition, the routing protocol is notified of a link break by the MAC protocol within

one TDMA frame. A third layer benefits from MAC protocol information: the node

activation protocol also receives schedules of the node’s neighbors, which are obtained

in the TC subframe. Cross-layer interactions can be seen between the MAC and rout-

ing protocols, and the MAC and node activation protocol, in the fashion described by

Figure 2.1(c).

In [29], Lin et al. study the effects of a distributed and imperfect cross-layer rate

control scheme, and compare its results to a layered architecture. The layered technique

15

sets the rate control using prior knowledge of the capacity in a region and does not use

the dynamics of other layers. The cross-layer architecture sets both the data rates and

the resource allocations at the physical and MAC layers. The cross-layer approach

greatly outperforms the layered one.

2.3 Adaptability in Wireless Sensor Networks

Much work has been dedicated to the task of adapting MAC protocols to conditions

in the local neighborhood of a node [20] [30] [31]. The authors in [30] aim to adapt

the data rate for packet transmissions based on channel quality predictions in high-

rate WPANs. The intended destinations of a prospective sender are notified through

rate-adaptive ACK frames. In [20], van Dam and Langendoen propose T-MAC to

improve S-MAC by a novel adaptive active/sleep duty cycle. T-MAC sends packets

in bursts during active periods, and if no activity is detected during a small window

of time, nodes return to sleep. As a consequence, nodes have a shorter duty cycle

under T-MAC. In [31], Pham and Jha introduce MS-MAC, an S-MAC based protocol

that adapts S-MAC’s listening, sleeping and synchronization cycles to anticipated node

movements. Node displacement is calculated from changes in signal strength; in case

of rapid movements, a sending node hastens packet transmissions before a connection

is lost.

Jurdak et al. [32] introduced the idea of adaptive duty cycles in LPL protocols. Be-

cause a protocol designer must account for busy regions of the network, a fixed ti value

would have to be set conservatively. Consequently, many parts of the network would

waste energy by running at an unnecessarily high duty cycle. Adaptive Low-Power-

Listening, or ALPL, allows areas of the network to run at a lower duty cycle. After

forming their routing tree, each individual node can evaluate the number of packets

they will transmit per second based on the expected number of packets they will orig-

inate and that of their descendant nodes. These values are periodically announced by

the nodes. The further away from the data sink, the fewer children a node has, and

consequently, the smaller the packet rate it is expected to carry. Its duty cycle can thus

be lowered to a smaller value than that of nodes closer to the data sink. Contrary to

ALPL, our approach does not use a heuristic and adapts the duty cycle using control

16

theory techniques to meet the target rate of packets. Chapter 9 studies the consequences

of adaptive ti values over the network.

The idea of using control theory in sensor networks is not a new one, especially

because wireless sensor and actuator networks require such solutions. In our unique ap-

proach we optimize the duty cycle for both energy use and packet transmissions, which

cannot be easily modeled. Examples of existing methods that use results of control

theory to adapt parameters in a Wireless Sensor Network (hereafter, WSN) include [33]

and [34].

In [33], Vigorito et al. use control theory to adapt the duty cycle of nodes capable of

harvesting energy. Maintaining a sufficient power supply level is a non-trivial problem

because of changing environmental patterns such as the weather. The authors introduce

a model-free approach to adapt the duty cycle in dynamic conditions. Although they

set out to control only one parameter in the system (the energy supply level), which

constitutes a marked difference from our goals, much of their underlying theoretical

foundations are similar to those in the first part of our work described in Chapter 7.

In [34], Le et al. propose to optimize channel assignment to increase the throughput

in multi-channel WSNs using a control theory approach. The throughput on individual

channels can be easily modeled with the nodes’ individual load, which includes that

of its descendant nodes. When the total load Mi on channel i is above its optimal

value Mr (one that guarantees little contention for instance), nodes transmitting on this

channel may change to another channel j 6= i with a probability proportional to the

difference (error) between Mr and Mi. Le et al. also account for delay, which can

cause overshooting and undershooting—instability of the system response.

2.4 New Architectures

This section provides an overview of related work on cross-layer protocol architectures

and briefly outlines some of the architectures that will be surveyed in more detail in

this work. We also include protocols that have such a profound design impact that they

inevitably introduce a new architecture.

Whitehouse et al. introduced Hood [35], a neighborhood abstraction for WSNs that

allows nodes to identify neighbors with variables of interest. Nodes define attributes

17

that may be shared with neighbors. Upon receiving attributes, each node evaluates

whether these are valuable enough to be recorded in a neighbor list. Because it is not

an architecture, it is not part of this study. However, the solution retained to manage its

neighbor table is similar to ours.

In [36], Wang et al. survey existing cross-layer signaling methods, which most

closely corresponds to the explicit interfaces architecture mentioned above. Addition-

ally, the authors propose CLASS (Cross-LAyer Signalling Shortcuts), an architecture

that allows propagation of cross-layer messages through out-of-band signaling. Be-

cause Wang et al.’s work already surveyed the state of this type of architecture exten-

sively, the focus of our work does not include these architectures.

Conti et al. proposed MobileMan [37], an architecture for MANETs. MobileMan

extends cross-layering to all network functions through data sharing of local network

status. The goals of MobileMan include modularity, standardization, support for inter-

compatibility and maintenance. The philosophy behind MobileMan is to adapt the

Internet protocol architecture to MANETs while allowing cross-layer designs.

Sadler et al. [38] propose a shared platform among all layers of a protocol stack

for cross-layer optimizations. The authors recommend using a table of interchangeable

nodes (capable of handling the same application request) that lists equivalent nodes to

be used by the routing protocol when a link breaks. The criteria used are connection

oriented since the work focuses on providing reliable links in MANETs. While the

platform certainly introduced architecture choices made by Sadler et al., the paper fo-

cuses on protocol issues rather than a universal architecture. The principles guiding the

shared platform are, however, well represented in the surveyed architectures and are the

object of further study in our work.

In [39], Winter et al. propose CrossTalk, a cross-layer architecture for mobile ad-

hoc networks that aims to provide a global view of the network to individual nodes.

CrossTalk disseminates information over a full path, accumulating information about

sensor nodes along the way. Information is provided to all protocols in the stack. Even

though CrossTalk provides only pieces of information along data paths, the network

view is above 95% accurate.

In [40], Culler et al. propose SNA, a new architecture whose goals are to provide

data link abstraction and a modular network layer. Culler et al. broke protocols down

18

into fundamental functions that allow code-sharing and reuse. SNA also relies on a

sensor network protocol (SP) [41] and creates an abstraction level above the Data Link

layer to compensate for the multiplicity of platforms available today. SP uses informa-

tion repositories: a neighbor table and a message pool. Being a protocol, it also makes

decisions such as packet reordering and forwarding.

Dunkels et al. propose Chameleon in [42], an architecture that allows the applica-

tion and protocols above the transport layer to benefit from abstracted underlying com-

munication mechanisms. The architecture uses a small yet expressive packet header

to convey all communication patterns common to WSNs. This solution falls into the

vertical calibration category as defined by [26].

XLM [43] takes the reverse approach from the previous architectures by fusing all

communication layers into one. This helps ensure that all functions in the stack are

performed in a coordinated and sensible way. However, XLM has to assume that only

CSMA-based MAC protocols will be used. The natural presumption of this idea is

that this family of MAC protocols is the most energy efficient for a given QoS. Even

though XLM was not proposed as an architecture, but merely as a highly integrated pro-

tocol, the proposed changes are so pervasive that they incur fundamental architecture

redesign. XLM provides an interesting counter-point to information sharing among all

layers, even though the main goal of Akyildiz et al. was to maximize network lifetime.

The fused layers necessarily see the same information, much like layers of the other

architectures that dispose of the same data.

2.5 Services

Much work has been dedicated to developing and refining important services to im-

prove network protocol performance, such as time synchronization [44] [45], localiza-

tion [46], ID assignment [47] and entity assignment [48].

In [44], Römer proposes a time synchronization scheme that uses clock drift and

the exchange of two packets. The idea is not to synchronize local computer clocks, but

to measure time differences between packet transmissions. Figure 2.2 illustrates the

principles behind the algorithm.

RBS [45] allows for more precise time synchronization by stamping the time at

19

M
1

t
1−1

t
2−1

t
2−2

t
1−2

t
1−3

t
1−4

t
2−4

t
2−3

M
2

ACK
1

ACK
2

Receiver

Sender Time in Sender

Time in Receiver

Figure 2.2: Time diagram of the message delay estimation. The sender may measure

the delay as (t1−2 − t1−1)− (t2−2 − t2−1) or (t1−4 − t1−3)− (t2−4 − t2−3). The receiver

can estimate the packet delay as (t2−3 − t2−2) − (t1−3 − t1−2).

which a packet is received at the lowest level possible. Since most non-deterministic

delays in transmitting a packet lie between the layer originating a packet and the radio

(next-hop determination at the routing protocol, queue and MAC delays, etc.), RBS

removes much of the uncertainties associated in time synchronization. The algorithm

starts when a transmitter sends m broadcasts. Its neighbors then exchange the times at

which they received the m broadcasts with one another to synchronize their clocks.

In [47], Ould-Ahmed-Vall et al. propose a distributed algorithm that assigns glob-

ally unique IDs coded over the smallest number of bytes achievable to limit header

sizes. A tree structure is first organized using temporary IDs; parent nodes then assign

IDs to their children. In [48], Blum et al. propose middleware that forms and maintains

a unique entity around an event, allowing abstraction of the transport layer between

different entities.

In [49], Lenders et al. propose a publication service for data retrieval in the net-

work. To achieve this, two types of identifiers are introduced: the first, a service type

identifier (STID), and the other, a unique identifier (UID). Nodes providing the same

types of service on the network necessarily have the same STID. UIDs are only issued

before requesting a service that requires unique identification. Routing was inspired by

GRAB [11] and based either on STID fields, or UID fields depending on the needs of

individual nodes.

In [50], Stoica et al. propose i3 (Internet Indirection Infrastructure), a communica-

tion service that decouples the act of sending and receiving. When a sensor node has

data that it wants to share, it sends its node ID and the data to a logical identifier in the

20

local network. The identifier simply matches the posted data to triggers, which are sent

by a receiver interested in specific information. This rendez-vous based communication

abstraction provides support for mobility, anycast and multicast.

2.6 Middleware for Managing Cross-Layer Protocols

In [51], K. Römer et al. offer a look at challenges in designing middleware for sensor

networks. They identify the need for data-centric communications, adaptive fidelity

functions, and QoS knowledge. They also define middleware tasks as assigning high-

level and complex sensing formulation and adaptation to the network. Our research

mostly follows the precepts delineated by K. Römer et al.

Wang et al. provide a survey of middleware for WSNs in [52]. They analyze mid-

dleware projects in terms of programming abstractions (how the programmer views the

system), system services (support for application deployment, execution, and network

management), runtime support (management and redistribution of resources when the

node cannot provide them), and QoS mechanism (interaction between the application

and the network infrastructure, usually in the form of cross-layer components).

Among existing middleware for QoS mechanism, Wang et al. cite MiLAN [53],

whose role is to map application requirements to the nodes’ sensing capabilities so

as to provide the exact QoS required by the application. MiLAN [53] is a proactive

middleware that controls the sensors to adapt the network to the application needs as

they vary over time, specifying which sensors should send data, route packets, etc.

MiLAN allows the network protocols and the application to communicate thanks to

various graphs. The state-based variable requirements graph specifies what variables

are needed under different states of the monitored environment. The sensor QoS graph

communicates the abilities of each sensor node in providing QoS. Heinzelman et al.

also propose a taxonomy of middleware in [53] and classify MiLAN as adaptive and

proactive middleware for dynamic environments.

Other middleware techniques manage resources proactively: e.g., DSware [54],

MagnetOS [55], AutoSeC [56], etc. DSware does not require or allude to vertical in-

teractions with the protocol stack. MagnetOS, although a Java-based operating system,

carries middleware tasks to redistribute application components within the network.

21

Even if direct interaction with the protocol stack is not supported, this redistribution

has a direct impact on network protocols due to the shifting of communication end-

points. Conversely, AutoSeC specifically interacts with the protocol stack. It manages

network resources by collecting data from various protocols and services. However,

this relation is not bidirectional since middleware decisions are not explicitly fed back

to the protocol stack.

Most closely related to our work with middleware, described in Chapter 5, is Im-

pala [57]. Liu et al. proposed a middleware system, articulated around a new archi-

tecture that specifically focuses on middleware. Their design goals mirror many of our

own (modularity, ease of updates, energy efficiency, etc.). Much of Liu et al.’s work

focuses on replacing pieces of code on the fly. Impala also lets the application dy-

namically adapt to improve QoS and energy efficiency through a dedicated interface.

Packet-, data- and device-related events are provided to the application through this in-

terface, which filters and dispatches these events to the relevant application. The model

proposed in Chapters 4 and 5 differs in that a similar interface extends to all layers of

the stack, and that the flow of information is bidirectional. Moreover, data filtering is

done by checking whether an application query has fired before it is dispatched (a new

sensor value will not necessarily create a new event if it does not match the conditions

of a query).

Y. Yu et al. present a cluster-based middleware in [58] and provide a level of abstrac-

tion that separates application semantics from the layered protocol architecture. They

introduce a cluster forming layer (within the middleware virtual machine) responsible

for building clusters around a phenomenon in a distributed manner. They define knobs

or mechanisms designed to change the working mode of a sensor. These knobs are

similar in spirit to the tunable parameters presented in our work.

In [59], Cornea et al. study middleware optimizations for cross-layer architectures

dedicated to interactive mobile video streaming. The middleware identifies the view-

ing device and forwards this information to the nodes, who then adapt their sleep and

active periods, bit rate, frame rate, and video resolution to the needs of the viewing

device. Low-level optimizations are thus integrated with a middleware to enhance the

user experience.

Chapter 3

Gains and Limitations of Cross-Layer

Designs

3.1 Introduction

Many researchers have conjectured that wireless sensor networks can particularly ben-

efit from cross-layer architectures due to the inherent resource constraints of such net-

works and their application-specific quality of service metrics. Although more inte-

grated designs lose generality and increase complexity, they can be fine-tuned to better

serve a specific application.

One such cross-layer protocol for wireless sensor networks is DAPR (Distributed

Activation with Predetermined Routes) [6], which integrates sensor activation and rout-

ing functions. DAPR is based on the intuition that sensors whose data are less important

to the application should be likely candidates to serve as routers. DAPR jointly selects

which sensors should be active to cover the area with minimal redundancy and the

routes packets should take from these active sensors to the base station. Alternatively,

these functions of sensor activation and routing can be performed in a layered archi-

tecture as well. For example, PEAS [9] is a sensor management protocol that exploits

redundancy in densely covered areas to allow sensors to sleep and thus guarantees a

longer network lifetime. PEAS can be used with any standard routing protocol, such as

AODV.

The goal of the work described in this chapter is to study the respective advantages

22

23

and drawbacks of cross-layer and layered architectures, and hence to verify or rebut the

conjecture that cross-layer designs are well-suited to wireless sensor networks, through

a comparison of cross-layer and layered protocols. To this end, we use NS-2.28 [60]

simulations of cross-layer DAPR and PEAS+AODV with various network, sensor, and

phenomena scenarios. The application goal is to provide geographic coverage of the

network over time, as this was the original design goal for both DAPR and PEAS.

However, this metric can be generalized by redefining ‘application coverage’ for het-

erogeneous sensors—for example, by considering the ‘coverage’ of a person’s vital

statistics.

The results of our study lead us to argue for the implementation of certain types

of cross-layer optimizations, which can be facilitated through a new sensor network

architecture that would take advantage of tunable parameters present in every protocol.

3.2 DAPR: A Cross-Layer Protocol

DAPR quantifies the importance of each sensor to the application to avoid using key

nodes as routers. Each sensor is assigned an ‘application cost’ that reflects the criticality

of the node’s data. This application cost is shared among the routing and node activation

routines.

In DAPR, the base station, which also serves as the data sink, sends periodic queries

that trigger a route discovery phase and a role discovery phase. These two phases and

the query reply period form a round during which routes and sensor activations are

typically fixed. Figure 3.1(a) shows the timing of DAPR rounds.

3.2.1 Route Discovery Phase: Selecting Minimum Application Cost

Paths

In DAPR, the application cost measures the comprehensive coverage in the monitoring

area of a sensor. This cost is defined as the inverse of the coverage provided by all

sensors capable of sensing each sub-region (assessed in terms of total energy) of the

sensor’s coverage area, normalized by the area of each sub-region. Formally, applica-

24

Round N-1
Route Discovery

Phase - 40s
Role Discovery

Phase - 40s
Normal Operation

(query processing) - Vs
Round N+1

Round N

(a) A DAPR round.

2 3 2 1

A B C D

S1 S2 S3

(b) Sensor network coverage of a

rectangle region.

Figure 3.1: (a) DAPR rounds consist of three phases. (b) A sensor checks whether its

coverage is overlapping with that of others during the role discovery phase. Sensor 2 is

not needed to cover the rectangular area.

tion cost is defined as:

Cac(Si) =

∫

R(Si)

dx

E(x)
=

∫

R(Si)

dx
∑

Sj :x∈R(Sj)

Eres(Sj)
(3.1)

where Cac(Si) is the application cost for sensor Si, R(Si) is the coverage area of sensor

Si, E(x) is the total energy of all sensors capable of monitoring point x, and Eres(Sj)

is the residual energy of sensor Sj . Figure 3.1(b) provides an example to illustrate the

computation of application cost. In this example, each sensor has a residual energy of

1, i.e., Eres(Si) = 1. S1 has a cost of Cac(S1) = A
2

+ B
3

, and S2 and S3 have costs of

Cac(S2) = A
2

+ B
3

+ C
2

and Cac(S3) = B
3

+ C
2

+ D, respectively, where A, B, C, and D

designate the areas of the same name.

The base station periodically floods a query indicating its interest for sensor reports

and helps disseminate the nodes’ information. Sensors add their individual cost to the

current path cost to the base station, setting up routes as the queries flood through the

network. A node forwards a query after a delay proportional to the cumulative appli-

cation cost. This guarantees that a node always receives a first query through the path

25

of lowest cost. Later in the round, when sending a packet, each node selects its neigh-

bor with the lowest cumulative cost to the base station as the next hop. Consequently,

DAPR avoids routing packets through nodes whose coverage is critical.

3.2.2 Role Discovery Phase: Providing Maximum Coverage

When parts of the region of interest are densely covered, there may be many nodes

whose sensing area is fully redundant with the coverage provided by other active sen-

sors. These sensors can be turned off without degrading the global coverage, and they

can be activated later in time when their neighbors die and the network coverage be-

comes compromised. After the route discovery phase, nodes assess the necessity of

their own coverage after a delay inversely proportional to their cumulative cost: nodes

with a high cost consider turning off first. If a node determines that its data is redundant

with that of other active nodes, it beacons to its neighbors to indicate that it is deacti-

vating. In the case of a monitoring application, a node is not needed if its sensing area

is overlapping with already active nodes.

3.2.3 Integration with the MAC and Physical Layers

DAPR was originally designed to work with a TDMA-based MAC (referred to as RT-

dma) that enables nodes to sleep during periods of inactivity. The cross-layer design of

DAPR can be extended to the MAC layer, as seen when a node beacons to signal it will

be turning off during the round. A node checks whether its sensing area is redundant at

the MAC layer, rather than at the routing or sensor activation layers, to avoid problems

incurred by the MAC queuing delays. This ensures that a node will not improperly turn

off because it did not receive all beacons due to MAC queuing delays. To illustrate the

further advantages of integrating the MAC layer with the upper layers, we added sup-

port for DAPR to work on top of IEEE 802.11 in NS-2.28. Another level of integration

appears at the physical layer where transmission power control is used. This physical

layer uses only the power necessary to reach the destination node, ensuring precious

energy savings.

26

3.3 Simulation Scenarios and Results

While most researchers believe that cross-layer architectures can enable networks to

operate better for specific applications, it is not known exactly how much improvement

can be obtained using a cross-layer architecture, under what conditions these benefits

can be obtained, what the trade-offs are, or if a smart (layered) design can provide

sufficient gains. The goal of this section is to provide a thorough comparison of one

cross-layer architecture (DAPR) and one layered architecture (PEAS+AODV) to try to

answer these questions through evaluation of a data point in the architecture space.

3.3.1 Methodology: the Discrete and Continuous Cases

PEAS and DAPR were designed with distinct goals for the sensor network application.

While PEAS was proposed with the aim of tracking one or several targets in a region,

the main objective of DAPR was to deliver periodic data reports from all nodes moni-

toring the network. We refer to the first goal as discrete monitoring and the second goal

as continuous monitoring.

3.3.1.1 Discrete Monitoring of the Region

For simulations utilizing the discrete monitoring mode, only one (mobile) target is in-

troduced in the network. While several nodes might sense the presence of the target,

only one report is generated and sent to the base station. In the case of PEAS, the node

closest to the stimulus is elected to send the report in keeping with Ye et al.’s origi-

nal scheme, whereas DAPR selects the sensor with the smallest cumulative cost to the

data sink. New sensor reports are obtained every 10 s. The coverage of the network is

defined as the collective percentage of the region monitored by active sensors.

3.3.1.2 Continuous Monitoring of the Region

For simulations utilizing the continuous monitoring mode, all active nodes send one

report every 10 s to the data sink. This application requires that coverage be defined as

the cumulative areas covered by nodes whose data packets are successfully received at

the base station. As a consequence, nodes that are active but belong to a partition that

excludes the data sink are not counted in the calculation of coverage. This coverage

27

only differs from the discrete monitoring one when the node density is very low—

typically true at the very end of the network life.

3.3.1.3 Network and Protocol Parameters

We ran simulations on circular networks of radius 100 m for a coverage-based appli-

cation. Nodes were placed according to a uniform random distribution. The maximum

transmission range was set at 100 m. With these parameters, path lengths of 4 or 5 hops

were typically observed with DAPR. Our results compare DAPR with RTdma, DAPR

with IEEE 802.11, and PEAS with AODV and IEEE 802.11. We use the energy model

from [61] where the transmission and reception powers are 6 mW and 5 mW at 10 m.

The DAPR route and role discovery phase was set to 80 s, and the total round length

was set to 500 s. A short round length (e.g., 500 s) was found to yield a better net-

work lifetime at 100% coverage at the expense of reducing network lifetime for lower

coverage. In essence, the longer the query interval, the more similar DAPR behaves to

a layered architecture, and since this work compares layered and cross-layer designs,

we selected a short round length. While DAPR currently features a fixed round length,

an application might need a changing query interval based on application or environ-

mental states; we address this need and the means to control the round length through

a middleware system in Chapter 6.

3.3.2 Continuous Monitoring of a Region

3.3.2.1 MAC Layer Improvements

For the sake of exposing cross-layer improvements at the MAC layer, we ran simula-

tions with a modified application cost. In this case, we use a very common energy cost,

1
ǫrem

, i.e., the inverse of the sensor’s remaining energy. Figure 3.2 shows the cover-

age percentage as a function of the last time it was reached. The energy savings from

RTdma enable the fully integrated version of DAPR (DAPR+RTdma) to outperform

DAPR+802.11, as seen in Figure 3.2(a). Nodes with a TDMA MAC layer can con-

serve more energy by sleeping during periods of inactivity; also, they do not perform an

RTS / CTS / ACK handshake when they send a unicast packet. As the number of nodes

grows, full coverage is provided for a longer time with DAPR+RTdma (Figure 3.2(b)).

28

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Continuous Case − Number of nodes: 100

PEAS

DAPR+RTdma

DAPR+802.11

(a)

100 76 60 26
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Coverage (%)

L
if
e
ti
m

e
 (

s
)

Continuous case, all protocols

←
 D

A
P

R
+

R
T

d
m

a
←

 D
A

P
R

+
8
0
2
.1

1
←

 P
E

A
S

2
5
n
o
d
e
s

5
0
n
o
d
e
s

7
5
n
o
d
e
s

1
0
0
n
o
d
e
s

1
2
5
n
o
d
e
s

(b)

Figure 3.2: Continuous monitoring: network coverage over time for modified DAPR

(Cac(Si) ∝ 1
ǫrem

) and PEAS, given for 25, 50, 75, 100, and 125 nodes in (b). (a) is the

coverage percentage as a function of time for 100 nodes. DAPR outperforms PEAS,

and the contention incurred by 802.11 causes nodes to wrongly decide to sleep in the

first moments of the simulation. DAPR+RTdma, as a fully cross-layer design, prevents

deactivation mistakes.

Additionally, we found that when many nodes have roughly the same application

cost, as is true at the beginning of each simulation, IEEE 802.11’s contention incurs

29

delays in the delivery of beacons. This results in less than optimal coverage in the first

minutes of the simulation but is compensated by better coverage later in time as nodes

die and contention is eased. Fully cross-layer designs avoid this problem.

On the other hand, PEAS’ performance is more modest: the coverage, while reach-

ing 100% for the first 2, 500 s, decreases rapidly around 5, 000 s. The constant packet

sources add significant contention to the network, especially in dense networks; probes

and / or probe replies are either lost or not received in time, causing more sensors than

necessary to turn on. After a while, all nodes are activated and cannot go back to sleep,

as PEAS has no provision to turn off a node. This results in a premature loss of cover-

age. This characteristic toss up between the number of nodes and the coverage is shown

in Figures 3.2(b) where larger numbers of nodes do not necessarily translate into longer

lifetimes for PEAS.

3.3.2.2 Gains Are not Always Obtained from Cross-Layering

With DAPR’s original application cost (Cac ∝ 1
Σǫrem

) as defined in Section 3.2, the

network lifetime improves by 3% to 15% for levels of high-range to mid and low-range

coverage (shown in Figure 3.3). It can be inferred from Figures 3.3 and 3.4 that an

even greater improvement is obtained with DAPR+802.11 because only a few nodes

have the same application cost—which depends on the number of direct neighbors. As

a result, nodes do not evaluate opting out at exactly the same time, relaxing the MAC

incurred delays.

While cross-layer gains are possible and substantial as seen in the previous subsec-

tion, much of these gains can be achieved simply by selecting a carefully chosen ap-

plication cost. In the example provided above, cross-layering can help alleviate some

of the protocol stack’s shortcomings—such as MAC queuing delays. Figure 3.4 shows

that, on the other hand, DAPR with its original application cost and IEEE 802.11 does

not suffer from the queuing delays that were observed in Figure 3.2. The only ob-

servable difference between DAPR+802.11 and DAPR+RTdma stems from the MAC

overhead.

30

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Continuous Case − Number of nodes: 125

ε
−1

 App. Cost + RTdma

Original App. Cost + RTdma

Original App. Cost + 802.11

(a)

100 76 50 26
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Coverage (%)

L
if
e
ti
m

e
 (

s
)

Continuous case, all protocols

←
 O

ri
g

in
a

l
C

o
s
t

+
 R

T
d

m
a

←
 O

ri
g

in
a

l
C

o
s
t

+
 8

0
2

.1
1

←
 ε

−
1
 C

o
s
t

+
 R

T
d

m
a

2
5

n
o

d
e

s

5
0

n
o

d
e

s

7
5

n
o

d
e

s

1
0

0
n

o
d

e
s

1
2

5
n

o
d

e
s

(b)

Figure 3.3: Continuous monitoring: network coverage over time for DAPR with its

original (Cac(Si) ∝ 1
Σǫrem

) and modified (Cac(Si) ∝ 1
ǫrem

) costs, given for 25, 50, 75,

100, and 125 nodes in (b). (a) is the coverage percentage as a function of time for 100

nodes. With RTdma, the original cost allows for gains of 3% to 15% over the energy

cost.

3.3.3 Discrete Monitoring of a Region

Figure 3.5 presents the coverage percentage as a function of the last time it was achieved

in the discrete case. In this configuration, the relative weight of overhead is predominant

31

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Continuous Case − Number of nodes: 100

PEAS

DAPR+RTdma

DAPR+802.11

(a)

100 76 60 26
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Coverage (%)

L
if
e
ti
m

e
 (

s
)

Continuous case, all protocols

←
 D

A
P

R
+

R
T

d
m

a
←

 D
A

P
R

+
8
0
2
.1

1
←

 P
E

A
S

2
5
n
o
d
e
s 5
0
n
o
d
e
s

7
5
n
o
d
e
s

1
0
0
n
o
d
e
s

1
2
5
n
o
d
e
s

(b)

Figure 3.4: Continuous monitoring: network coverage over time for DAPR with origi-

nal cost (Cac(Si) ∝ 1
Σǫrem

) and PEAS, given for 25, 50, 75, 100, and 125 nodes in (b).

(a) is the coverage percentage as a function of time for 100 nodes. For this application,

PEAS is greatly outperformed, and the MAC level inefficiencies of DAPR are no longer

observed.

since only one packet is sent every 10 s.

Figure 3.5 shows that DAPR (with both MAC protocols) provides large coverage

(> 85%) for longer than PEAS; however, the amount of time that DAPR can achieve

32

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Discrete Case − Number of nodes: 100

PEAS

DAPR+RTdma

DAPR+802.11

(a)

100 76 50 26
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Coverage (%)

L
if
e
ti
m

e
 (

s
)

Discrete case, all protocols

←
 D

A
P

R
+

R
T

d
m

a
←

 D
A

P
R

+
8
0
2
.1

1
←

 P
E

A
S

2
5
n
o
d
e
s

5
0
n
o
d
e
s

7
5
n
o
d
e
s

1
0
0
n
o
d
e
s

1
2
5
n
o
d
e
s

(b)

Figure 3.5: Discrete monitoring: network coverage over time for DAPR and PEAS,

given for 25, 50, 75, 100, and 125 nodes in (b). (a) is the coverage percentage as a

function of time for 100 nodes. For this application, DAPR outperforms PEAS for

coverage > 85% but the low overhead of PEAS guarantees a longer lifetime for mid-

to-low range coverage.

medium coverage (< 75%) is much shorter than for PEAS. For 100 sensors, 95% cover-

age is provided for up to 20, 000 s with DAPR+RTdma, 19, 000 s with DAPR+802.11,

and 2, 000 s with PEAS. The RTdma MAC allows for energy savings compared to

33

IEEE 802.l1. However, since the number of broadcast packets is much higher than that

of unicast packets, the gains offered by TDMA are minimal in this case. The over-

head of DAPR, although it enables a maximum coverage for a longer time, shortens the

lifetime for networks that do not require large coverage.

Alternatively, PEAS, capitalizing on its minimal overhead, shows a lifetime at 50%

that is superior to that of DAPR. As the number of nodes increases, so does the differ-

ence observed between the lifetime of DAPR and PEAS for medium to low coverage:

while the overhead remains the same for PEAS, it increases drastically for DAPR since

the overhead is related to the number of neighbors.

Additionally, the small number of data packets on the network has no significant

impact on the lifetime. For PEAS, the network lifetime increases almost linearly with

the number of nodes, as seen in Figure 3.5(b). In effect, when only n nodes are required

to provide a sufficient coverage, the remaining sensors are asleep. When the first set

of nodes dies after t seconds, a new pool of sensors turns on, prolonging the network

lifetime by t. In the case of DAPR, overhead penalizes the network, accounting for

smaller gains in network lifetime as the number of nodes increases—thus explaining the

non-linearity of coverage increase with the number of nodes observed in Figure 3.5(b).

3.3.4 Non-uniform Node Deployment

In this set of experiments, ρ percent of the nodes are placed in a region located beyond

a circle of radius 70 m and inside a circle of radius 100 m (see Figure 3.6(d)). We

ran simulations for ρ equal to 60%, 70%, 80%, and 90%. Figures 3.6(a)(b)(c) show

the evolution of the network lifetime for various ρ (most nodes are located at the pe-

riphery of the network). As seen from these graphs and Figure 3.6(e), DAPR’s relative

performance increases as the non-uniformity of the node deployment becomes more

pronounced. The DAPR application cost lets the network realize early that the sensors

located in the center of the network are critical to the network coverage and thus DAPR

tries to preserve them.

On the other hand, PEAS indiscriminately chooses these sensors to serve as routers

(as AODV favors shorter routes). In PEAS, high coverage is rapidly lost in these non-

uniform scenarios, while low-range coverage is maintained for a longer time thanks to

the low overhead of PEAS. Thus, the cross-layer scheme provides a clear improvement

34

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Discrete Case − Number of nodes: 125 − ρ=70%

PEAS

DAPR+RTdma

DAPR+802.11

(a)

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Discrete Case − Number of nodes: 125 − ρ=80%

PEAS

DAPR+RTdma

DAPR+802.11

(b)

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Discrete Case − Number of nodes: 125 − ρ=90%

PEAS

DAPR+RTdma

DAPR+802.11

(c)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100
Node deployment

ρ % nodes deployed in this region

(d)

90 70 50
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4 Lifetime
PEAS

 − Lifetime
DAPR+802.11

Coverage (%)

D
if
fe

re
n

c
e

 b
tw

 P
E

A
S

 a
n

d
 D

A
P

R
 (

s
)

LifetimePEAS > LifetimeDAPR

LifetimePEAS < LifetimeDAPR

ρ
 =

 6
0

%

ρ
 =

 7
0

%

ρ
 =

 8
0

%

ρ
 =

 9
0

%

(e)

Figure 3.6: d) shows a typical node deployment for discrete monitoring (the inner and

outer radii are 70 m and 100 m). a), b) and c) are the network coverage over time

for 125 nodes for 70%, 80%, and 90% of the nodes deployed in the ring. e) is the

difference in lifetime (LifetimePEAS − LifetimeDAPR in seconds) for various ρ at

90%, 70%, and 50% coverage. As the non-uniformity of the deployment increases, so

does DAPR’s relative performance.

35

in coverage / lifetime but is countered by its own incurred overhead.

3.4 Gains of Cross-Layering Within the Same Protocol

3.4.1 Advantages and Drawbacks

As the previous results have shown, there is no architecture that performs consistently

better than the others for all applications and all levels of coverage. In general, cross-

layer approaches are harder to create and modify: they are usually more complex, com-

pute intensive, and require more overhead.

This being said, we can define a set of tunable parameters from cross-layer archi-

tectures that would allow for a better QoS in a real-time environment: the definition

of coverage (e.g., geographical coverage, covering the needs of the application such as

health monitoring, signal-to-noise ratio (SNR)), the query interval (to minimize periods

during which the delivery of data packets is not guaranteed or optimal such as during

the route and role discovery phases or guarantee peak services), and application cost

(to minimize partitioning, delays, etc.). For example, we could envision that the appli-

cation cost be changed when a node outputs a large amount of data (deemed important)

to avoid a hot spot problem.

The layered protocol, on the other hand, enjoys a relative simplicity, keeping the

overhead to low levels. However, adaptability is not a measure of how tunable the

protocol may be: PEAS provides only a small set of parameters (sleep duration, number

of probe and reply retransmissions) that a user or a middleware could refine to adapt

to a changing environment or application requirement. It is unclear, however, exactly

what benefits cross-layering brings, or whether a smart layered design could provide

similar performance.

In order to quantify the gains only ascribable to the cross-layer nature of the design,

we created a layered version of DAPR. For a partially layered (or hybrid) DAPR, nodes

elect whether or not to activate based on individual node costs, not cumulative route

costs—thus the selection of active sensors and routers is done independently and with

little correlation. Further layering of DAPR necessitates no longer checking usefulness

of each node at the MAC layer but at the node activation layer (layered DAPR).

36

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Continuous Case − Number of nodes: 125

Fully CL DAPR+RTdma

Partially Layered DAPR+RTdma

Layered DAPR+802.11

(a)

100 76 50 26 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Coverage (%)

L
if
e
ti
m

e
 (

s
)

Continuous case, all protocols

←
 L

a
y
e

re
d

 D
A

P
R

+
8

0
2

.1
1

←
 H

y
b

ri
d

 D
A

P
R

+
R

T
d

m
a

←
 C

ro
s
s
L

a
y
e

r
D

A
P

R
+

R
T

d
m

a

2
5
n
o
d
e
s

5
0
n
o
d
e
s 7

5
n
o
d
e
s 1

0
0
n
o
d
e
s

1
2
5
n
o
d
e
s

(b)

Figure 3.7: Continuous monitoring: network coverage over time for cross-layer, hybrid,

and layered modified DAPR using the energy cost 1
ǫrem

. (b) is the network lifetime for

25, 50, 75, 100, and 125 nodes. (a) is the coverage percentage as a function of time for

125 nodes. The fully cross-layer and hybrid designs perform similarly for high-range

coverage, and the only significant difference happens for low-range coverage.

37

1 5

3

4

7

6

0 - 0 20 - 20

25 - 30

20 - 40

10 - 40

10 - 50

2

5 - 5

Figure 3.8: The numbers represent: NodeId in circles, Individual Cost - Cumulative

Cost. Recall that nodes with the smallest cost forward the query first. If nodes 3 and 4

have overlapping sensing areas, node 4 (individual cost of 20) will activate but is part of

a path with higher cost than 3 (individual cost of 25). Node 7 will thus route its packets

through 4, using a less efficient route than if 3 had activated.

3.4.2 Additional Results: the Impacts of Cross-Layering

3.4.2.1 Energy Application Cost

In Figure 3.7, we first present results obtained using an individual energy cost (1
ǫrem

) in-

stead of the original (horizontal cross-layer) DAPR application cost, as first introduced

in Section 3.3. Such a cost is not a measure of how densely a subregion is covered,

and consequently can be seen as an application independent feature within cross-layer,

hybrid, and layered architectures.

Figure 3.7 shows that the cross-layer design performs very similarly to the hybrid

one. The two designs yield equal high-range network coverage, and only for mid to

low-range coverage does the fully cross-layer architecture outperform the hybrid and

layered designs. The layered design (DAPR+802.11 with no MAC cross-layer opti-

mization) does not suffer from the problem exposed in Section 3.3.2.1: the individual

costs are sufficiently different that few nodes try to opt out at the same time. When the

same design is used with RTdma, the simulation results are in all points similar to the

hybrid case presented here, and thus we decided not to show them.

In the hybrid and layered schemes, sensors that activate tend to be the ones with the

most remaining energy while their path to the sink may be comprised of intermediary

38

nodes with very low remaining energy. Figure 3.8 illustrates this non-optimal selec-

tion mechanism. In this example, nodes use their individual (energy) cost instead of a

cumulative cost. Nodes with low application cost forward queries earlier, thus setting

paths that include sensors with low remaining energy. If sensors 3 and 4 have overlap-

ping sensing areas, 3 will turn off, forcing node 7 to use a non-optimal path. Later in

the simulation, these bad choices reduce the network lifetime.

At the end of the simulation, a greater disparity is observed between the cross-layer

and layered schemes. The use of the individual energy cost (layered DAPR+RTdma and

hybrid DAPR+RTdma) causes many nodes with very low remaining energy to consider

opting out at the very end of the role discovery phase. The beacon delay is proportional

to the inverse of the remaining energy and can be at most equal to the discovery phase

duration. When this maximum value is reached for several neighboring nodes, the

node activation process is random: their sometimes very different costs can only be

represented by one value of saturation.

These results show that cross-layer gains are possible, but they remain marginal.

The following subsection gives another reading of this issue.

3.4.2.2 Original DAPR Application Cost

Figure 3.9 shows the network coverage as a function of time in the continuous case with

the original DAPR application cost. While modest gains from partial cross-layering ex-

ist for very-low coverage monitoring, the advantages of using a fully cross-layer design

seem overall marginal. On the other hand, the fully cross-layer design retains clear

advantages over the layered approach for all network coverage. However, the layered

design using RTdma in place of IEEE 802.11 (not shown in Figure 3.9) performs ex-

actly as the partially layered design since contention and queuing delays are not as

critical. In this design, nodes evaluate if they have to opt out at the node activation level

whereas the MAC layer has no consideration for this, but the RTdma scheme ensures

that beacons are delivered with acceptable delays. The joint selection of routes and

node activation offers no clear advantage over the layered approach: queries still reach

distant nodes using paths of smallest cost because the delays before forwarding a query

are proportional to costs. Both costs are a reflection of how densely covered a region

is.

39

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Continuous Case − Number of nodes: 125

Fully CL DAPR+RTdma

Partially Layered DAPR+RTdma

Layered DAPR+802.11

(a)

94 80 50 20 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Coverage (%)

L
if
e
ti
m

e
 (

s
)

Continuous case, all protocols

←
 L

a
y
e

re
d

 D
A

P
R

+
8

0
2

.1
1

←
 H

y
b

ri
d

 D
A

P
R

+
R

T
d

m
a

←
 C

ro
s
s
L

a
y
e

r
D

A
P

R
+

R
T

d
m

a

2
5
n
o
d
e
s

5
0
n
o
d
e
s 7

5
n
o
d
e
s 1

0
0
n
o
d
e
s

1
2
5
n
o
d
e
s

(b)

Figure 3.9: Continuous monitoring: network coverage over time for cross-layer, hybrid,

and layered DAPR, given for 25, 50, 75, 100, and 125 nodes in (b). (a) is the coverage

percentage as a function of time for 125 nodes. The cross-layer and hybrid show no

significant difference in lifetime.

As seen in Figure 3.10, the simulations in the discrete monitoring case provide

similar results and differ only by an increase in the network lifetime (fewer packets are

sent every round).

In the non-uniform deployment case first introduced in Section 3.3, the simulation

40

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Discrete Case − Number of nodes: 125

Fully CL DAPR+RTdma

Partially Layered DAPR+RTdma

Layered DAPR+802.11

(a)

100 76 50 26
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Coverage (%)

L
if
e
ti
m

e
 (

s
)

Discrete case, all protocols

←
 H

y
b

ri
d

 D
A

P
R

 +
 R

T
d

m
a

←
 L

a
y
e

re
d

 D
A

P
R

 +
 8

0
2

.1
1

←
 C

ro
s
s
−

la
y
e

r
D

A
P

R
 +

 R
T

d
m

a

2
5

n
o

d
e

s

5
0

n
o

d
e

s 7
5

n
o

d
e

s

1
0

0
n

o
d

e
s 1
2

5
n

o
d

e
s

(b)

Figure 3.10: Discrete monitoring: network coverage over time for cross-layer, hybrid,

and layered DAPR with original cost, given for 25, 50, 75, 100, and 125 nodes in (b).

(a) is the coverage percentage as a function of time for 125 nodes. No significant

difference is observed between cross-layer and hybrid designs.

results presented in Figure 3.11 show that there is no significant gain obtained from

cross-layering although the network topology should be more advantageous to the fully

cross-layer designs.

To conclude this section, we argue that the cross-layer gains obtained when using

41

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

Continuous Case − Number of nodes: 125

Fully CL DAPR+RTdma

Partially Layered DAPR+RTdma

Layered DAPR+802.11

(a)

100 76 50 26
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Coverage (%)

L
if
e
ti
m

e
 (

s
)

Continuous case, all protocols

←
 H

y
b

ri
d

 D
A

P
R

 +
 R

T
d

m
a

←
 L

a
y
e

re
d

 D
A

P
R

 +
 8

0
2

.1
1

←
 C

ro
s
s
−

la
y
e

r
D

A
P

R
 +

 R
T

d
m

a

2
5

n
o

d
e

s

5
0

n
o

d
e

s

7
5

n
o

d
e

s

1
0

0
n

o
d

e
s 1
2

5
n

o
d

e
s

(b)

Figure 3.11: Continuous monitoring in a non-uniform deployment with 90% of the

nodes at the periphery: network coverage over time for cross-layer, hybrid, and layered

DAPR, given for 25, 50, 75, 100, and 125 nodes in (b). (a) is the coverage percentage as

a function of time for 125 nodes. No significant lifetime gain is obtained for cross-layer

DAPR over the hybrid scheme even though the non-uniformity should advantage the

former.

the remaining energy as a cost are greatly exceeded by a more efficient cost (i.e., appli-

cation cost). This application cost, which brings an estimate of the density of coverage

42

in a region, appears more significant in improving performance than cross-layer vs.

layered designs.

3.5 Discussion of the Usefulness of Cross-Layering

Our work and that of others [27] have shown that cross-layering provides sometimes

elusive advantages and is strongly subjected to specific application goals and protocol

designs. Cross-layering can help alleviate protocol design weaknesses and limitations.

For instance, PEAS fails to correctly serve the continuous monitoring application due

to its design, which left no provision to send nodes back to sleep. One could imagine

stopping packet flows around a node probing for neighbors. While this would not

render the protocol immune to probe packet losses, the probe replies would be more

likely to be received successfully, allowing a sensor to sleep longer. However, this

is a cross-layer approach, with interaction between the sensor management protocol

(PEAS) and the network and / or MAC layers, thus corroborating the argument that

cross-layer protocols can, at times, better serve specific application needs.

It is also obvious that gains can be obtained when the physical layer uses location

information (typically found at other layers or provided by a specific service) to control

the transmission power.

Although introduced a few years ago in the research community, there are many

definitions of cross-layering in sensor networks protocols. The following are two dif-

ferent definitions for cross-layering:

• Information sharing: the most commonly used, this architecture provides support

for sharing specific information available at one layer to at least one other layer

of the protocol stack.

• Layer fusion: in this architecture operations typically executed at different layers

are combined in order to optimize the protocol.

Transmission power control and the MAC optimization to check whether a sensor’s

coverage is needed are examples of information sharing. Conversely, the mechanism

of route determination and node activation in DAPR is an implementation of layer

fusion. While benefits for information sharing are obvious and well established, layer

43

fusion does not seem to deliver on the promised gains as specifically shown by our

comparative study of the cross-layer and layered DAPR protocols. Layer fusion does

not appear to bring significant improvements when the design of the architecture is

sound.

We argue that all layers of a protocol should have access to the same valuable infor-

mation through a platform reaching across the stack. The details of such a design are

given in Chapter 4. It is clear however that such an architecture could aim to provide

information to allow the individual protocols to optimize a set of tunable parameters. In

the case of DAPR for instance, we argue that sharing information about the application

requirement can greatly benefit the overall network lifetime. Also, several layers in the

protocol may have an interest in knowing the application cost, the query length, the

neighbors’ status, etc. A simple illustration in the case of PEAS is the following: we

can imagine having the node activation protocol send several probes and replies when a

node detects that congestion is severe, with the exchange of information about current

congestion conditions sent from the MAC layer through the proposed platform.

3.6 Summary

This chapter presented a comparison of a cross-layer architecture versus a layered ap-

proach for continuous and discrete monitoring applications in wireless sensor networks.

The cross-layer architecture enables its users to benefit from full coverage for slightly

longer than the layered architecture when reporting on a discrete event, but it greatly

reduces the lifetime for smaller coverage. The overhead of the cross-layer architec-

ture becomes limiting in the face of so little traffic on the network, but this overhead is

necessary to obtain high coverage in an evolving network.

For continuous monitoring by all active nodes, the resilience of the cross-layer de-

sign preserves the full coverage by shifting the weight of relaying packets to sensors

placed in dense areas. In this case, the cross-layer architectures greatly outperform

the layered design. While hard to quantify, each level of integration in the cross-layer

protocol adds to the lifetime of the network as a whole. Our work extensively shows

that while cross-layer designs are not the panacea to all applications, they are able to

better serve applications with specific requirements (for instance, a requirement of 95%

44

coverage for as long as possible).

When comparing two configurations of the same protocol (layered and cross-layered

DAPR), we observed that the architecture benefits from sharing information, but we

were unable to link a high degree of integration between two layers to any significant

improvement in the network lifetime. Thus, we propose creating an architecture that

maintains a layered design, but where all the protocols in the stack would have access

to important information regarding the state of the sensor, network, application, etc.

While obviously not exhaustive, our simulations provided a data point in the oth-

erwise large and uncharted domain of cross-layer improvements and trade-offs. It re-

mains clear that light-weight protocols such as PEAS can outperform more involved

cross-layer designs like DAPR. However, the current trend of sensor network imple-

mentations is cautiously shifting toward serving more complex applications, for which

the former may be too simplistic. Efficiently sharing information in cross-layer designs

will greatly counter-weight the inevitable increase in overhead.

This work shows that DAPR may adapt to the (possibly changing) requirements

of an application through a smart middleware. Information from the application may

be used to tune internal parameters to save precious nodes for critical moments of the

network deployment. A set of tunable parameters of the cross-layer design (such as

round length and application cost) can be defined. Another teaching of this study re-

veals that an efficient new sensor network architecture would be one that shares relevant

information with all the layers of the protocol stacks.

Chapter 4

A New Cross-Layer

Information-Sharing Sensor Network

Protocol Architecture

4.1 Introduction

While protocols and algorithms for wireless sensor networks (WSN) have been the

subject of much research, little attention has been paid to sustainable architectures for

these networks. The use of sensor networks in every day life has been slow in com-

ing, as sensor networks are still subject to enduring challenges in energy conservation

and bandwidth use, as well as the lack of a durable and flexible yet supportive archi-

tecture. Historically, little thought has been given to specific architectures for wireless

sensor networks, with the most widely used architecture inherited from wired computer

networks in the form of the OSI model.

To date, there have been numerous proposals of cross-layer protocols, which use the

specificities of sensor networks to improve the network lifetime and the response to the

end application. The word “cross-layer” may refer to various designs, many of which

are identified by Srivastava et al. in [26]. One type of cross-layering fuses two or more

layers into a single, integrated layer (Figure 2.1(b)). Another type of cross-layering

allows information to be shared among several (non-adjacent) layers (Figure 2.1(c)).

Clear advantages of cross-layer designs include the following:

45

46

• They provide a network and application specific response to the user’s needs by

closely adapting the protocol stack to the requirements and constraints of the

deployment.

• They can greatly improve the network’s performance and lifetime.

• They help rid the stack of unnecessary layers of the OSI model in some deploy-

ments.

These advantages come at the cost of the following drawbacks:

• Cross-layer designs are hard to maintain and update, and they make it difficult to

replace parts of the protocols.

• They require a coherent design for real gains and to avoid unforeseen and unde-

sirable interactions [62] [63] [27].

• They cannot be ported to other applications since they lack generality.

To have a chance at sustaining the development of wireless sensor networks, a pro-

tocol architecture should exhibit the following desirable characteristics, among others:

• Flexibility: new protocols or improved versions of existing ones should find their

way into current WSN deployments or developments in order to gain from the

latest technology. However, this benefit may be outweighed by the amount of

work necessary to include them into an existing framework. A strong WSN ar-

chitecture should thus ease protocol swapping.

• Information freshness: protocols often rely on a set of parameters that define a

local sub-network at a certain time. It is desirable that an architecture provides

an up-to-date vision of a node’s neighborhood.

• Simplicity: In order to guarantee the quick adoption of WSN as a preferred so-

lution for industry, an architecture should be simple to use. We believe a simple

architecture is one that does not carry hidden operations and that provides a uni-

fied access to its data structures.

47

At the same time, the architecture should enable the protocols to achieve long net-

work lifetimes for various applications. These are, in general, conflicting goals, with

the former set of goals achieved using layered architectures and the latter goal achieved

using cross-layer architectures.

Interactions between layers, as enabled by cross-layer designs, make protocol main-

tenance and replacement a complex and time consuming task. In the research field of

wireless sensor networks, protocols are introduced and improved regularly. Because

wireless sensor networks are as diverse as the applications they serve, no one proto-

col suite has emerged (nor likely will in the foreseeable future) as a universal solution.

Consequently, new WSN architectures are needed that ease protocol substitution and

maintenance, and this is one of the goals of our work.

Following the seminal work of Kawadia et al. [27] urging researchers to adopt

a cautionary stance on cross-layer protocols, many use great care—if not a dose of

skepticism—in designing cross-layer schemes. One solution to prevent the spaghetti

design mentioned in [27] is to retain a traditional layered structure in the protocol stack

but share information among the layers, as promoted in [64]. While such architectures

do not eliminate the need for careful protocol design, they can guarantee the availability

and correctness of information shared among many levels of the stack.

The first steps taken towards such an information-sharing architecture occurred in

the field of mobile ad-hoc networks (MANET) with MobileMAN [37] and CrossTalk [39].

Later, SNA [40] was introduced specifically for wireless sensor networks. Chameleon [42]

shares many of the goals of SNA but provides a different solution. XLM [43], proposed

by Akyildiz et al., takes the interesting opposite solution and fuses all communication

layers to best support the sensor network application. These architectures present a

variety of approaches to meeting the goals of flexibility, universality, simplicity and

support for application goals.

In the previous chapter, we showed that while information sharing can be bene-

ficial, layer fusion shows surprisingly little improvement in the face of other design

optimizations. We therefore propose in this work an architecture that provides support

for the former, while still leaving open the possibility for the latter.

The most common existing protocol architectures are the OSI protocol stack and

application-specific cross-layer architectures. The layered stack does not provide a

48

common framework for information sharing and thus cannot provide maximum life-

time for sensor network applications. Application-specific cross-layer architectures,

on the other hand, while greatly improving network lifetime, lack the generality that

would help popularize wireless sensor networks and ease their development for differ-

ent applications. Furthermore, no existing protocol architecture supports protocols that

require information not typically ascribed to that layer’s primary function. For exam-

ple, oftentimes node location is required at the network layer, which should be solely

responsible for routing data throughout the network and not finding node locations.

Thus, outside services should provide this extra information that may be needed by one

or more protocols.

The contributions of this chapter are twofold: we survey the above-mentioned ar-

chitectures, exposing their relative strengths and weaknesses against a set of desirable

(and at times, contradictory) goals, and we propose a new architecture called X-Lisa

(Cross-Layer Information Sharing Architecture) that maintains a layered structure for

increased generality, while supporting cross-layer information-sharing. X-Lisa pro-

vides information repositories for storing the sensor node’s current state and local view

of the network. Access to, and freshness of, these tables is guaranteed to all layers

through a fixed interface. Additional support for the protocols comes from a library

of services available to the programmer. X-Lisa provides support for the discovery,

maintenance and sharing of critical information, thus allowing protocols to re-focus

solely on their primary tasks. This eases the burden of designing new protocols by

allowing the protocol designer to pre-suppose the existence of important information

without requiring the protocol to directly find this information. Our implementation of

X-Lisa in TinyOS includes elegant solutions to guarantee flexibility even in this sim-

ple and stripped down operating system. At the same time, this common framework

for information-sharing comes at a cost of an increase in storage overhead and packet

sizes, and thus it is not suitable for extremely resource-constrained sensor networks.

4.2 Architectural Approaches

The widespread success of the OSI model [65] in wired networks provided a starting

point in architectural design for protocol stacks in the new fields of MANET and WSN,

49

with the OSI model constituting the legacy architecture for these new, more complex

networks. Although the OSI model had not been intended for the specificities of WSN

and MANET, this architecture proved flexible enough (with the help of some ad-hoc

violations to accommodate cross-layering designs) to stimulate the growth of these two

fields. In this traditional architecture, direct communication is only permitted between

adjacent layers. Protocols may obtain information from the packet headers and data

units, and from the same layers in distant or direct neighbors. This incurred more hor-

izontal communication (between neighbors), which the bandwidth of wired networks

could easily support. However, cross-layer protocols have introduced architectural vi-

olations that allow a layer to communicate in some form or another with non-adjacent

layers. Such designs aim to benefit from the specificities of WSN to increase network

lifetime and application quality of service (QoS) support, and to avoid wasting band-

width, a scarce resource in WSN.

Existing architectures MobileMan, CrossTalk and SNA and our proposed architec-

ture X-Lisa all fall into the shared databases described by Srivastava [26] by defining a

set of commonly available data structures. XLM represents an example of merging of

adjacent layers.

Figure 4.1 presents a taxonomy of the architectures surveyed in this work. We focus

on the architectures that allow information-sharing through a shared database. We also

include XLM in our survey because it supports cross-layering while taking the counter-

part of information-sharing.

4.2.1 MobileMan: Subscription to an Abstracted Database

MobileMan [37] provides an abstracted database, called the network status (NeSt),

which is made available to all layers of the stack through a publish / subscribe API.

NeSt organizes the exchange of information in the stack: a protocol that needs infor-

mation from other layers has to register with NeSt and subscribe to event notifications

regarding this information. Protocols whose information is of interest to others must

notify NeSt of the occurrence of an event. NeSt then delivers the incidence match to

the various protocol subscribers.

To the best of our knowledge, NeSt does not organize information exchange about

a node’s neighbors (horizontal information-sharing), and it leaves the burden of event

50

Layer Fusion

CLASS RIME

XLM

Layered Protocols Cross−layer Protocols

Information SharingAd−Hoc Modifications

OSI Based Architecture

Legacy* Architecture

Publish / SubscribeWrite / Read

Data Base

Architectures

SP

CrossTalk

X−Lisa

MobileMan

OSI Model Layer Fusion

Vertical CalibrationSignaling

Figure 4.1: Classification of some architectures for MANET and WSN. MobileMan

abstracts a data base through signaling, as highlighted by the dotted circle.

notification to data-supplying protocols. Adding such functionalities to all the protocols

in the stack may involve levels of refinement and complication not suited for MANET,

and a fortiori WSN. This is because the goal of MobileMan is to adapt Internet legacy

protocols and applications to MANET, where the benefits of cross-layering are greater.

While MobileMan facilitates protocol swapping, the end goal is to support Internet

technology over wireless ad-hoc technologies.

The solutions retained by the MobileMan workgroup are elegant and ingenious:

NeSt does not store data but merely provides an abstraction for information exchange. It

also allows complex events to be disambiguated and reported to the protocols that have

an interest in them. However, NeSt asks much of the protocols in the stack, possibly

causing information exchange to be hindered by very procedural access.

4.2.2 CrossTalk: A Common Database for MANET

Because publish / subscribe mechanisms may be complex and lack generality, a non-

abstracted database made available to all layers in the stack may be more suited to

the needs of networks with limited resources. CrossTalk [39] exemplifies how such a

database may be used and populated.

The goals of CrossTalk are quite similar to those of MobileMan: adaptability and

51

flexibility are desirable to allow ease of protocol maintenance and replacement. CrossTalk

provides local information to all protocols in the stack, as well as a global view of the

network: a set of parameters deemed of interest to the protocols is gathered about dis-

tant nodes. A global view of the network is thus propagated, forming a context for each

node. With this information, individual nodes can evaluate their relative situation and

modify their behavior accordingly. For instance, a back-off value of two seconds at the

MAC protocol of a node has little meaning by itself, whereas knowing that the average

back-off in the visible network is 1 s indicates over-utilization.

Because it may represent considerable amounts of raw data, the information re-

ceived by every node is compounded, possibly using a weighted average. Generally

speaking, information from very far nodes receive small weights, as well as that of very

close nodes (because of inherent local correlation), giving the averaging weights a tri-

angular shape. A similar weighting technique can be applied in time, because very old

information bears little importance.

The global view of the network is formed by propagating information over several

hops: a source node appends the set of parameters that are then read by every relay node

on the path. Winter et al. argue that a global view of the network at the individual nodes

can greatly improve the performance of the network. However, the implementation of

CrossTalk was carried out in NS-2, a rich programming language. Under TinyOS [2],

the incurred per-packet overhead can be (conservatively) broken down into the follow-

ing: (2 + 2)B for X and Y location, 8B for time stamping, and nB for the value of the

exchanged information.

CrossTalk seems particularly well adapted to MANET: the information propagation

model takes advantage of multiple {source; destination} tuples. During their evalua-

tion, Winter et al. allowed all 200 nodes in the network to transmit data to random des-

tinations chosen every 10 s. For WSN however, packets tend to travel along routes that

converge towards the same data sink, and in general the same (centripetal) direction.

WSN have a propensity to display characteristic bursts of packets (when an intruder

is detected or during high stress states of a monitored entity), and few applications re-

quire a constant flow of packets from large subsets of the network. Thus, the amount of

disseminated information can be expected to be small.

52

4.2.3 SNA: Abstraction of Lower Layers and Basic Functions

Culler et al. proposed the Sensor Network Architecture (SNA) in [41] then [40] with the

main objective to provide greater modularity to sensor hardware designs and communi-

cation protocols. The suggestion made in [41] was to decouple aspects of the software

from the underlying hardware in order to abstract the platform on which the network

stack is set. To do so, the Sensornet Protocol (SP) bridges the link and network layers

by abstracting key parameters of the lower layers such as link quality and scheduling

information. In the next step [40], Culler et al. identify common functionalities to en-

courage code-reuse and runtime function sharing. SNA breaks the network layer down

into reusable communication modules.

SNA retains a layered structure, providing detailed information to the various net-

work protocols present on a node. Two predefined structures within SP serve as infor-

mation repositories: the “Neighbor Table,” which maintains information about direct

and relevant neighbors, and the “Message Pool,” which allows protocols to request

message transmissions.

The neighbor table allows several protocols to share information otherwise main-

tained in redundant structures. A neighbor table entry usually consists of the neighbor

address or ID, link quality, and scheduling information. Because the number of neigh-

bors may be greater than the number of existing spots in the table, SP implements an

advanced table maintenance scheme: before adding a new neighbor to the list, SP polls

every protocol. If at least one protocol agrees, the node is inserted. Protocols are also

notified when a neighbor is evicted from the table. Since SP is a protocol, its actions

go beyond that of a simple architecture: if the power management schedule of a listed

neighbor is expiring, SP asks the network and link layers to provide a new schedule. It

is not clear whether the neighbor table maintains information about the node itself.

The message pool contains pointers to messages, the number of packets in a burst

(for instance, in a video streaming application), notification when the next packet should

be instantiated, and urgent and reliability bits. Packets are thus stored either in the

data link or in the network protocol layer. SP also makes decisions about scheduling

transmissions: it determines when it is most appropriate to send packets. After a trans-

mission is complete, SP requests the next packet in the burst. Other decisions made by

SP include overriding existing power management decisions to send urgent packets and

53

batching packets in some cases.

Arguably, SNA is a considerable leap forward in WSN architectures, as it provides

an unsurpassed level of flexibility and universality under TinyOS. The interface be-

tween the various network protocols and data links is rich and advanced, but also quite

complex. This may hinder fast deployment of WSN. Additionally, SP does not propa-

gate neighbor information automatically and solely relies on protocols to populate the

neighbor table (although SP may post requests regarding table information freshness).

As a whole, SNA tries to achieve a different goal from ours since we are more con-

cerned about structure reuse rather than code reuse.

4.2.4 Chameleon: Abstraction of Communication Protocols

The main goal of the Chameleon architecture [42] is to abstract communication layers

so that WSN protocols may run over any network, from 802.15.4 to IP. Abstraction

is achieved thanks to packet attributes, an abstract representation of information con-

tained in packets. Rime, a layer contained within Chameleon, takes care of mapping

attributes to any standard header.

Additionally, cross-layer interactions are supported through “vertical calibration”:

information is contained in the attributes (header) of packets that are passed between

layers. However, in order to propagate information to all layers, the packet headers are

not removed after being processed.

Like SNA, the ultimate goal of Chameleon is to provide abstraction to lower lay-

ers by identifying basic protocol primitives, although Dunkels et al. selected different

ones from SNA. It differs from our intention to allow cross-layer interactions between

protocols, since information is not shared among all layers in the stack.

4.2.5 XLM: The Counterpart—Fused Layers

Akyildiz et al. proposed XLM [43] as a fused-layer module, regrouping all protocols

from the data link to the node activation layers. Because this organization of the pro-

tocols has a redefining impact on the larger architecture, we consider XLM as an inter-

esting counterpart to simple information-sharing.

The principle of node communication in XLM is initiative determination: after a

54

node indicates it has a packet to send with an RTS, each neighbor decides whether to

participate in the communication based on a set of rules whose metrics and parameters

are issued and maintained by various functions in the module. Let I be the initiative:

I =

1 if

ξRTS ≥ ξTh

λrelay ≤ λTh
relay

β ≤ βmax

Erem ≥ Emin
rem

0 otherwise

(4.1)

These parameters set conditions on link state, flows, buffer fullness, and energy. If

all conditions in (1) are satisfied, the node participates in the communication; other-

wise it goes to sleep until the next determination time. According to the authors, this

set of conditions ensures reliability of the link, manages flows and buffer levels, and

guarantees uniform energy consumption.

Akyildiz et al. argue that the tight meshing of all functionalities guarantees opti-

mality of the network response—or at the very least the coordination of their actions.

All protocols fused in XLM benefit from the same up-to-date information, much like

the previous approaches. However, XLM supposes that CSMA/CA is the “best” MAC

protocol and builds off of this assumption. Whether this supposition is correct or not

is beyond the scope of this survey, but the fused nature of the protocol layers renders

protocol swapping a complicated process. Unlike MobileMan, CrossTalk, and SNA,

there is no standardized interface between the various protocols of the module. If a

low-power-listening MAC protocol such as X-MAC [21] were to replace CSMA/CA, a

programmer would have to learn about the entire module in order to replicate the socket

with other functions.

4.3 Architecture Comparisons

In this section, we present a qualitative comparison of the architectures described in

the previous section. It is expected that the architectures will perform better in some

regards, and more poorly in others, in accordance with their different design goals.

The aim in this section is to provide a side-by-side comparison of each architecture’s

relative advantages and drawbacks.

55

Table 4.1: Qualitative comparison of existing architectures (given without order of im-

portance).

Legacy ∗ SNA Cham. X-Talk MobMan XLM

Modularity — + + + / ? + —

Universality — + + + = —

Event Notification — — — — + —

Service Support — = = — — —

Table Maintenance — + N/A ? N/A N/A

Information Prop. — — N/A — — N/A

Overhead + (small) + + — — +

Simplicity + — + + — +

Table 4.1 presents the strengths and weaknesses of each architecture for a specific

set of goals. The term Legacy∗ refers to the layered structure inherited from the OSI

model, with potential ad-hoc modifications (“violations”) to support cross-layering.

4.3.1 Flexibility

This section evaluates the flexibility of an architecture, and thus its chance of becoming

popular. In WSN, the term flexibility indicates both modularity and universality, which

are often contradictory in nature, as modular designs have, so far, denied support for

cross-layer protocols.

4.3.1.1 Modularity

Migration from strictly layered to cross-layer designs has incurred architecture viola-

tions that make swapping protocols an intricate task. Modular designs guarantee that

replacing a protocol requires little more than inserting the new protocol and using the

appropriate interface to connect the layers. This is accomplished in TinyOS via a simple

rewiring.

It is agreed that the OSI model adapted to WSN (the Legacy∗ architecture) is the

56

most modular architecture. However, this architecture is unfit for cross-layer protocols,

which introduce protocol-dependant violations. The legacy architecture rates poorly in

modularity because of the unforeseeable nature of these violations.

SNA, Chameleon, CrossTalk and MobileMan are all modular, although to varying

degrees. Because SNA’s and Rime’s goals are to abstract lower layers, modularity

may not apply to higher levels in the stack. We believe, however, that SNA is the

most modular architecture to date proposed for WSN. The implementation details of

CrossTalk are not provided in [39], and thus, we can only base this evaluation on what

CrossTalk sets out to do. CrossTalk does not appear to keep packet information in a

message table, which may hinder protocol replacement. Because sharing information

between protocols requires writing additional access functions, MobileMan is not as

modular as other designs, and to the best of our knowledge, does not support the sharing

of neighbor information. Lastly, since XLM focuses only on network performance,

replacing a function in XLM requires knowledge of the full module, making it low on

the scale of modular designs.

4.3.1.2 Universality

The term universality refers to the ability of the architecture to accommodate all plat-

forms, protocols, and end applications. SNA and Chameleon propose an elegant solu-

tion to abstract the underlying hardware from the protocols. CrossTalk offers a good so-

lution for MANET, however the information propagation model is not suited for WSN.

Depending on the application, only a small subset of the nodes in a WSN send packets

to a very limited number of data sinks. Thus, the information contained in packets sent

over these routes cannot supply a global view of the network, except possibly close

to the data sinks. Additionally, as for MobileMan, there are no provisions to abstract

the data link layer, which heavily depends on the platform. Finally, changing a function

within XLM requires the knowledge of the full module and its subsequent modification.

4.3.1.3 Event Notification

One of the advantages of layer fusion is the ability to coordinate various functions eas-

ily: protocols now gathered under the same layer can share information and invoke

the same set of functions. A layered design, however, is required to create more com-

57

plex interfaces between different layers, which contradicts the goal of modularity. For

instance, imagine a MAC protocol able to quickly detect broken links and a routing

protocol whose route repair mechanisms are slow. A programmer may wish for the

MAC protocol to notify the routing protocol of a failed link as early as possible. Two

solutions are possible: the layers may be fused, or the interface between the two layers

may include a command to start repairing the route immediately. This makes replac-

ing either protocol a harder task as a programmer would have to learn about the inner

workings of both layers. We argue that an architecture should allow event notification

through its shared database. Of the surveyed architectures, only MobileMan supports

event notification.

4.3.1.4 Service Support

Rarely mentioned, services provide key support to protocols in the stack. For example,

services may gather information about the remaining energy of a node, the location

of a node, etc. Protocols should only focus on their main role, such as routing, with-

out concerning themselves with gathering peripheral information. To the best of our

knowledge, no existing architecture proposes organizing services in their stack.

On top of managing services, the architecture should allow individual protocols to

selectively load them before deployment, and to turn them off during runtime.

4.3.2 Information Freshness

In this section, we examine how the network view is kept up-to-date, a key feature for

many protocols. This feature is critical to having an architecture that is modular and

easy to maintain and use. Maintaining up-to-date information requires intelligent table

maintenance and information propagation.

Most architectures propose to store information made available to part or all of the

layers in the stack. The architecture should remove stale entries from its data reposito-

ries, while making sure that these repositories do not exceed full capacity. However, we

believe the architecture, not the individual protocols, should manage the neighbor table.

Conversely, in the case of the message pool, the Send interface in TinyOS provides a

sendDone function whose implementation can easily manage packets in the message

pool.

58

SNA (SP) features advanced table maintenance, although more decisions are left

for the individual protocols to make. Because we lack implementation details for

CrossTalk, we cannot evaluate it in this regard. Chameleon does not provide a common

information repository, and thus does not provide a local view of the network. Because

MobileMan abstracts information structures, there is no actual common neighbor table,

and information freshness and management is handled by the registered protocols. Fi-

nally, XLM does not need to make any information structure available to other layers

in the stack because it already shares common data within all functions of the module.

In order to maintain relevant information for all the protocols, the (global) view of

the network should be propagated regularly. Only CrossTalk proposes disseminating

information. However, because the main focus for CrossTalk is MANET, this prop-

agation model is not fit for WSN, which they tend to have smaller traffic rates and

converging routes.

4.3.3 Overhead

Low additional overhead is a critical notion that may qualify an architecture as the most

energy efficient, and thus the most appealing. The overhead incurred by an architec-

ture usually depends on the sophistication of the protocols in the stack. However, since

MobileMan abstracts a database, redundant structures may still exist at different layers.

It follows that MobileMan, like Chameleon, may require more RAM than necessary.

The propagation model of CrossTalk can be viewed as expensive: at least 12B must be

appended to each packet for X and Y locations and the time stamp. SNA and XLM pro-

vide RAM savings by removing redundant information: SNA uses a common database

approach, while XLM lets all functions in the module view the same data.

4.3.4 Simplicity

A simple architecture has a greater chance at allowing faster release and deployment of

WSN. A good measure of the simplicity of an architecture is its modularity. However,

beyond this consideration, architectures that do not carry protocol operations seem to

be the simplest to maintain and understand because they do not have unpredicted be-

haviors. In TinyOS, simplicity also means fewer wirings and hidden capabilities.

59

4.4 X-Lisa, a New Architecture for Cross-Layer Infor-

mation Sharing

Armed with a new sense of the strengths and weaknesses of existing architectures for

WSN, we argue that architectures relying on a non-abstracted shared database are both

simple and flexible. Among them, SNA seems the most appropriate to WSN, but it

does not actively fill the neighbor table, and more generally, its goal is to abstract the

hardware platform from the protocols. Instead, what is needed is an architecture that

provides support for cross-layer protocols using a modular structure.

Thus, we propose X-Lisa, a new Cross-Layer Information-Sharing Architecture

that combines simplicity with support for cross-layer interactions, services, information

propagation and event notification. In this section, we fully describe our information-

sharing architecture, while in the following section we detail the improvements brought

by X-Lisa.

4.4.1 The Need for a New Architecture

Our goal in creating X-Lisa is to support the exchange of fundamental information that

is beneficial to all protocols within the stack, and at the same time to create an architec-

ture that is compatible with existing and future protocols, both layered and cross-layer.

To this end, we have attempted to identify a basic list of important parameters necessary

for improving the performance of many protocols. These include but are not limited to:

• Node location.

• Node remaining energy (ǫrem).

• Compute resources such as CPU load, RAM use, and remaining storage capacity.

• Sensing abilities such as the set of variables the sensor can monitor.

• Contention around the node.

• SNR or probability of error (Pe), reflecting the quality of the link to any neighbor.

These node and network features may be required by one or more protocols, and

oftentimes they are not straightforward to obtain. For example, while determining a

60

node’s compute resources may be simple, determining current link SNR, contention

around a node or node location require specialized services to find this important and

possibly time-varying information. In current architectures, the individual protocols are

responsible for obtaining such information, and oftentimes these services are replicated

in different layers, or a cross-layer fusion design is used so that the information is

readily available to multiple protocols in the stack. We believe a better architecture is

one that provides a common framework for obtaining such information and enabling

all protocols to have access to it.

Because some protocols require only part of this information or because they use

other parameters, the neighbor table should be made more flexible.

4.4.2 A New Unifying Architecture

We propose a new protocol architecture called X-Lisa, shown in Figure 4.2. X-Lisa

retains a layered structure such that each layer is matched to a communication function

in order to maintain a practical and simple design. While fused layer design is still

possible with X-Lisa, it is not favored as it hinders modularity.

The layers are: Physical, Medium Access Control (MAC) / Data Link, CLOI or

Cross-Layer Optimization Interface, Routing, Transport, Node Activation, and Appli-

cation. Other functions useful to the global communication scheme can be linked to

services with a specific position in the protocol stack, as will be discussed in detail in

Section 4.4.7.

The Cross-Layer Optimization Interface (CLOI) provided by X-Lisa offers indirect

access to a repository of information that may be needed by one or more protocols.

CLOI maintains this information through three structures, a neighbor table, a sink table

and a message pool, described in detail below, and it supports services that will fill these

data structures either once or continuously, depending on the information. X-Lisa also

supports event notifications to ease coordination between various layers in the stack.

While all layers and services in the stack have access to the interface, a CLOI layer

was placed between the routing and MAC layers for two reasons. First, its location

allows the interface to retrieve much of the information sent from the node onto the

network as well as many incoming packets. This is useful as it allows CLOI to directly

obtain information needed to fill the neighbor and sink tables without going through the

61

Service 1

Service 2

Service 3

Service 4

Service 5

Service 6

C
L

O
I

CLOI

Application

+ Message Pool

+ Sink Table

+ Neighbor Table

Node Activation

Transport

Routing

Data Link / MAC

Physical

Figure 4.2: X-Lisa: An information-sharing sensor network architecture for cross-layer

optimizations. This architecture retains a layered design while providing flexible infor-

mation repositories as well as services to support the protocols.

protocols. The MAC and physical layers do not have a global vision of the network and

cannot provide enough information about its state for automated use with CLOI. The

second reason is that it offers the potential for abstraction of the link layer as suggested

in [40].

Finally, CLOI has no authority to make any routing, node activation or medium

access decisions, or packet reordering. CLOI simply acts as an interface to the protocols

in the stack, allowing them to access common yet important information about the node

and its neighbors that can be used to optimize each protocol’s performance.

4.4.3 Information Sharing Structures

In order to support this information-sharing architecture, we need to determine the best

data structures for storing the required information, and the services that will populate

them. We propose to use three different data structures to capture all the relevant infor-

mation: a neighbor table, which stores information about the node and its neighbors, a

sink table, which keeps track of the various data sinks in the network, and a message

pool, which stores information about current packets waiting to be transmitted by the

node. Today’s platforms often run TinyOS, a simple operating system for embedded

targets, and that limits the scope of implementation solutions.

62

Table 4.2: A neighbor table is kept at every node i with non-predetermined fields. It

keeps information about the node itself (for vertical cross-layering) and each of its

neighbors j (for horizontal cross-layering).

ID Time Stamp n byte Array

2B 8B nB

Idi ti Bi,0Bi,1...Bi,n−1

1 0x7522 0xAA 42 00

4.4.3.1 Neighbor Table

Since some protocols require knowledge of differing parameters, the neighbor table is

implemented as a flexible information repository. Before runtime, each programmer

may elect which parameters populate the table according to the needs of the protocols

in the stack. Accordingly, the neighbor table is in fact defined as three fields, illustrated

by Table 4.3: node ID, a time stamp for data freshness, and an array of integers. The last

structure may be filled with a customizable set of parameters that may or may not have

the same type or size. Some of the previous solutions proposed a neighbor table with

fixed fields: since NesC does not support dynamic structures, extending the neighbor

table included rewriting some of the definitions and functions, and replacing fields one

by one.

In X-Lisa, the programmer needs only to declare an enumeration of the fields of

interest and their size in bytes. This Key-Length-Value solution allows rapid modifica-

tion of the neighbor table, without resorting to changing the fields “by hand”. Although

similar in spirit to Hood, it differs in its ability to update itself (with permission from-

but no direct supervision by- protocols) and in its implementation. Where Hood creates

several vectors of a fixed type (int for light, float for another sensor reading) of size

the maximum number of neighbors, CLOI keeps a unified neighbor table. It is as if one

was the transposed matrix of the other. This allows CLOI to retrieve information from

a neighbor with only one pass, whereas Hood can return neighbor IDs when searching

for information about a variable (which was its main goal).

By default, the neighbor table is comprised of the elements presented in table 4.3:

63

Table 4.3: The default fields of the neighbor table.

ID Time Stamp Loc. ǫrem Abili-ties Entity LQ Status

2B 8B 4B 1B 1B 1B 1B 1B

Idi ti xi, yi ǫi Vi,m Ei 0 Si

Idj tj xj , yj ǫj Vj,n Ej LQi,j Sj

1 0x7522 (29.9s) 20, 50 0.5 0x2 (Light) 0x37 (Door) 0.2 0x1

node ID, time stamp, 2D location, remaining energy, sensing abilities, monitored entity,

link quality, and On/Off status. However, dynamic memory allocation is a resource

consuming operation in TinyOS due to the limited available memory on the platform.

Without dynamic structures, buffer space must be allocated even when the neighbor

table is almost empty. Generally, a neighbor table can have up to 30 entries. When the

table is almost full, retrieving information takes longer.

Because they are not predetermined, the fields of the neighbor table must be opaque

and accessed through a fixed syntax, which provides read / write commands with a

value and a field identifier. This process is illustrated by the following equivalent ex-

amples:

cost = *(float*) call

Cloi.extractValue(entry, COST);

cost = *(float*)VALUE_ENTRY(entry, COST);

where entry is a neighbor table entry, and COST designates a user-defined protocol

metric.

Some of this information must be updated continuously whereas other data only

require infrequent updates. For instance, a node’s remaining energy is a critical piece

of information that changes every instant of the runtime, whereas the node’s location

remains fixed in static sensor networks. Trade-offs must be made in determining how

often to update the fields, as updating the information too frequently incurs a large over-

head penalty but updating the information too infrequently may reduce the usefulness

of the data to the protocols.

64

Table 4.4: A sink table is kept at every node with information about each sink j in the

network.

ID Locat. Num. Hops Interests

Entity Variables

2B 6B 1B 1B 1B

Idj xj , yj , zj Nj Ej Vj,m

1 20, 50, 4 2 0x37 (Door) 0x1 (Temp)

4.4.3.2 Sink Table

Many protocols require critical information about the various sinks in the network to

determine equivalencies between them or what data to send to a particular sink. The

sink table stores limited information about the various known data sinks in the network,

such as the following:

• Sink ID: this is a number or description that uniquely identifies a sink in the

network.

• Distance: this is the estimated geographical distance from the node to the sink.

• Number of hops: this specifies the minimum hop count from the node to the sink.

• Data interest: this describes the interests expressed by each sink in terms of entity

and sensing variables.

Table 4.4 shows an example of this structure. Many protocols require this critical in-

formation to determine equivalencies between sinks or what data to send to a particular

sink.

Because we expect information about the sinks to change slowly, the sink table is

not automatically updated. Maintenance must be done by the protocols (generally a

middleware and the routing protocol). It is also the only structure carrying information

more than one-hop away.

65

Table 4.5: A message pool is kept at every node.

PacketID Description Priority and burst Status

2B 1B 1b + 7b 1B

PID1 XML tag or integer P1 - N1 S1

102 Route Repair 0.9 - 9 0x1 (Sent)

4.4.3.3 Message Pool

Others have proposed using a message pool that includes details about the received and

sent messages [40]. We agree with the pertinence to use such a structure and propose

incorporating the following fields:

• A packet identifier unique to the node. It is not necessarily sent with packets as

they travel through the network—this decision has to be made by a protocol.

• An XML tag or an integer describing the data.

• The priority of the packet.

• The number of packets in the burst.

• The status of the packet, i.e., whether it has been successfully sent or not. This

field allows protocols in the stack to maintain queues.

We summarize these elements in Table 4.5. Such a structure, combined with the neigh-

bor table, can help several layers make decisions about the routing and sleep schedules

or media access for a packet.

4.4.3.4 Accessing the Structures

Read and write access to all structures may only be granted through CLOI: this has the

combined advantages of atomicity1 and modularity. Because read and write operations

are placed in atomic segments, they are executed in the order they are received, without

prioritization. X-Lisa also provides additional functions for access management: be-

cause protocols do not know the identity of the neighbors present in the table a priori,

1Whereby the same segment of code may be accessed by only one element at a time

66

they may invoke the function nextEntry, which returns a pointer to the next entry in

the neighbor table. A returned NULL pointer indicates that the bottom of the table has

been reached.

4.4.4 Event Signaling

X-Lisa provides two classes of event notifications: protocol events and CLOI events.

The former designates events generated by protocols in the stack and relayed directly

through CLOI. The type of the event is not known to CLOI but has to be meaningful

to both the provider and user of this event. CLOI events refer to a set of events defined

in X-Lisa and that include notification of a new packet in the pool, a new neighbor, a

full neighbor table, etc. We expect that CLOI events will be much more common than

protocol events2, and thus a programmer can choose to not use CLOI events at compile

time if they are not needed.

Protocols that require event signaling can subscribe to CLOI at compile time. Be-

cause NesC does not allow runtime dynamic wiring, a protocol may not unsubscribe

from event notifications. The MeshC [66] language overcomes this limitation. Either

way, this does not seem to be a strong constraint as we expect protocols to have an inter-

est in event notification for the duration of the network lifetime. If no longer relevant,

event notifications may simply be ignored by subscribing protocols.

4.4.5 Information Exchange

In order to keep the information contained in the neighbor table, X-Lisa provides an

automatic update service. The information exchange is carried by an information vector

that updates the neighbors of a node.

4.4.5.1 Information Vector

The information vector includes some or all of the fields necessary to populate the

neighbor table. These fields will automatically be filled by the CLOI of the sending

node and read by the CLOI of the node’s neighbors. The information vector may be

2In our implementation of Section 4.6, one or two CLOI events were generated every time a packet

was received or sent.

67

Table 4.6: A packet with a CLOI information vector piggy-back (TOS Msg fields not

included).

ID Content Vector data

2B 1B nB xB

piggy-backed onto broadcast packets or sent as a stand-alone packet when no broadcast

packets are sent for a certain amount of time. The update mode may be set through a

CLOI function that turns automatic updates and piggy-backs on or off. The inherent

mode of propagation for the information vector is one-hop broadcast. This implies that

when the information vector is piggy-backed to packets traveling more than one hop

away, the contents of the vector change at every hop.

CLOI retains the principle of abstracted encapsulation that guarantees that X-Lisa

components need not be informed of other protocols’ data structures and packet head-

ers.

One limitation introduced by the encapsulated piggy-back information vector is that

it forces every node in the network to run compatible versions of CLOI: otherwise, any

layer above CLOI could not receive correctly formatted packets.

4.4.5.2 Size of the Information Vector

Not all fields may require a frequent update depending on the application QoS re-

quirements, the needs of the protocols in the stack, or the nature of the field itself.

CLOI piggy-backs only the required parameters to its neighbors. These can be re-

quested through a CLOI command for each parameter. CLOI fetches fields from the

neighbor table and copies them into the piggy-back. The structure of the piggy-back

and stand-alone update is illustrated by Table 4.6.

To inform receiving nodes of the content of the information vector, we include a

content field in CLOI messages. This field is one byte long, and each bit designates a

parameter in a determined order.

CLOI exchanges information of the fields that are requested by at least one protocol

through the exchangeField function by invoking:

68

Cloi.exchangeField(uint8 t field, bool comm);

where comm is FALSE when the field is not required by the protocol, TRUE otherwise.

A FALSE command decreases the integer value corresponding to the field. When

this value is equal to 0, CLOI considers there is no need to exchange the parameter.

This Key-Length-Value solution is the first one of its kind for packet exchanges

and, together with the structure of the neighbor table, allows changing fields of interest

quickly.

4.4.5.3 Frequency of updates

Dedicated services within CLOI take care of updating the fields of the neighbor table

and message lists. However, some protocols exchange important data about their status

at pre-determined times (e.g., GFG [12] and GPSR [13]), and this may not agree with

the schedule imposed by CLOI. Thus, CLOI has an automatic update knob that such

protocols may control. At the protocol’s request, CLOI will automatically perform an

update function, sending out a vector with its information.

Very frequent updates may prove unnecessary and bandwidth consuming. Thus,

CLOI will not append the information vector to a packet succeeding another by less

than a predetermined time (tupdate), in order to reduce the overhead imposed by this

architecture. This predetermined time can either be fixed or adaptive depending on

whether or not CLOI can learn about the rate of change of information in the neighbor

table.

4.4.6 Maintenance of the Neighbor Table

In order to maintain the freshness of the neighbor table, CLOI must detect obsolete

information and remove the corresponding entry after a node has died or moved away.

Every time data is added to the neighbor table, a time stamp is created or modified

corresponding to that information. A timer runs in the background, and every tcleanup,

CLOI checks for entries that have not been updated for a given period of time (tobsolete).

A protocol may block this process—independently scheduled at every node—to avoid

discrepancies in neighboring sensors’ tables and directly call for an inspection of out-

dated entries when it finds convenient.

69

If the neighbor table reaches near capacity, entries may be removed even if its in-

formation is not stale. However, since some neighbors may be more important than

others, protocols may signal so by setting the field hold, which signals that a neighbor

should not be removed if the table is full. Neighbors not held will be first choices to be

removed.

4.4.7 Important Services

As mentioned previously, one of the advantages of X-Lisa is that it allows protocols to

re-focus on their primary functions. To enable this, X-Lisa adds peripheral services that

supply some of the information needed to fill CLOI’s information repositories. These

include the following:

• ID assignment service. This could be as simple as predetermined ID numbers

hard-wired in the sensor, or this could be a service-type identifier, also used for

routing, as proposed in [49]. Although it was not originally intended for them,

X-Lisa may support IP-based networks thanks to additional ID services that maps

IP addresses to supported 16 bit addresses.

• Location service. The geographic coordinates of a sensor are indispensable and

usually assumed in most research works in the field of sensor networks. However,

GPS solutions are costly. In [67], Rao et al. propose a solution that assigns virtual

coordinates to each node and allows geographical routing.

• Time synchronization service. Many protocols assume that a common time is

precisely shared among all nodes in the network. Several strategies have been

proposed, including one based on periodic synchronization packets as in RBS [45],

or by estimating the time delay between a sender and a receiver [44].

• Channel estimator. Several strategies are possible, from reading the back-off

value for CSMA schemes, to one-hop packet delivery ratios, or measurements of

the signal strength coming from a neighbor. A realistic scenario using the MoteIV

Tmote Sky [68] sensor nodes is to read the LQI field provided in received packets,

and to keep track of the one-hop packet delivery ratios at either the data link level

(when ACKs are enabled) or at the transport layer otherwise.

70

• Remaining energy measurement. Although the battery voltage degrades in a non-

linear fashion, this is a good indicator (when mapped through a look-up table) of

the remaining energy at the node. A service is needed to access the current battery

voltage and perform the mapping from voltage to remaining energy.

• Finally we can imagine more complex services such as a sensing ability service.

Nodes may completely or partially lose their sensing abilities over time because

of physical degradation or aging. A complete loss of a sensor is fairly easy to

detect since no response is to be expected from it. However, assessing that a

sensor is providing faulty data is a difficult task, as the sensor will return plausible

but incorrect values for a variable. At this point, we believe that such a service

would require the cooperation of other sensors and the use of fuzzy logic or neural

networks.

These services are available as libraries and thus individual services can be selected

during compilation (i.e., only those services that are needed for the particular set of

protocols in the stack would be selected). Furthermore, selected services can be turned

off during run-time to guarantee the maximum flexibility.

4.5 Implementation Details

We implemented the core features of X-Lisa in TinyOS 1.1.15 for the Tmote Sky plat-

form. We also added DAPR [6] [69], a cross-layer routing and node activation protocol

to X-Lisa. In this section, we provide detailed information about our implementation.

4.5.1 Components in TinyOS

The TinyOS code is organized as depicted in Figure 4.3 CloiMessageHandler is the

name of the component corresponding to the horizontal layer of CLOI. Protocols wish-

ing to send a packet down the stack must wire to the Send and Receive interfaces of

CloiMessageHandler, which takes care of appending the information vector. MHEngineM

is a module inspired by P. Lewis et al. [70] and that provides multi-hop services. The

existence of this module follows proper TinyOS programming guidelines rather than a

requirement for X-Lisa.

71

Upper Layers

C
L
O

I
Send

SendMsg

CloiM Receive

RoutingM

R
o

u
ti
n

g

MHEngineM UpdateManagerM

C
lo

iM
e

s
s
a

g
e

H
a

n
d

le
r

fillCloiPiggy

extractCloiPiggy

automaticUpdates

RadioCRCPacket
ReceiveMsg

SendMsg
ReceiveMsg

G
e

n
e

ri
c
C

o
m

m

Figure 4.3: The X-Lisa architecture in TinyOS. The shaded area corresponds to CLOI.

Implementations are in large characters and delimited by solid line frames. Each com-

ponent is bounded by a dashed line, and its name appears vertically.

To support encapsulation, lower layers should be unaware of packet structures from

upper layers. Consequently creating packets with two or more structures of varying size

is a difficult task. Packets received from upper layers should be considered as data. Tra-

ditional packets may define a “data” field thusly: uint8 t data[TOSH DATA LENGTH

- n], where n is the number of bytes taken by the other fields in the packet. In other

words, upper layers may dispose of TOSH DATA LENGTH - n bytes for their needs,

although they may not use all of them. The MAC layer then only sends the first bytes

in the packet, and discards the unused part in the data field. Table 4.7 shows a packet

definition example.

CLOI packets define a data part as well as the information vector of changing size.

Consequently, CLOI must define packets with two fields of maximum fixed size. How-

ever, the MAC protocol can only cut unused bytes placed at the end of a packet. Ta-

ble 4.8 illustrates this problem.

To prevent such waste of bandwidth, the bytes from the data field are moved to the

unused sections of the CLOI information vector. When receiving a message, CLOI per-

forms the inverse operation and transfers bytes from the information vector belonging

72

Table 4.7: Example of a routing packet definition. The application layer may dispose

of the space defined by data. The MAC protocol only sends the used bytes (S) in the

packet, and discards those that are not in use (X).

int16 t Destination int8 t TTL uint8 t data[MAX - 3]

2B 1B MAX - 3

S S S S S S S S S S X X X X

Table 4.8: The MAC protocol only ignores bytes placed at the end of a packet (desig-

nated by X). If two fields of varying size are defined, the MAC sends a section filled

with unused and unassigned bytes (U).

int16 t node id uint8 t info. vector uint8 t data[MAX - m -3]

2B mB MAX - m - 2

S S S S X X X S S S X X X X

to the data field (see Table 4.9). With this simple scheme, CLOI sends only the required

information without any supplemental overhead.

4.5.2 Information Storage

4.5.2.1 Neighbor Table for X-Lisa

The fields of the neighbor table are:

• Node ID, an unsigned long (2 bytes in TinyOS).

• Time stamp, a structure of two 4 byte integers provided by TinyOS expressing

the time in milliseconds.

• The table is an array of 1 byte integers that can be filled by specialized functions.

Its size can be limited to that of only the parameters needed by the protocols.

• Hold, a boolean.

73

Table 4.9: CLOI rearranges bytes in order to place all unused bytes at the end of a

packet. The MAC protocol may then discard the unused bytes.

int16 t node id uint8 t info. vector uint8 t data[MAX - m -3]

2B mB MAX - m - 2

S0 S1 S2 S3 U4 U5 U6 S7 S8 S9 X X X X

Rearrangement

S0 S1 S2 S3 S7 S8 S9 X X X X X X X

4.5.2.2 Sink Table and Message Pool

The sink table and message pool elements are represented in the same way as the cor-

responding elements of the neighbor table. For the message pool, a 1 byte integer

describes the data contained in a packet. Another byte gives the packet’s priority (most

significant bit set to 1 indicates high priority) and the number of packets in the burst (7

bits). A sink table of four sinks requires 44 bytes of memory. A message pool of ten

packets requires 40 bytes of memory.

4.5.3 DAPR and the Proposed Architecture

In this section, we illustrate how X-Lisa can be used with existing protocols, namely

DAPR and GFG / GPSR.

DAPR is a cross-layer protocol that jointly performs routing and node activation.

In randomly deployed heterogeneous networks, sub-areas of the monitored region may

suffer from low levels of coverage. Nodes located in scarcely covered areas are criti-

cal to the global network coverage and need to be preserved. DAPR recognizes these

sensors by assigning them a high application cost, and it avoids routing other nodes’

packets through them. The definition of application cost depends on the nature of the

application, such as geographical monitoring, as first introduced in [6], or health moni-

toring [69].

The DAPR protocol is divided into rounds of three phases:

1. Route Discovery Phase: the sink floods a query and sets up costs. When a query

74

is received for the first time, a sensor initializes a query forward timer that is

proportional to its cumulative route cost and an opt-out timer that is inversely

proportional to its cumulative route cost. This guarantees that when a node re-

ceives a first query, it is through the lowest-cost path.

2. Role Discovery Phase: when the opt-out timer expires, a node checks whether its

coverage is needed. If not, it beacons to its neighbors to indicate its intention to

sleep in the round. The timers are set so that a sensor with a high application cost

will be among the first to opt out.

3. Query Processing Phase: this is the phase of normal operation. Nodes forward

packets to the sink through their neighbor presenting the smallest cumulative

cost.

Next we will see how each of these functions is performed and optimized within

X-Lisa.

4.5.3.1 Route Discovery Phase with X-Lisa

DAPR’s routing layer originates the query and requests CLOI to fill the message pool

with a description of the packet (e.g., network administration) and the packet’s priority

(high). The query contains the issuing node’s value of its current application cost, and

CLOI appends the information vector to this query packet.

The application cost is calculated using values already available in the neighbor

table. DAPR sends CLOI a read command for the neighboring nodes’ information—

remaining energy, sensing abilities and monitoring entity. Since DAPR need not keep

its own list of neighbors, it utilizes CLOI’s next entry function. DAPR starts at the

node’s own ID, and loops through the entire list until the function returns a NULL

pointer (signifying the end of the table).

The field “application cost” is easily added to the neighbor table thanks to the flex-

ible nature of the structure. Thus the application cost will be made available to the

routing and node activation subroutines of DAPR, as well as any other layers that po-

tentially could benefit from this information.

When a query is first received, DAPR blocks the CLOI interface from updating and

cleaning entries during the route and role discovery phases. This prevents two neigh-

75

boring sensors from having time-differing views of the same area of the network—and

consequently from calculating inaccurate application costs and wrongly assessing their

usefulness to the network. DAPR forces a cleaning of the outdated entries at the end of

the role discovery phase and then restores the automatic update feature of CLOI.

DAPR requires time synchronization so that all nodes terminate the DAPR round at

approximately the same time. CLOI guarantees that the nodes’ clocks are synchronized

to within an ǫ that is dependent on the particular time synchronization service imple-

mented within CLOI. Consequently, the query timestamp serves as an anchoring time

for the round.

4.5.3.2 Role Discovery Phase with X-Lisa

During the role discovery phase, opt-out timers are set. Once the timer expires, if the

MAC protocol is not experiencing delays (e.g., it uses a TDMA protocol or dedicated

channels for network administration), the usefulness of the sensor can be checked im-

mediately. If the node’s sensing abilities are not needed, an opt-out packet is sent down

the stack with the appropriate accompanying description and priority. On the other

hand, if the MAC protocol incurs delays (e.g., IEEE 802.11 in high congestion scenar-

ios), the MAC protocol needs to check the sensor’s usefulness immediately before it

passes the opt-out packet to the physical layer. Whether at the node activation or MAC

layer, checking the node’s redundancy is a simple process where only read requests are

sent to CLOI.

When a sensor receives an opt-out packet, it is sent up the stack until the node

activation protocol requests a write from CLOI and sets the source of the opt-out packet

as being inactive for the rest of the round (e.g., CLOI sets the associated neighbor’s

status field in the neighbor table to “inactive”).

Algorithms 1 and 2 illustrate the many interactions between DAPR and CLOI.

4.5.3.3 MAC Layer with X-Lisa

For the best performance with CSMA schemes, the MAC protocol needs to be mod-

ified to check the sensor’s usefulness, as well as for making smarter decisions about

sending packets. One evident drawback of DAPR is that queries may be lost or signif-

icantly delayed when sent over a network reporting large amounts of data to the base

76

Require: Received Query, Allocated pointers

if !first query then

Cloi.updateField(query→src, &query→cost, COST);

else

Calculate Cost:

5: nextEntry = Cloi.readEntry(TOS LOCAL ADD);

thisEntry = Cloi.readEntry(TOS LOCAL ADD);

ownEntity = *(uint8 t*)VALUE ENTRY(thisEntry, ENTITY);

ownSensing = *(uint8 t*)VALUE ENTRY(thisEntry, SENSING);

ownEnergy = *(uint8 t*)VALUE ENTRY(thisEntry, ENERGY);

10: while nextEntry ! = NULL do

entity = *(uint8 t*)VALUE(nextId, ENTITY);

sensing = *(uint8 t*)VALUE(nextId, SENSING);

energy = *(uint8 t*)VALUE(nextId, ENERGY);

if entity == ownEntity then

15: divV ector+ = sensing · 1
energy

;

end if

nextId = Cloi.nextEntry(nextEntry-¿id);

end while

cost =
∑ ownSensing· 1

ownEnergy

divV ector
;

20: cumulativeCost = query→cost + cost;

Cloi.updateField(TOS LOCAL ADD, &cumulativeCost, COST);

set QueryTimer(α · cumulativeCost);

set OptOutTimer(β · 1
cumulativeCost

);

end if

Require: QueryTimer Expires

25: sendQuery(*(float*)VALUE(nextId, COST));

algorithm 1: Route Discovery Phase

station. DAPR’s current functionalities ensure that nodes stop sending data packets to

the sink during route and role discovery phases. Consequently, the network is only

semi-functioning during these two phases: packet delivery is not guaranteed, nor does

it use optimal paths.

77

Require: Received OptOut, Allocated pointers

bool fasleValue = OFF;

Cloi.updateField(OptOut→src, &falseValue, STATUS);

Require: OptOutTimer Expires

Evaluate Usefulness of Node:

nextId = Cloi.readEntry(TOS LOCAL ADD);

5: thisEntry = Cloi.readEntry(TOS LOCAL ADD);

ownEntity = *(uint8 t*)VALUE ENTRY(thisEntry, ENTITY);

ownSensing = *(uint8 t*)VALUE ENTRY(thisEntry, SENSING);

while nextEntry ! = NULL do

entity = *(uint8 t*)VALUE(nextId, ENTITY);

10: sensing = *(uint8 t*)VALUE(nextId, SENSING);

status = *(uint8 t*)VALUE(nextId, STATUS);

if status AND (entity == ownEntity) then

coverage | = sensing;

end if

15: nextEntry = Cloi.nextEntry(nextEntry-¿id);

end while

if (coverage | ownSensing) ≤ coverage then

sendOptOut();

end if

algorithm 2: Role Discovery Phase

X-Lisa allows for some changes to the way DAPR operates. Queries and opt-out

packets have high priorities and are specifically described in the message pool. The

new MAC protocol can decide to delay, or even drop, data packets when it witnesses

high congestion down the path to the sink, and choose to favor network administration

packets.

4.5.3.4 Physical Layer with X-Lisa

Finally, the physical layer does not need to concern itself with keeping track of the

sensor’s location and that of its neighbors, nor do any of the upper layers need to include

78

the distance to the next-hop in the packet header. The physical layer can retrieve such

information through the neighbor table using the packet’s next-hop field as the node ID

in the read request to CLOI.

4.5.4 GFG / GPSR and X-Lisa

GFG and GPSR [12] [13] are geographical routing protocols that extensively use the

nodes’ location to select the next hop that sends packets closer to the destination. The

sensor’s location is exchanged between neighbors using beacons. The packet deliv-

ery ratio strongly depends on the beacon interval: when coordinates are updated fre-

quently, the packet delivery ratio increases, although the protocol incurs more overhead.

GFG / GPSR may find that the exchange of information as done by CLOI is not appro-

priate. GFG / GPSR may thus turn off the automatic update service within CLOI and

send periodic beacons at intervals they deem appropriate. To do this, GFG / GPSR

broadcasts an empty packet; CLOI then piggy-backs the information vector, taking

care of the actual propagation of the coordinates.

Otherwise, a location service in X-Lisa periodically updates the node’s coordinates

and CLOI exchanges this information with the nodes neighbors. Thus the neighbor

table is kept up-to-date on the location of the node and each of its neighbors, removing

the burden of performing this location service from the routing protocol. Algorithm 3

describes how a geographical routing protocol may take advantage of some functions

in X-Lisa.

However, strictly location-based routing may not always be efficient. A sensor

geographically close to the destination does not necessarily enjoy a high bit rate or

low delay. We contend that modifying the protocol stack is made easy by X-Lisa.

CLOI contains information about the link quality from a node to each of its neighbors,

which can be directly exploited by the routing or—less probably—MAC protocols.

4.6 Results

In this section, we intend to show the benefits of using X-Lisa through simulation of

an existing protocol whose behavior with and without X-Lisa was studied in TOSSIM,

the TinyOS simulator. The choice of running a simulation rather than collecting data

79

Cloi.setAutomaticCleanUp(FALSE)

Require: get Location

Cloi.updateField(Location→src, &Location→X, XLOC);

Cloi.updateField(Location→src, &Location→Y, YLOC);

Require: Forward Packet p, Allocated pointers

sinkId = p→dest;

5: sinkEntry = Cloi.readSink(sinkId);

sinkX = sinkEntry.xLoc;

sinkY = sinkEntry.yLoc;

nextId = nextHop = TOS LOCAL ADD;

nextEntry = call Cloi.nextEntry(nextID);

10: dist = ∞;

while nextEntry ! = NULL do

X = *(uint16 t*)VALUE ENTRY(nextEntry, XLOC);

Y = *(uint16 t*)VALUE ENTRY(nextEntry, YLOC);

status = *(uint8 t*)VALUE ENTRY(nextEntry, STATUS);

15: if status then

dist = min(dist, computeDist(X, Y, sinkX, sinkY, &nextHop));

end if

nextEntry = Cloi.nextEntry(nextEntry-¿id);

end while

20: if nextHop ! = TOS LOCAL ADD then

p→addr = nextHop;

send(p);

end if

algorithm 3: GFG and CLOI

from an actual deployment had two motivations. First, it is easier to collect data with

TOSSIM than through a sometimes faulty gateway to Matlab. Our objectives in this

section offer a second reason: we are trying to isolate the benefits of using X-Lisa, and

would like to factor out the unpredictabilities of the data link and physical layers.

80

4.6.1 Modus Operandi

4.6.1.1 Qualitative Study

Ease of use and maintenance, simplicity, and generality of an architecture are not eas-

ily quantifiable, and are left for the most part to the appreciation of every program-

mer. However, we begin by providing a data-point that illustrates the simplicity and

generality of X-Lisa through protocol swapping. We demonstrate the power of our

information-sharing architecture through the comparison of two protocol suites.

Our starting point was XLM [43], which exhibits total layer fusion and is thus the

counter-point of X-Lisa. We wanted to see if X-Lisa was rich enough to replicate the

behavior of XLM while maintaining the convenience of separated protocol layers. We

illustrate the advantage of keeping a layered scheme by swapping the MAC protocol

from the original XLM MAC functions to a Low-Power-Listening (LPL) scheme [22].

4.6.1.2 Quantitative Study

We then quantify some of the limitations and gains of using X-Lisa such as the extra-

overhead and increase in quality of service (QoS) induced by X-Lisa. There exists a

plethora of protocols for WSN, many of which could benefit from X-Lisa. We selected

DAPR [69], a distributed fused-layer routing and node activation protocol, for our fa-

miliarity with the protocol and because it strikes a good balance between cross-layer

(combined routing and node activation) and layered (interface of DAPR with other pro-

tocols in the stack) schemes.

We implemented the original version of DAPR as well as a modified version of

DAPR that takes advantage of the X-Lisa architecture. In our simulations, we measure

the total number of unicast and broadcast packets, which provides an indication of the

extra energy required by X-Lisa. We also quantify the packet delivery ratio, as well as

the number of reports delivered to the data sink: together, these can measure the QoS

provided to the end application.

Since the goal of this section is not to evaluate DAPR, we limit the simulation to

a simple scenario: a likely candidate to route other nodes’ packets is mobile and may

move around (on average, every 150 s). We use a small number of nodes (5 and 10) so

that we may easily interpret the behavior of the network. Had we chosen several mobile

81

nodes, we would have tested the resilience of DAPR, rather than the benefits brought

by X-Lisa.

4.6.2 Qualitative Study: The Expressiveness of X-Lisa

In this section, we show that X-Lisa is an architecture that is rich enough to mimic

the behavior of XLM, a fully-fused scheme. XLM is particularly of interest because it

represents an extremum in cross-layer designs, and hence is a candidate of choice to

test the limits of X-Lisa.

4.6.2.1 Implementation Details

XLM establishes unicast communications through an RTS / CTS handshake before

DATA is exchanged and acknowledged. Power is saved through a duty-cycle, which

turns the radio chip on and off periodically: nodes remain asleep for the remainder of

the cycle if they cannot participate in a communication (I = 0) or if they lose contention

to another node. Contention is handled through a CTS response backoff proportional

to the node’s distance to the destination. The stateless greedy routing is receiver-based

and the node sending the first CTS signals its intention to forward a packet. Congestion

control reduces the application packet generation rate in case of communication failure,

and increases it otherwise.

In the initial protocol suite, we decomposed XLM into the five layers (+applica-

tion) of Figure 4.2 and included them to the X-Lisa architecture. The new entity called

XLM / X-Lisa is the layered version of XLM. The transport layer now extracts informa-

tion from user data (and updates some fields in X-Lisa’s neighbor table) and segments

long data packets. In this suite, the network layer has a limited role, and keeps a queue

of packets. The link layer performs the RTS / CTS / DATA / ACK hand-shake and con-

trols the radio chip for duty-cycle. Among other things, X-Lisa shares packet delivery

failure information to the application layer for congestion control purposes and uses the

neighbor table as a central storage of node positions for location look up. Figure 4.4

shows the new organization.

We tested XLM / X-Lisa and found that it replicates the behavior of XLM while

retaining a layered structure (routing packets to the destination using the same number

of packets).

82

(a) (b) (c)

Figure 4.4: The original XLM (a), was broken into a layered scheme (XLM / X-Lisa)

(b), and its MAC layer was replaced (c). Arrows show packet exchanges between

layers, and squares information exchange.

4.6.2.2 Protocol Swapping

During the introduction of this chapter, we conjectured that protocol maintenance would

be eased by modularity. To test this supposition, we attempted to swap MAC protocols

to a LPL MAC protocol. Although we cannot quantify the ease with which we did so,

a successful MAC replacement is meaningful in itself.

The second protocol suite is a variant of XLM / X-Lisa: the original MAC layer

was replaced by the LPL MAC protocol SpeckMAC-D [22] as illustrated in Figure 4.4.

We named the new entity XLM / LPL / X-Lisa. In SpeckMAC-D, every node sleeps for

ti s (the inter-listening time) between wake-ups. In order to guarantee that the receiver

will wake up at some point during a transmission, a sender must repeat the same packet

for ti s. If a node awakes and receives a packet, its MAC protocol forwards it to the

network layer before sleeping for the rest of the cycle.

Similarly to XLM, we modified XLM / LPL / X-Lisa to route packets only if the

node is the closest to the destination, a strategy akin to restricted flooding.

4.6.2.3 Successful Swapping

The two suites of protocols were implemented in TinyOS and simulated with TOSSIM.

We conducted simulations on 10 nodes with the topology of Figure 4.5. The Source

83

Figure 4.5: Simulated network topology (units in meters). The nominal radio range is

30 m.

XLM/LPL/X-LISA XLM/X-LISA

Received Packets 165 2036

Sent Packets 3674 378

Goodput (%) 0.75 1.0

Latency (s) 1.503 0.683

Table 4.10: Selected metrics comparing the behaviors of XLM / X-LISA and

XLM / LPL / X-LISA.

node (0, 0) sends a packet to the sink node (60, 60) every 5 s, for a total simulation time

of 100 s. The results are shown in Table 4.10.

The number of sent and received packets should be seen as a rough indicator of the

energy consumed by each suite, with certain caveats. A CSMA-based MAC protocol

forces the radio to stay in idle mode (a state that incurs the same energy consumption as

active receiving mode) significantly more than a LPL scheme. Consequently, sending

more packets with a LPL MAC protocol does not always result in increased energy

consumption.

Results show that XLM / LPL / X-LISA sends more packets than its original counter-

part because the LPL scheme repeatedly sends packets over ti s. The RTS / CTS hand-

shake accounts for over a third of the 378 packets counted for the XLM / X-Lisa suite.

On the other hand, XLM / X-LISA receives more packets because every communica-

84

tion requires a hand-shake, and because many nodes receive RTS / CTS / DATA / ACK

packets even though they lost the contention to other nodes and are not part of the

communication. Finally, both suites exhibit high goodput (greater than 75%), with

XLM / X-Lisa showing the better performance. Likewise, XLM / X-Lisa yields lower

latency. Both metric differences can be explained by the fact that nodes that are candi-

dates to participate in a communication (I = 1) are always on during a cycle, allowing

few packet to be dropped or delayed.

These results show that the replacement of the original XLM MAC protocol by

SpeckMAC-D led to observably similar behaviors: according to a set of quantifiable

metrics, the two suites are within the same order of magnitude. Thus, swapping proto-

cols was possible and X-Lisa did not degrade the performance of the protocol. What

these results do not demonstrate is that one particular MAC protocol yields a longer

lifetime or any other desirable QoS improvements over the other, because a protocol

must take advantage of the information brought by X-Lisa.

4.6.3 Quantitative Study: Measurable Cross-Layer Improvements

We now show that X-Lisa helps improve the performance of the network by allowing

cross-layer interactions to their fullest.

4.6.3.1 The DAPR Protocol

DAPR assigns “application costs” to all nodes by periodically flooding a query request

to the network: the higher the cost, the more important the node is to the application

(because it may be fitted with unique sensors or because it is located in a sparsely

covered area of the network, etc.) Nodes with high costs are eager to deactivate and

make poor choices as relays for other nodes’ packets. For the purpose of this simulation,

we divided the whole network into zones: nodes in the same zone may communicate

with one another, and with nodes from adjacent zones. A routing tree can thus be

formed, and nodes with low costs route data packets to a single data sink. Nodes located

in a target zone repeatedly send data reports at a rate of 0.2pkt.s−1.

Because DAPR sends queries at the beginning of every 60 s round, changes hap-

pening to the tree are unknown to the protocol stack until a new query is flooded, with

85

sometimes serious consequences. For instance, if a relay node moves from one zone to

a neighboring zone, data packets will stop being delivered.

X-Lisa brings new information to the protocols it serves: for the case at hand, DAPR

can now be notified when a change of zone occurs or if a new neighbor has been added

to its table. Such changes usually mean that a node’s next-hop neighbor might have

changed, and that it may need to start or stop sending data reports. One important metric

is the average update delay, defined as the time between a change and its notification to

the nodes’ neighbors. The longer the delay, the longer nodes affected by a change fail

to take appropriate corrective measures.

Because it is able to act only when a change is detected, i.e., prior to a tree break-

ing, DAPR does not require automatic updates, although they may be useful to other

protocols. Conversely, without the added knowledge provided by X-Lisa, DAPR must

include extra information (such as a node’s current zone) along with queries, regardless

of whether a change has indeed happened.

4.6.3.2 Simulation Results

Since the goal of this section is not to evaluate DAPR, we limit the simulation to a

simple scenario: a likely candidate to route other nodes’ packets is mobile and may

move around (on aver, every 150 s). We use a small number of nodes (5 and 10) so that

we may easily interpret the behavior of the network. Had we chosen several mobile

nodes, we would have tested the resilience of DAPR, rather than the benefits brought

by X-Lisa.

We implemented DAPR with and without X-Lisa in TinyOS. While we ran sim-

ulations in TOSSIM, we also compiled the code for the Tmote Sky platform. DAPR

alone takes up approximately 21.5 KB of ROM, and 1.3 KB of RAM. With X-Lisa

(and all its features), these numbers become 34 KB and 1.9 KB, which can easily be

accommodated by the Tmote Sky.

Figure 4.6.3.2 presents the number of unicast and broadcast packets for DAPR alone

and DAPR with X-Lisa. Also shown are the number of report packets that were sent

and the average packet size. For both 5 and 10 nodes, the number of unicast packets

increases when X-Lisa is used. Since updates are broadcast packets only, this does not

constitute overhead for X-Lisa, but merely increased data traffic brought about by im-

86

Unicast Bcast Data Pkts Tx Av. Pkt Size
0

200

400

600

800

1000

1200

1400

+40.20%

+14.66%

+13.52%

+0.59%

+21.28%

+5.14%

+5.95%

+1.36%

N
u

m
b

e
r

o
f

P
a

c
k
e

ts
 /

 B
y
te

s

Packets on the Network − 5 10 nodes

DAPR − 5 Nodes
DAPR+X−Lisa − 5 Nodes

DAPR − 10 Nodes
DAPR+X−Lisa − 10 Nodes

Figure 4.6: Comparison of the impact of DAPR and DAPR + X-Lisa on the network

for 5 and 10 nodes. The numbers on the graph are the relative change from DAPR to

DAPR + X-Lisa.

proved performance of DAPR with X-Lisa. The increase in broadcast packets remains

modest (a maximum of 15%) even for 10 nodes and measures the added cost of X-Lisa.

The number of data reports sent to the data sink differs only slightly: this is because

when a relay node moves to and from the target zone, X-Lisa can notify its application

layer to start or stop sending reports. But in the absence of X-Lisa, the application layer

does not learn of it until the next DAPR round, which causes the node to send too many

or too few data reports. Over the whole node lifetime however, these tend to average

out. Finally, the average packet size stays approximately the same: the information vec-

tor sent by X-Lisa does not need to be exchanged if no movement between zones has

been recorded. This compensates for larger packets when the full information vector is

present in all packets.

Figure 4.7 measures the advantages provided by X-Lisa: a net decrease in the aver-

age update delay, which translates into significant gains of QoS. Neighbors of a moving

node are notified of a change up to 85% faster when X-Lisa is used. Protocols may take

advantage of this in several ways, with varying effects on different metrics. With our

implementation of DAPR, this translates into a steep increase in the number of packets

87

Data Pkts Rx (pkts) Av. Update Delay (s) PDR (%)
0

100

200

300

400

500

600

700

+86.41%

−85.80% +57.14%

+6.27%

−82.70%

+0.35%

U
n
it
s
 o

n
 X

−
a
x
is

Increased Performance − 5 10 nodes

DAPR − 5 Nodes
DAPR+X−Lisa − 5 Nodes

DAPR − 10 Nodes
DAPR+X−Lisa − 10 Nodes

Figure 4.7: Comparison of the QoS of DAPR and DAPR + X-Lisa on the network for 5

and 10 nodes. The numbers on the graph are the relative change from DAPR to DAPR

+ X-Lisa.

delivered to the data sink, as well as an increase in packet delivery ratio. The magni-

tude of this increase depends on conditions in the network (when a change happens,

how many alternate routes there are, etc.) and on the protocols in the stack; however,

the improvement is significant.

These results show that while X-Lisa provides more flexibility and generality, it

does not degrade protocol performance. Better yet, correct use of extra information

helps increase the QoS to the application, with X-Lisa incurring only small overhead.

4.7 Discussion

In this section, we provide insights as to what makes X-Lisa a stronger architecture

for WSN compared with the existing approaches described previously. When select-

ing a protocol architecture, it is important to consider the specific network for which

the architecture is intended. The factors to consider include: overhead imposed by the

architecture, generality of the architecture, ease of design and maintenance of the pro-

tocols when using the architecture, and the advantages the architecture provides to the

88

application. We examine each of these features.

4.7.1 X-Lisa Extends the Desirable Properties of Existing Archi-

tectures

X-Lisa provides the highest level of flexibility available in existing architectures, but it

also ensures data freshness and has many features that make it simple to use.

4.7.1.1 Flexibility

The neighbor table within X-Lisa is the most flexible to date for a programming lan-

guage as simple as NesC: its fields can easily be modified as the needs of protocols

change. Swapping protocols is also eased by the layered structure and the CLOI inter-

face to the information repositories of X-Lisa.

Moreover, the signaling mechanisms in X-Lisa allow support for many protocols

that would otherwise require violations of the layered structure. Only protocols with

an interest in event notification have to wire to a simple component. Other protocols

do not see such notifications, and thus do not overwhelm the sensor node’s compute

resources.

Finally, the location of the horizontal layer of CLOI renders X-Lisa compatible

with SNA if greater platform universality is required. Abstraction of lower layers is

guaranteed by the neighbor table and the message pool, as in SNA.

4.7.1.2 Freshness of Information Repositories

Information contained in the tables and message pool is made available to all the proto-

cols as soon as it is updated. Every layer benefits from a fresh view of the node and its

immediate neighbors. Automatic clean up services remove stale entries from the neigh-

bor table and prevent it from exceeding its capacity. Moreover, X-Lisa can be ordered

to automatically propagate the node information to its neighbors. It does so with very

little overhead (typically 1 B for the content field).

X-Lisa provides proactive services throughout the architecture. These are self-

maintained, and while they can be turned off when they are not required, protocols need

not be concerned with the detailed execution of the services. This design choice was

89

prompted by the fact that the various protocols in the stack should not have to perform

services such as localization; rather, they should only be responsible for performing

their designated task (e.g., routing), for which they should have full control.

4.7.1.3 Simplicity

From its layered structure to its implementation in TinyOS, X-Lisa is the simplest archi-

tecture to date. Using X-Lisa requires wiring to only one or two TinyOS components.

Most importantly, and as opposed to proactive services, X-Lisa is not protocol

proactive. CLOI—which is only an interface—lets the protocols in the stack make

decisions in accordance with the information contained in the tables. Cross-layer im-

provements are only obtained if the various protocols in the stack are able to take ad-

vantage of the information provided by the data structures. This ensures that CLOI will

not perform operations out of the control of the protocols. As a consequence, building

a protocol stack with X-Lisa is a simple process that does not require an understanding

of the inner workings of CLOI. A programmer only needs to learn the input and output

functions, conveniently described in the TinyOS CLOI interface.

4.7.2 To Use or Not to Use X-Lisa

X-Lisa (and the other surveyed architectures) is not suitable for all sensor network pro-

tocol implementations. For example, when the protocols in the stack are very simple

or let the base station (with much greater resources) make all decisions about routing

and node schedules, as in CentRoute [71], X-Lisa would add too much extra overhead

in terms of memory and packet transmissions (see Section 4.6) for no gain to the pro-

tocols. In such cases, the programmer should bypass X-Lisa—and many other TinyOS

components. However, these cases are uncommon and require specific base stations

and node deployments.

On the other hand, many current protocols for sensor networks are designed to take

advantage of the type of information that CLOI manages. For example, GFG [12]/GPSR [13]

require location information. PEAS [9] requires node activation information. Otal et

al.’s proposed scheme in [72] uses channel quality estimation and fuzzy logic to select

the appropriate next-hop destination at the right data rate. In [73], the authors describe

a TDMA based MAC protocol that uses remaining energy information. In these and

90

other protocols, the overhead of obtaining and maintaining the information managed by

CLOI is unavoidable. In existing protocol stacks, this information must be obtained and

maintained by the individual protocols, oftentimes being replicated in multiple layers.

The overhead cost for this replicated information is higher than the cost of maintain-

ing the information external to the individual protocols, as is done in X-Lisa. Using

CLOI to obtain and manage this information removes this burden from the protocols

and enables them to focus on their primary tasks.

4.7.3 The Size of X-Lisa

The RAM memory needs are closely dependant on the number of neighbors one node

might expect to have. However, this is a problem that any individual protocol using

a neighbor table must face. X-Lisa enables the use of a single neighbor table for all

protocols, rather than requiring each individual protocol in the stack to maintain its

own neighbor table if one is needed. Thus, X-Lisa allows for significant RAM memory

savings by eliminating redundant information at various layers. Moreover, the trend

in sensor network motes has been geared toward providing smaller platforms with in-

creases in RAM and ROM capacities. Thus, we do not believe that X-Lisa represents

a prohibitive cost in terms of memory requirements compared with existing protocol

architectures.

In our implementation, the TinyOS X-Lisa component has under 900 lines of code.

The EEPROM memory space required for the implementation of X-Lisa is 6 KB with-

out any service libraries (which can be selectively loaded) but with all the TinyOS

components necessary for its execution (timers, leds, etc.).

In section 4.4.5.1, we described a mechanism that limits the packet overhead in-

duced by X-Lisa. If all the protocols in the stack have no use for some services or

parameters, the information vector is limited to only one byte. Moreover, exchanged

information does not always constitute additional overhead—if X-Lisa is not used, this

information is just disseminated directly by the protocols.

91

4.7.4 The Most Gain for the Cost

We believe that there exists a point of optimal benefit for the cost expended in exchang-

ing information among different layers of the protocol stack. Obviously, this depends

on the application and the protocols and cannot be found a-priori in general. However,

X-Lisa was designed to minimize the memory, energy and bandwidth required to prop-

agate node and network information to enable both vertical (within a node’s stack) and

horizontal (among different network nodes) cross-layer optimizations. Thus we believe

that X-Lisa will benefit a large number of existing sensor network protocols. Even more

important, we believe that X-Lisa will make it much easier for future protocol designers

and system developers to design, implement and optimize their protocols’ performance

by using the readily available information stores managed by CLOI.

4.8 Summary

The improvements obtained through the cross-layering of protocols stems from the

information shared among them. Until recently, programmers had to resort to layer

fusion or to intricate and disorderly designs that curtailed flexibility.

We surveyed the state of the art of information-sharing architectures whose merits

include support cross-layer interactions while exhibiting high modularity. We com-

pared these various architectures and found that none of them provide all the require-

ments needed for sensor networks: support for 1. cross-layer protocols using a modular

architecture, 2. services, 3. information exchange suited to sensor network traffic mod-

els, and 4. event notification.

Thus, we proposed X-Lisa, an information-sharing architecture that facilitates verti-

cal and horizontal cross-layer optimizations in WSN through a cross-layer optimization

interface (CLOI). CLOI maintains update information on the network state, the nodes’

states, the data sinks and the messages to be sent. All layers have access to the informa-

tion maintained by CLOI, which ensures that all protocols in the stack can benefit from

cross-layer optimizations facilitated through information-sharing. X-Lisa also prevents

use of duplicate neighbor tables at different layers and lets protocols refocus on their

core purpose.

In our Tmote Sky platform implementation, we have verified that existing protocols

92

(such as XLM and DAPR) can fit into this information-sharing architecture. However,

the real advantage of this architecture is that it will facilitate the design of future pro-

tocols by removing the burden of finding, maintaining and sharing important node and

network information from the protocols and placing this task within CLOI. In spite of

some limitations, the ease of use and the implementation freedom of X-Lisa make it a

viable option for future sensor network deployments.

X-Lisa standardizes the design of cross-layer protocols by providing a flexible set

of parameters to all the protocols in the stack. X-Lisa insures that the information fed

to its client protocols is updated and propagated to its neighbors.

However, this part of our work does not consider how to extend middleware in-

teractions to the whole protocol stack, and how to organize the bidirectional flow of

information in a manner that is consistent with the goals set in Section 4.3. In the fol-

lowing chapter, we propose an elegant solution to support proactive query notification

and manage information between middleware and protocols and services in the stack.

Chapter 5

Supporting Proactive Application

Event Notification to Improve Sensor

Network Performance

WSNs provide many great challenges because of their resource constraints. Software

solutions must operate on a variety of platforms and deployments while providing con-

tinuous Quality of Service (QoS) to the end user. In general, QoS should not exceed

the level required by the application, as this usually results in depleting network re-

sources faster. Fulfilling this requirement may be further complicated by the inherently

dynamic topology of the network, whether sensor nodes are mobile, and whether their

energy sources can be replenished.

To support an application, protocols may take advantage of network information,

such as knowledge of the resources or locations of the individual nodes. We argued

in Chapter 4 that all protocols could benefit from such additional information, but that

this wealth of new information requires proper channels for dissemination to a node’s

protocols and neighbors. For example, ad-hoc violations of an OSI model-based archi-

tecture could lead to a “spaghetti design” cautioned against by Kawadia et al. [27]. On

the other hand, allowing information-sharing among protocols, as we proposed in X-

Lisa (Cross-Layer Information Sharing Architecture), safeguards against this risk while

still providing the required information to all protocols in the stack. In particular, X-

Lisa shares data repositories among all layers in the stack from the node activation layer

93

94

to the Data Link / MAC layer through a common interface called CLOI (Cross-Layer

Optimization Interface). However, X-Lisa does not provide any interface between the

application and the protocols in the stack—this is typically the role of middleware.

In [51], Römer et al. define middleware through its purpose “to support the devel-

opment, maintenance, deployment, and execution of sensing-based applications.” To

achieve this goal, middleware should necessarily abstract the network mechanisms and

heterogeneity. In this chapter, we introduce ideas for information-sharing architectures

to support middleware, and we redefine the functions that the application must perform.

We also introduce the counter-part of middleware support: protocols in the stack can

benefit from information that an application event has occurred. Thus, while the imme-

diate focus of existing middleware techniques is resource, data, or code management

horizontally among nodes (e.g., interactions between middleware of two neighbors),

we present the idea of vertical integration of middleware (inside a node itself).

We start with the idea that protocols in the stack may benefit from application-

related information. For instance, consider a network in which an event (a fire or a

structural collapse) is detected and will likely cause node failures. The routing protocol

would be better advised to circumvent the event in order to reach the data sink. With

this in mind, we propose a Middleware Interpreter that logs complex queries from the

application. Thus the Middleware Interpreter can determine that an event has occurred.

If so, the Middleware Interpreter notifies all subscribing protocols and (if chosen so

by the middleware) the node’s neighbors, thus shifting the burden of event detection,

notification and management away from middleware, which can then revert to its core

tasks of data aggregation [74], caching data [54], etc. If middleware chooses to notify

direct neighbors about the event, they receive complete information about the query,

thus helping in the detection of very complex events and in data publication. These new

features entail tight cooperation between the Middleware Interpreter and the neighbor

information, as may be stored in a neighbor table, such as that provided in X-Lisa.

Because protocols are regularly introduced or improved upon, the state of the art

in WSN protocols is a collection of recent and still evolving contributions. Proto-

col swapping must be eased so as to promote immediate use of pervasive computing

technologies. Therefore, modularity is a key goal of a WSN architecture, although it

conflicts with the need for cross-layer interactions. As a consequence, the proposed

95

solution does not allow direct interaction between the Middleware Interpreter and the

lower layer protocols. We argue that direct communication between protocols causes

“spaghetti” designs and should be avoided. Instead, appropriate interfaces should be

used to support information-sharing between the Middleware Interpreter and the proto-

cols.

Using these principles as a guideline, we implement a Middleware Interpreter within

the X-Lisa protocol architecture. Using the same CLOI interface as in Chapter 4, our

proposed solution enables the protocols to interface with the Middleware Interpreter to

learn about important application events and adjust their performance accordingly.

5.1 Goals and Challenges of WSN Architectures

In our effort to facilitate the flow of information between middleware and the protocol

stack, we propose new guidelines and solutions that should abide by the goals defined

for a WSN architecture in Chapter 4. As such, the objectives of flexibility (through

increased modularity and universality, service support and event notification), informa-

tion freshness, low overhead and simplicity remain guiding principles to manage the

interactions between middleware and protocols.

To help support these four goals further, we argue that WSN architectures should

support middleware. Since the purpose of wireless sensor networks is to serve an ap-

plication, information about the application is every bit as important to the functioning

of the network as local or global network information. Support for middleware, which

maps application requirements to the behavior of the network, appears as a key feature

of WSN architectures. Application events such as the detection of a fire or the injec-

tion of a new query in the network often spur a change in direction for the protocols:

respectively, the search of a newer and safer route, or the activation of more nodes.

However, few current middleware solutions share their information with the rest

of the protocol stack. This forces middleware to contact protocols individually or to

post information that has to be periodically read by various protocols (mobilizing com-

pute resources frequently). Both solutions introduce more violations to layered models

(a hindrance to modularity). On the other side of this issue, protocols that do not re-

ceive notifications from middleware are left in a reactive position, waiting for events

96

to be brought to their attention (through a specific packet type to send or receive, pe-

riodic enquiry of data, explicit signaling from another protocol, etc.) before they can

act. We argue that a proactive stance would increase the QoS, which we will show in

Section 5.3.

Among resource management middleware [52], only MiLAN [53] suggests direct

interactions with protocols in the stack, although in a very ad-hoc manner. This illus-

trates the need to facilitate the various middleware tasks, which Römer identifies [51]

as formulating and dispatching complex sensing tasks and reporting related results. We

propose to shift the burden of interacting with the protocol stack away from middle-

ware. While middleware must still supply information understandable by the network,

it is how this information is communicated to the stack that is the focus of this work. For

instance, while middleware maps application requirements to a set of query conditions,

automatic notification of application events by the architecture can simplify the inter-

actions between middleware and the protocols. This allows middleware to concentrate

on tasks such as aggregation and other network abstractions.

5.2 Middleware Support

5.2.1 General Ideas

Keeping in mind the goals set for a WSN architecture, we propose to add middle-

ware support. This section does not provide new middleware strategies, but sets to

improve communication between existing middleware and other protocols, based on

the assumption that the protocols, too, could benefit from application information.

The guiding idea of this work is that protocols should be notified when an appli-

cation event happens so that they may adjust their behavior to new application and

network conditions in a proactive manner. Event signaling is the method of choice so

that protocols need not constantly check whether an event has occurred.

In effect, the basic implementation principles are to keep an information-sharing

structure with common data repositories storing neighbor, message, and query infor-

mation. The queries must be stored in a way that is understandable by all the protocols.

Since updates of monitored fields are not always meaningful to all the protocols in

the stack, only a subset of the protocols can subscribe to information changes. These

97

updates, including those marking the occurrence of an application event, should be sig-

naled through a simple and common interface (in the case of X-Lisa, CLOI). To the

best of the architecture’s capabilities, new information should benefit all protocols and

services in a node so as to guarantee the most up-to-date view of the local network and

the application. As a new query event fires, subscribing protocols are automatically

notified so they may anticipate the new conditions in the network.

5.2.2 Integration Into an Information-Sharing Architecture

5.2.2.1 Motivation and Modifications

In deployments for which the middleware layer is absent from the protocol stack, the

application acts as the source of data packets in the network, reacting to a stimulus,

or simply following a schedule, usually fixed before compile time. This imposes lim-

itations on the complexity of the task that can be performed. For example, consider

the difference between requesting the sensor reading at a specific node (as can be done

when middleware is absent) and asking for locations where the sensor reading exceeds

a certain value (which requires middleware to manage). The latter case is more of value

to data-centric networks such as WSNs and can only be performed with the help of a

middleware layer.

Middleware was introduced to map complex application requirements to an ab-

stracted network. These requirements can be expressed by semantically rich queries,

whether in SQL-style syntax [74] [54], or not [75]. We assume that the data sink is

either able to map end user requests into a query that can be sent to and interpreted

by the nodes in the network or that the data sink receives this query already formatted

for the network from another party. The query is propagated throughout the network,

and it is interpreted and stored by the nodes’ Middleware Solution (the logical layer in

charge of query dissemination, interpretation, aggregation, etc.) and passed up to the

application.

For example, the Middleware Solution can receive commands from the end user

asking for data reports if a certain sensor reading is below or above a threshold. The

Middleware Solution makes the decision to record the query depending on local con-

ditions and parameters in the network. Madden et al. [74] give a good description of

98

Services 1

Services 2

Services 3

Services 4

Services 5

Services 6

+ Sink Table

+ Middleware Interpreter

+ Neighbor Table

+ Message Pool

CLOI

Node Activation

Transport

Routing

Data Link / MAC

Physical

C
L
O

I_
E

V
E

N
T

S
C

L
O

I

Middleware Solution

Application

Figure 5.1: New X-Lisa architecture with middleware support.

possible fields in such a query.

However, if the query information is stored within the Middleware Solution only, it

may not benefit all layers in the stack. Therefore, we propose a Middleware Interpreter,

or MI. This Middleware Interpreter’s main function is to store queries in a form com-

monly understood by all the protocols. It also makes sense to store queries (that express

an interest in a field such as sensor data) closely tied to the structure that manages these

fields, the neighbor table. This can be easily accomplished using X-Lisa. A diagram of

the updated X-Lisa architecture is shown in Figure 5.1.

5.2.2.2 Query Structure

A query stored in the MI is named by a number that helps identify queries uniquely

in the protocol stack and throughout the network. A query ID identifies a particular

semantic meaning, for instance “high stress level” (when a patient’s heart rate and blood

pressure are both high). A query is also associated with a field of interest, a date to live

(“dtl”, the time at which the query expires), and an epoch (the time separating two data

reports about the monitored fields). These query fields have to be understood by all the

protocols in the stack (this is one of the limitations of this work, although these fields

are common in many middleware solutions).

We also added several additional fields to the stored queries in the MI:

• A status field to signal whether an event is happening (“FIRED”) or not

(“IDLE”),

99

Table 5.1: Some of the fields of the Middleware Interpreter with their TinyOS primitive

type and an example.

ID publish field dtl epoch conditions composite status extra

int8 int8 uint8 tos time uint16 uint32 int16 uint8 int8*

6 0 TEMP 0 5000 > 5 -1 IDLE NULL

• A publish field to request that X-Lisa automatically notify its direct neighbors

that a query has fired, thus easing collaboration between nodes,

• A composite field, because queries may be aggregate (e.g.,“send data reports

every tepoch s from locations in the network where the temperature exceeds theta

and the infrared measurement exceeds ϕ”),

• A conditions fields indicating values under and above which a query event

has happened, although this could be replaced by a function wherever simple

“higher” or “lower” conditions are not sufficient, and

• Additional memory space (the size of which must be indicated when the query

is first added) that can be allocated for the needs of the Middleware Solution or

other protocols (e.g., for data caching, node scheduling, event confidence deter-

minations). This is indicated as the field “extra” in Table 5.1.

Table 5.1 illustrates how these fields are stored within the MI.

Entering a query into the Middleware Interpreter is accomplished by calls to two

functions. The first, to

query = call Cloi.getQueryBuffer(int queryID, int

additionalSize),

which specifies the ID type of the query and the extra memory that must be allocated

for the needs of the middleware or protocols, and that returns a pointer to the query.

If the ID is already present in the MI, the returned buffer points to the address of the

100

already registered query, and information may be overwritten. All fields with the ex-

ception of dtl and status, must be filled in the query before the query can be entered into

the Middleware Interpreter. Invoking

Cloi.addQuery(MiddlewareQuery *query)

finishes the insertion of the query inside the MI.Access to a query is provided by read,

add and remove functions, for instance

command MiddlewareQuery* Cloi.readInterest(int8 t queryID)

5.2.3 Composite Query Registration and Deregistration

The Middleware Solution must break complex queries into simple subqueries. Com-

posite queries are entered with the composite field set to their query ID and by speci-

fying the number of subqueries (this tells the Middleware Interpreter that it is part of a

composite query). The Middleware Solution must enter subqueries immediately after

with their composite field set to the ID of the composite query. The subqueries may

be reused from already existing queries, and they can be part of other complex queries.

A composite query is considered to have fired when all subqueries have fired (logical

“AND” of the individual subqueries). The information is stored as shown in Table 5.2.

In this example, the composite query with ID 6 denotes a fire (a high temperature, and

a particular IR signature). It is made of two subqueries of ID 1 (temperature) and 2 (IR

light).

The inverse operation of query deregistration is invoked with the following call:

call Cloi.removeQuery(int queryID).

For composite queries, the MI automatically searches for and removes all subqueries

that are no longer used by any existing composite query.

101

Table 5.2: Composite Query Stored within the Middleware Interpreter

Field ... ID Composite subQueries Status

Comp. −1 ... 6 6 [1 2] IDLE

Sub. TEMP. ... 1 0 [6 5] IDLE

Sub. IR ... 2 0 6 IDLE

Comp. −1 ... 5 5 [1 3] IDLE

Sub. PRES. ... 3 0 5 IDLE

5.2.4 Interest Registration and Deregistration

Protocols may register an interest in fields that are relevant to their behavior. An “inter-

est” can be seen as a stripped down query that fires every time the field value is updated

in the neighbor table.

The Middleware Interpreter can be tightly coupled to the neighbor table to follow

what fields are of interest to the protocols in the stack. Interest in different types of

queries is kept at the Middleware Interpreter, while other field (data or network related)

interests are managed by the neighbor table. Upon updating a field in the neighbor

table, CLOI checks whether it is of interest to any protocol. A positive answer results

in signaling the change to subscribing protocols (if the value is different from the one

previously stored). This procedure allows protocols to dynamically register for event

notification, preventing unwanted events from interrupting the code when they are not

needed.

5.2.5 Query Notification

A similar behavior is at work for queries. The burden of detecting that a query event

has happened is now with the Middleware Interpreter, leaving the burden of data aggre-

gation or query dissemination to the Middleware Solution. As a field is updated in the

neighbor table (which includes information about the node itself, including sensed data

values), the MI receives a notification from the neighbor table because it is a subscriber

to all field changes. The MI matches the new field value to conditions expressed by

registered queries and determines whether a query has fired. If so, the MI signals the

102

event to all subscribing protocols, including necessarily the Middleware Solution and

possibly other protocols down the stack. The notification identifies the query with its

ID number and returns a pointer to the query in the Middleware Interpreter query table.

This process is illustrated by Figure 5.2.

For composite queries, the MI looks through its entries and searches for the status

of all its subqueries (which are identified in the subQueries field). If all have a

FIRED status, the composite field of any subquery points to the aggregate query

that will serve as the basis for the event notification. In case the composite query must

be published to direct neighbors, the notification contains the updated values of all the

fields related to the composite query, as well as the ID number of the query.

The Middleware Solution does not need to establish ad-hoc interfaces with other

protocols to signal that a query has fired. In fact, it does not even need to use the

protocol event signaling described in 4.4.4 as this is carried on by the MI automatically

through the process described directly above. The notified protocols do not preoccupy

themselves with checking whether an event is occurring, but they simply wait for event

notification and then perform the appropriate actions when they are notified that a query

has fired. For example, notification that a query has happened may prompt a routing

protocol to refresh a route, a node activation protocol to wake-up neighbors, etc. When

the query conditions are no longer met, a notification that the event has gone IDLE is

sent and the protocols can similarly take action.

Figure 5.2: Event filtering and notification process: 1. A service or protocol updates

the neighbor table. 2. If the field is of interest, and the new value is different from the

old one, it is submitted to the MI. 3. The MI checks conditions realizing a query. 4.

The MI notifies subscribing protocols and services that the query has fired.

103

Table 5.3: Query Notifications and Status Based on the Preexisting Status of a Query

and Whether Its Conditions Are Met Upon an Update in the Neighbor Table

Conditions
Status X

√

IDLE — Notify and set to FIRED

FIRED Notify and set to IDLE —

Table 5.3 summarizes the behavior of the MI based on the preexisting status of a

query and whether its conditions are met.

5.3 Evaluation of Middleware Support

Although we cannot easily evaluate the convenience of this new middleware component

in X-Lisa, it follows our goals of modularity, data freshness, and simplicity—the Mid-

dleware Interpreter is accessible by simply wiring to the existing Cloi and CloiEvents

interfaces. However, we set out to evaluate what gains in QoS can be obtained through

proactive query status notification to the protocols.

Before considering the gains, we note here the additional memory cost for providing

proactive query status notification to the protocols. Using the Tmote Sky motes, the

overhead is 7.4 KB in the EEPROM and 100 B in the RAM.

5.3.1 Middleware Interpreter Only

5.3.1.1 Health Monitoring Test Scenario

Let us consider a health monitoring application served by a sensor network where nodes

are attached with heart rate and blood pressure sensors. As samples about the state of

the patient are gathered, the application will accept varying quality of service depending

on the aggregate stress level detected by the sensors. The fixed tree network topology

is represented by Figure 5.3(a), where node 5 is monitoring the person of interest to

the end user (all other nodes may act as routers). We assume that the node activation

protocol keeps nodes 0 through 5 always active, and that the routing protocol has two

routes from the source node 5 to the data sink 0: paths P0, {5 - 4 - 2 - 0} and P1 {5

104

(a) (b)

Figure 5.3: Topology of the (a) health monitor, and (b) room monitor test network.

- 3 - 1 - 0}. P0 passes through nodes with higher residual energy, but suffers from

higher packet error rates than P1. Under high stress levels, packet delivery should be

reliably sent to the data sink. The MAC protocol uses a Low-Power-Listening (LPL)

scheme [18]: nodes sleep and periodically wake-up every ti s to listen for incoming

transmissions. Packets must therefore be sent with very long preambles (at least ti s)

during which the destination will wake-up at least once. Most LPL MAC protocols,

although very energy efficient, cause significant delays of ti/2 s on average. In order

to reduce delivery latency for urgent packets, we implement a LPL MAC protocol that

may reduce its ti value by a factor of four when certain conditions in the network and

application are met.

The application requirements are summarized in Table 5.4. In our simulation, the

patient’s blood pressure increases from normal to high rapidly, and the heart rate read-

ings cycle from low, to medium, to high, and again. Consequently, the source node will

send packets with types 0, 2 and 4. Although this succession of sensor readings is not

very likely in real deployments, it will help gauge the responsiveness of the network.

The simulation starts with the base station sending a query to spread its interest

in detecting events related to the patient’s health (source node 5). The routing and

LPL MAC protocols subscribe to these queries (their type must be meaningful to all

concerned layers). Every time a query state changes, notification of the routing protocol

105

Table 5.4: Application requirements for Middleware Interpreter only scenario

BloodPressure→
HeartRate↓ Normal High

Low 30 s epoch

Delivery Failure OK

Long Delivery Delay OK

Packet type 0

Medium 30 s epoch 15 s epoch

Delivery Failure OK No Delivery Failure

Long Delay OK Long Delay OK

Packet type 1 Packet type 2

High 15 s epoch 5 s epoch

No Delivery Failure No Delivery Failure

Long Delay OK Short Delay

Packet type 3 Packet type 4

ensues, and it selects either path P0 or P1 (for the case without the MI, the routing

protocol is left randomly choosing between P0 and P1 because it does not benefit from

advanced query notifications). When a query event fires, notification is sent to the LPL

MAC protocol, which increases or decreases its duty cycle by a factor of four depending

on the current situation.

We simulated ten runs of this scenario for 1, 800 s in TOSSIM (the TinyOS sim-

ulator) and compared them to the protocol stack without X-Lisa or the Middleware

Interpreter. While it makes no doubt that the application could be equally well served

with ad-hoc middleware / other protocols interactions, that architecture would be ex-

ceedingly complex and inappropriate for modular designs. Thus, for fairness purposes,

the MI solution was only compared to a layered scheme where protocols share a neigh-

bor table among themselves, although it does not support event and query notification.

For each packet type (or patient state), we measure the per-hop delivery delays,

the “output delay” (as the difference between a change in the patient’s aggregate stress

level and the time a report is sent), and total delivery delay (the time at which the data

sink receives a packet whose type corresponds to the new patient state). Packet delivery

106

ratios are also of interest and give a good indication of the possible QoS improvement

brought by the MI.

5.3.1.2 Simulation Results

5.3.1.2.1 Delays Figure 5.4(a) shows the various delays experienced by different

packet types. The per-hop delivery delay (top graph) illustrates the behavior of the

MAC layer: for packet types 0 and 2, it is very similar for the case with and without the

MI. However, type 4 packets enjoy a much reduced per-hop packet delay (at least 50%

shorter). This is consistent with the requirements set by the application in Table 5.4.

With the MI, after a change in the state of the patient’s health (middle graph), a

packet is sent by the source after 15 s for type 0 (no particular emergency), and only

a few milliseconds in other cases. Without the MI, corresponding delays vary: this is

because in a certain state, the application checks for the sensor readings periodically

depending on the reporting epoch for that state. In state 0, the application checks the

sensor reading every 30 s, causing the highest packet output delay when going from

state 0 to 2. In state 2, the application reads sensor outputs every 15 s, which explains

the delay when transitioning from 2 to 4.

The total packet delivery delay after a change in the patient’s state is shown in

Figure 5.4(a), bottom graph. For the case when the patient is in a relaxed state (type

0), the MI actually increases packet delay because the application does not require

immediate notification. In other cases however, The MI helps reduce the first state

change notice packet to the data sink by 50 to 75% depending on the severity of the

patient’s health. This delay combines per-hop delivery gains as well as faster reaction

with the MI.

These results show that both the application and MAC protocols can adapt to proac-

tive query notification and substantially increase the QoS to the application.

5.3.1.2.2 Packet Delivery Ratios Figure 5.4(b) shows the benefits brought by the

MI to the routing protocol and delivery reliability. Without the MI, packet delivery

ratios stand at about 75% (the average of using a 100% reliable path P1 and a ≈ 50% =

0.83 reliable path P0). With the MI, delivery reliability of packets of type 0 is ≈ 50%

because the application can tolerate lower PDR on these packets, but 100% for packets

107

0

5

10

15

20

25

+24.45%
−99.72%

−99.69%(s
)

Average Packet Output Time After Change

Without MI

With MI

0 2 4
0

5

10

15

20

+26.16%

−87.17%

−74.19%

Packet Type

(s
)

Average Total Reaction Time After Change

Without MI

With MI

0

0.5

1

1.5

−1.12% −6.65%

−64.07%

Average Per−Hop Packet Delay

(s
)

Without MI

With MI

(a)

0 2 4
0

10

20

30

40

50

60

70

80

90

100

−29.02%

+38.61%

+32.74%

Packet Type

(%
)

Packet Delivery Ratio

Without MI

With MI

(b)

Figure 5.4: Comparison of the (a) delays (b) PDR for the patient monitoring scenario

with and without the Middleware Interpreter.

denoting a higher patient stress level.

108

5.3.2 X-Lisa with Middleware Interpreter

In this section, we evaluate the Middleware Interpreter in the full context of X-Lisa.

We use modified test scenarios, which we explain below.

5.3.2.1 Room Temperature Monitoring Test Scenarios

Let us consider a tree network in which nodes belong to levels. These levels can be

thought of as different rooms or people in a building or a health monitoring application.

Only nodes within the same or adjacent levels can communicate. The application is

interested in monitoring the temperature in the highest level only—our “target” level

(as shown in Figure 5.3(b)). If the temperature measured by a node exceeds a certain

threshold, it must send a data packet (called urgent packet) every 2.5 s until it changes

levels, otherwise, a heartbeat data packet every 30 s is sufficient.

We selected DAPR [6] as our node activation and routing protocol. DAPR assigns

costs to nodes based on their importance to the application, and it selects nodes that can

be spared as the optimal choices for node activation and routing. The MAC protocol

is also a Low-Power-Listening (LPL) scheme. In order to reduce delivery latency for

urgent packets, we implement an LPL MAC protocol that reduces its ti value by a factor

of four when a query fires.

The simulation starts with the base station sending a query to spread its interest

in detecting events of high temperature in the target level. DAPR and the LPL MAC

protocols subscribe to these queries. Every time a node changes location, notification of

DAPR ensues, and it performs local route repairs. When a query event fires, notification

is sent to the LPL MAC protocol, which increases its duty cycle by a factor of four.

In the first set of results, only one node is mobile. However, this node routes other

nodes’ packets, and it is capable of sensing temperature—and thus is a source of data

packets as well as a relay. As a consequence, its movement among levels is highly

disruptive to DAPR, which was not originally created for a mobile network topology.

In the second set of results, half the nodes are mobile, and we added one more level.

We simulated these scenarios with five and ten nodes for 1, 800 s in TOSSIM (the

TinyOS simulator) and compared them to the protocol stack without X-Lisa with mid-

dleware support. For fairness purposes, the protocol stack without X-Lisa also shares

a neighbor table among layers, although it does not support event notification. The

109

results are averaged over ten runs each.

We measure delays between a change in level and the start of the temperature re-

porting and the delivery delay of regular and urgent packets. Packet delivery ratios are

also of interest and give a good indication of the possible QoS improvement brought by

X-Lisa with middleware support.

5.3.2.2 Low Node Mobility

5.3.2.2.1 Packets Exchanged on the Network Figure 5.5(a) characterizes the pack-

ets traveling on the network. Broadcast packets can be seen as the network overhead—

DAPR and X-Lisa send them to manage the network. The increase in the total number

of broadcast packets when X-Lisa is used is around 10%. With this increase, we observe

a large rise in unicast packets (whether heartbeat packets or “urgent” data packets) for

X-Lisa of 25% to 50%. These two measurements already show a significant increase in

QoS, at the price of a limited increase in overhead represented by the broadcast packets.

With X-Lisa, the average packet size is smaller thanks to the update strategy that limits

the content of the information vector to only the fields that have changed, while with-

out X-Lisa, all fields must be sent at the beginning of every DAPR round. Note that the

packet size would only be of limited importance for LPL MAC protocols since larger

packets do not lead to higher energy consumption. However, other MAC protocols may

consume more energy for larger packets, and the smaller average packet size of X-Lisa

would help limit the increased overhead.

Figure 5.5(b) shows that the increase in total unicast packet transmissions stems

from a larger number of packets being originated in the case of X-Lisa—and not an

increase in retransmissions for instance. The large increase in unicast packets re-

flects an improvement in QoS. Here, the mobile node moves in and out of the target

level. As soon as it starts meeting the query criteria (matching level and sensor reading

conditions), it can send report packets. However, without X-Lisa, a topology change

goes unnoticed until the natural route rediscovery period. Many more packets are sent

and received because X-Lisa is capable of notifying all layers in the stack of topology

changes.

110

Total Unicast Pkts Total Broadcast Pkts Av. Pkt Size (B)
0

50

100

150

200

250

300

350

400

450

500

550

+51.03%

+10.63%

−4.36%

+23.44%

+3.65%

−2.71%

U
n
it
s
 o

n
 X

−
A

x
is

Packets on the Network − 5 10 nodes

DAPR − 5 Nodes

DAPR+X−Lisa − 5 Nodes

DAPR − 10 Nodes

DAPR+X−Lisa − 10 Nodes

(a)

Normalized Data Pkts Tx Data Pkts PDR (%)
0

20

40

60

80

100

120

+46.57%

+6.92%

+20.93%

+2.69%

U
n

it
s
 o

n
 X

−
a

x
is

Packets on the Network − 5 10 nodes

DAPR − 5 Nodes

DAPR+X−Lisa − 5 Nodes

DAPR − 10 Nodes

DAPR+X−Lisa − 10 Nodes

QoS
Incr.

QoS
Incr.

(b)

Figure 5.5: Comparison of the number and nature of packets on the network for the low

mobility scenario with and without X-Lisa.

5.3.2.2.2 Delays Figure 5.6(a) presents various delays of interest that suggest im-

proved QoS provided by the network. The average neighbor notification delay is the

time between a change in the topology (a node moving up or down a level), and the

time all its new and former neighbors learn of it. This measure typically reflects how

111

accurate the local vision of the network is. X-Lisa proactively notifies neighbors that

a change has happened so as to maintain up-to-date routes. In the absence of X-Lisa,

routes are updated every DAPR round (60 s) during which route discovery phases are

implemented. A long neighbor notification delay causes loops and packets to be mis-

routed. The improvement brought by X-Lisa with Middleware Support is drastic (well

above 80%).

The average service notification delay is the time between a node’s arrival in the

highest level and the start of the temperature service. With X-Lisa, there is no delay as

the detection is immediately followed by the notification. Conversely, without X-Lisa,

the application must periodically inquire whether the node is in the target level (every

30 s since this is how often a heartbeat data packet is sent under normal circumstances)

and if so, it checks for the node temperature in the neighbor table (reasonably, every

2.5 s).

The average regular and urgent data packets delivery delays measure the difference

between the time a packet is scheduled to be sent and when it is received at its desti-

nation. For regular packets, the difference with and without X-Lisa is small: the MAC

layer’s LPL scheme does not reduce its inter-listening time ti and we only observe that

malformed routes are responsible for the slightly superior delivery delay without X-

Lisa. However, X-Lisa allows the MAC layer to benefit from the knowledge that a

query has happened, and that its epoch time requires the ti value to be reduced. This

results in an improvement of 3/4
1, as the division of ti by four would suggest.

5.3.2.2.3 Packet Delivery Ratios Figure 5.6(b) shows the packet delivery ratios for

regular and urgent data packets. In general, the packet delivery ratio for X-Lisa is

slightly greater than that without it (by 2.5% to 7%). However, the packet delivery

ratio for urgent data is significantly higher, by 7%. The increase in urgent data packets

sent over the network with X-Lisa is above 70%. In spite of the increased traffic, the

more accurate network vision provided by X-Lisa helped guide more packets to their

destination.

1A command in the first packet prompts all nodes to reduce their duty cycle.

112

Av. Neigh. Notif. Av. Service Notif. Av. Ucast Pkt Delay Av. Urgent Pkt Delay
0

10

20

30

40

50

60

70

80

−84.46%

−100.00%

−5.81% −74.90%

−87.29%

−100.00%

−7.86% −74.89%

(s
)

Delays − 5 10 nodes

DAPR − 5 Nodes

DAPR+X−Lisa − 5 Nodes

DAPR − 10 Nodes

DAPR+X−Lisa − 10 Nodes

(a)

Urgent Data Pkts Tx Urgent Data Pkts Rx Urgent Packets PDR (%)
0

20

40

60

80

100

120

140

160

180

200
+70.53% +83.57%

+7.38%

+26.56% +35.89%

+7.78%

U
n

it
s
 o

n
 X

−
a

x
is

Packet Delivery Ratios − 5 10 nodes

DAPR − 5 Nodes

DAPR+X−Lisa − 5 Nodes

DAPR − 10 Nodes

DAPR+X−Lisa − 10 Nodes

(b)

Figure 5.6: Comparison of the (a) delays and (b) packet delivery ratios for the room

monitoring scenario with low node mobility with and without X-Lisa.

5.3.2.3 High Node Mobility

In this section, half the nodes of the tested scenario are mobile. This puts a strain on

the routing and node activation protocols that must keep routes up-to-date.

113

Total Unicast Pkts Total Broadcast Pkts Av. Pkt Size (B)
0

100

200

300

400

500

600

700

−7.09%

+29.24%

−8.19%

+37.67%

+26.10%

−6.98%

U
n

it
s
 o

n
 X

−
A

x
is

Packets on the Network − 5 10 nodes

DAPR − 5 Nodes

DAPR+X−Lisa − 5 Nodes

DAPR − 10 Nodes

DAPR+X−Lisa − 10 Nodes

(a)

Normalized Data Pkts Tx (%) Data Pkts PDR (%)
0

50

100

150
−18.26%

+13.34%

+30.77%

+6.41%

U
n
it
s
 o

n
 X

−
a
x
is

Packets on the Network − 5 10 nodes

DAPR − 5 Nodes

DAPR+X−Lisa − 5 Nodes

DAPR − 10 Nodes

DAPR+X−Lisa − 10 Nodes

Energy
Waste

QoS
Incr.

(b)

Figure 5.7: Comparison of the number and nature of the packets on the network for the

room monitoring scenario with high node mobility with and without X-Lisa.

5.3.2.3.1 Packets Exchanged on the Network Figure 5.7(a) significantly differs

from the first scenario in the number of unicast packets sent for five nodes. The num-

ber of unicast packets sent is not necessarily higher when X-Lisa is used because the

application node will stop sending heartbeat or urgent data packets as soon as a change

in level is detected. This change may go unnoticed if X-Lisa is not used, causing ex-

114

tra unicast packets to be sent. In this case, the energy to send unnecessary packets is

wasted and does not translate into increased QoS because the information sent is stale.

Figure 5.7(b) shows the same results.

5.3.2.3.2 Delays Figure 5.8(a) shows that the neighbor notification delay for both

cases has increased compared to the first scenario. This is mainly due to the fact that

more neighbors of a moving node will be out of range when the notification is sent,

causing them to ignore many changes until the next DAPR round or until X-Lisa auto-

matically removes stale entries.

The average service notification delay is similar to what was observed previously,

as well as the unicast packet and urgent packet delivery delays. In spite of increased

mobility in the network, X-Lisa obtained the same reduction in urgent packet delivery

delays (75%) over DAPR only.

5.3.2.3.3 Packet Delivery Ratios The delivery ratio for regular packets shows a

significant increase as the network goes from five to ten nodes, and if X-Lisa is used,

as seen in Figure 5.8(b). As the number of nodes increases, more routes are available

to route packets, and it is thus reasonable to see an increase in PDR. However, X-Lisa

is capable of delivering up to 13% more packets through the maintenance of accurate

routes. The effect is felt more when fewer nodes are available to form these routes. The

results for urgent packets PDR is very similar to that of regular packets.

The number of sent and received urgent packets may be reduced because a node can

more easily identify that it has moved out of the target level. This happens here for the

simulation of five nodes.

5.4 Summary

WSN architectures should exhibit some important features in order to boost their popu-

larity, most importantly support for cross-layer protocols and modularity. In this chap-

ter, we propose extending these principles to the middleware solution. A Middleware

Intrepreter component extends the benefit of proactive event notification to all proto-

cols, vertically (through layers of a same node) and horizontally (between nodes of

115

Av. Neigh. Notif. Av. Service Notif. Av. Ucast Pkt Delay Av. Urgent Pkt Delay
0

10

20

30

40

50

60

70

80

90

−74.31%

−100.00%

−9.74% −73.60%

−67.31%

−100.00%

−2.32% −74.06%

(s
)

Delays − 5 10 nodes

DAPR − 5 Nodes

DAPR+X−Lisa − 5 Nodes

DAPR − 10 Nodes

DAPR+X−Lisa − 10 Nodes

(a)

Urgent Data Pkts Tx Urgent Data Pkts Rx Urgent Packets PDR (%)
0

50

100

150

−23.96%

−9.52%

+10.52%

+22.17%

+32.11%

+5.31%

U
n

it
s
 o

n
 X

−
a

x
is

Urgent Packet Delivery Ratio − 5 10 nodes

DAPR − 5 Nodes

DAPR+X−Lisa − 5 Nodes

DAPR − 10 Nodes

DAPR+X−Lisa − 10 Nodes

(b)

Figure 5.8: Comparison of the (a) delays and (b) packet delivery ratios for the room

monitoring scenario with node high mobility with and without X-Lisa.

the same neighborhood). The Middleware Interpreter provides a convenient informa-

tion repository for application queries and their management. We added these ideas to

X-Lisa, a cross-layer information-sharing architecture that retains a layered structure

while supporting cross-layer improvements.

The originality of this work lies in the event filtering made possible by X-Lisa: in

116

many cases, protocols need not be aware that a new sensor reading is available, only

that an application query has occurred. For instance, the routing protocol may update

its routes, and the node activation protocol may choose to wake up more neighbors.

We implemented these new ideas in TinyOS so as not to ignore limitations imposed

by some lightweight operating systems. Simulation results showed up to 13% increase

in packet delivery ratios, even as the number of data packets delivered to the data sink

could better fit the needs of the application and the reality of the network. X-Lisa was

also successful in reducing urgent packet delivery delay. These improvements (of up

to 75% in packet delivery delays for the tested scenarios) were obtained with a limited

increase in overhead (of 3% to 30% in broadcast packets).

Chapter 6

Middleware for Supporting Protocol

Adaptation

Chapter 3 demonstrated the existence of tunable parameters (knobs) within cross-layer

protocols. These may be tweaked to adapt the response of the network to specific needs

of the application. This guarantees, for instance, that nodes that will be needed during

critical stages of an alert do not waste energy during normal states of the network. This

chapter introduces how middleware is able to provide application-level information to

the network protocols, enabling them to provide adequate service to the application for

longer periods of time.

6.1 Introduction

In order to increase the effectiveness of cross-layer architectures for different applica-

tions, oftentimes these architectures have several parameters whose value can be tuned

to better serve each specific application. However, it would not be reasonable to ex-

pect the application itself to control these different parameters—this is better handled

through an intelligent middleware. The middleware’s task is to coordinate application

needs to quality of service rendered by the network, using commands understandable

by the protocol.

Here, we show how a sensor network middleware can meet this requirement by ap-

propriately managing a cross-layer sensor network protocol. We base our work on the

117

118

cross-layer protocol DAPR (Distributed Activation with Predetermined Routes) [6] and

the sensor network middleware MiLAN (Middleware Linking Applications and Net-

works) [53].

6.2 MiLAN: a Sensor Network Middleware

This work builds off MiLAN, which is introduced here in more details. Several sensor

network applications require that only certain sensors be activated at a given time, and

that this set of required sensors change over time. For example, a home / office secu-

rity application may require that only entries to a room be monitored during normal

operation mode, whereas different sensors are needed when an intrusion is detected.

Similarly, a health monitoring system may require only a few vital signs to be moni-

tored while the individual is healthy, but when signs of stress are detected, more vital

sign monitoring is needed.

Controlling sensors for such dynamic operation, where the set of active sensors de-

pends not only on the sensors themselves (remaining energy, location, etc.) but also

on the state of the application and the system being monitored, is difficult to do di-

rectly from the application. MiLAN was designed to ease this burden on the application

designer by incorporating all the necessary mechanisms for controlling the network

within the middleware [53]. MiLAN provides the application an application program-

ming interface (API) through which it can specify its quality of service (QoS) goals, and

MiLAN takes care of appropriately setting network parameters to meet these QoS goals

over time. Large gains in lifetime can be obtained by allowing MiLAN to adapt a set of

tunable network parameters over time to just meet the application’s QoS requirements.

We assume that the quality of different sensed data can be quantitatively evaluated.

In order to configure the sensors and the network parameters to meet application needs,

MiLAN must know (1) the variables of interest to the application, (2) the required QoS

for each variable, and (3) the quantitative QoS of data output by sensors. All of these

quantities may vary over time. This information is conveyed to MiLAN through “State-

based Variable Requirements” and “Sensor QoS” graphs, as shown in Figure 6.1. Using

this information, MiLAN configures the sensors and begins the normal network opera-

tion, where sensors send data to the application.

119

Figure 6.1: Overview of MiLAN. A and B start when the application starts or changes

its state depending on data received from the sensors. C is the normal mode of operation

when conveying the sensors data to the application.

The following section discusses how to use MiLAN to control the operation of

DAPR, thereby improving overall lifetime of the network and easing the application

of the burden of sensor and network management.

6.3 Managing DAPR Through MiLAN

Previous work on MiLAN focused solely on one-hop networks using standard, layered

protocol architectures (e.g., Bluetooth, IEEE 802.11). Multi-hop heterogeneous net-

works and cross-layer architectures offer new challenges to MiLAN. We believe that

MiLAN can exploit the tunable parameters of a cross-layer protocol like DAPR (see

Chapter 3 for a full description of DAPR) to save energy while meeting application

QoS for such multi-hop networks.

120

6.3.1 Overview of MiLAN/ DAPR Combination

Using MiLAN to orchestrate a network running DAPR will provide many advantages

in terms of extending network lifetime while meeting dynamic QoS constraints. Pa-

rameters of DAPR such as application cost definition and query interval can be adapted

to provide maximum benefit to the application. To effectively manage DAPR, MiLAN

must obtain the application’s current QoS requirements as well as the system state.

This global view of the application is used to create queries through which MiLAN

communicates with DAPR, as depicted in Figures 6.1 and 6.2.

6.3.1.1 Complex Queries

MiLAN has a clear view of the application’s required QoS at every point in time. Its

main goal is thus to issue queries understandable by DAPR to meet the QoS goal while

minimizing energy dissipation. However, new and more sophisticated applications will

require complex queries. Such information as the monitored variables, the required

precision (also called confidence) for each variable of interest, the area of interest in

the network, and the reporting mode (continuous or discrete) need to be included in

these queries.

6.3.1.2 Variables and Precisions

MiLAN was designed to manage heterogeneous sensor networks. Variables correspond

to physical attributes (e.g., temperature, intruder presence) that can be described by

XML tags. Each node should know which variable it can monitor and with what preci-

sion prior to deployment.

6.3.1.3 Relative Weight of Required Precision

MiLAN also has global information on potential or future application requirements. For

instance, it may be readily known to MiLAN that a precision of conf(vj) on variable vj

is never needed. We propose using a vector P j of weights or probabilities inferred from

the various graphs inherited from the application that indicates the relative importance

of each precision conf(vj) for variable vj . For simplicity, we quantize conf(vj) by

10%, and thus P j indicates how often the variable vj is required in different precisions

121

from 0.0 to 1.0 in steps of 0.1. For instance, it may be known that variable vj requires a

precision of 0.6 50% of the time and 0.7 50% of the time, with the other precisions not

required by the application. Thus P j would be [0 0 0 0 0 .5 0 .5 0 0 0].

6.3.1.4 Relative Weight of Variables

In addition, MiLAN’s knowledge of the potential QoS requirements can lead to the

conclusion that a variable will never be needed, or that a variable is extremely important

in all application states. Thus, MiLAN also issues a vector W that weights all the

variables in the system. W and P help assess the relative importance of all sensors to

aim at conserving the most critical ones.

6.3.1.5 Entities within the Monitored Region

The network can also be divided into entities or groups of sensors. An entity can be

described by an XML tag such as windows, soldier A, or second floor. If the network

extends over large distances (as is possible in the case of military applications, for

instance), chances are that several sensors monitoring the same variable may be able

to respond to a query to meet the required QoS, but that only a subset of these will be

within the entity that is truly of interest. Furthermore, two sensors in range of each

other (e.g., two sensors on different soldiers) may be monitoring two different entities

and thus be incapable of cooperating on their sensed data.

We contend that each sensor needs to know to which group of sensors it belongs,

using high-level semantic descriptions. For practical reasons, we propose that all sen-

sors are attributed a tag, that is shared with other sensors monitoring the same entity.

MiLAN can use this tag to specify the entity of interest in the queries.

6.3.1.6 Setting the Query Interval

The query interval is a critical factor in the protocol overhead, and thus in the net-

work lifetime. While an application might need to frequently change the active sensors

because of changing QoS requirements, a small query interval degrades the network

lifetime. Moreover, for an application that requires full network coverage, while a fre-

quent query update can preserve 100% coverage for longer times, it leads to a quicker

mid to low range coverage degradation later in time.

122

Intuitively, we can see that application states that correspond to slowly changing

situations probably do not require frequent network changes and thus long query in-

tervals are desirable. Once a more critical state is reached, such as a high stress state

in a medical application, a smaller query interval is likely to be used to meet possibly

rapidly changing application QoS. On the other hand, if the maximum attainable QoS

is already significantly degraded, the query interval should be made longer to increase

the network lifetime by lowering the overhead.

6.3.1.7 Form of the Complex Queries

The DAPR queries must include the reporting mode (continuous or discrete), frequency

of reports from the sensors, required precisions of variables of interest, the precision

weight vector P , the variable weight vector W , and the round length Vs. Also included

in the DAPR queries is the cumulative application cost (the sum of the costs of the

reverse path back to the data sink) to create routes as the queries are disseminated

throughout the network.

6.3.2 Routing: New Variable-based Cost

For complex, non-coverage-type applications that require the network to monitor one

or more variables, any group of sensors that provides data about each variable with

greater than the required precision (confidence) provides 100% utility or QoS. In some

cases, only one sensor’s data may be enough to provide 100% QoS. For these new

variable-based applications, the application cost in DAPR should evaluate the relative

importance of a node with regard to each variable. Thus, for this new variable-based

QoS metric, we define application cost for sensor k as:

Ck =
V

∑

j=1

Wj · Cvj,k (6.1)

where V is the number of variables the network is capable of monitoring, Wj is the

weight of variable vj and the per-variable cost is:

123

Cvj,k =

[
10
∑

i=1

P j
i such that conf(vj,k) ≥ P j

i] · 1
E(k)

N
∑

m=1

[
10
∑

i=1

P j
i such that conf(vj,m) ≥ P j

i] · 1
E(m)

(6.2)

where P j is the probability vector (P j
i is the ith element of P j), conf(vj,k) is the confi-

dence with which sensor k can monitor variable vj, and E(k) is the remaining energy

of sensor k. Ck evaluates the attention given to each variable and divides the precision

of sensor k by the sum of all precisions across all the sensors in the monitored entity.

The normalized inverse of the remaining energy is included to differentiate between

nodes whose remaining energy is very low but are critical to the application and other

sensors whose energy is still high. The sum in the denominator is not an algebraic sum

of all precisions per se, but rather an evaluation of all the energy devoted to monitoring

a variable with various precisions or confidences.

Table 6.1 gives a concrete example of application cost calculations.

6.3.3 Node Activation: a Distributed Process

New challenges in a multi-hop network, as well as the specificities of DAPR, require

that the node activation process be distributed. DAPR’s node deactivation process en-

sures that a node will deactivate only if the application requirements are met by other

active sensors; otherwise, if its own precision is within the tolerance of the required

precision and no other lower cost sensor can provide this data, the node will stay active.

Nodes consider deactivating in the order inverse to their cost. Figure 6.2 illustrates this

process.

Immediately after this procedure, the selected nodes send a data packet to the sink

using their pre-computed smallest cumulative cost path. Only the activated sensors and

those contributing to the return path (those that retransmit the packet) will remain active

in the round.

6.4 Results

This section presents results that will show the merits of using MiLAN to manage DAPR

over a simpler architecture that aims to serve a fixed (often the strictest) QoS.

124

Table 6.1: Detailed calculation of the application costs for 4 sensors and 2 variables.

The final costs reflect that the same importance is granted to a precision of 0.5 and

0.9—the application has no use for a precision higher than 0.5 and lower than 1.0. The

tables at the bottom give the values of P and W .

Sen. S1 S2 S3 S4

Var.

V1 0.5 0.9 1.0 0.0

V2 0.0 0.0 0.0 0.9

CV1

0.3+0.1+0.1
2.0

0.3+0.1+0.1
2.0

0.5+0.5+0.3+0.1
2.0

0.0
2.0

CV2

0.0
1.0

0.0
1.0

0.0
1.0

0.5+0.5×0.1
1.0

Cost 0.5× 0.5
2.0

+0.5×0 0.5× 0.5
2.0

+0.5×0 0.5× 1.0
2.0

+0.5×0 0.5×0+0.5× 1.0
1.0

= 0.125 = 0.125 = 0.25 = 0.50

P P

C V1 V2 C V1 V2

1.0 0.5 0.0 0.5 0.3 0.0

0.9 0.0 0.0 0.4 0.1 0.1

0.8 0.0 0.5 0.3 0.1 0.1

0.7 0.0 0.0 0.2 0.0 0.1

0.6 0.0 0.0 0.1 0.0 0.1

W

V1 0.5

V2 0.5

The simulations are carried out in Matlab and use one-hop networks to determine

the advantage of intelligent selection of the active sensors based on varying QoS re-

quirements1. A fixed amount of energy per second is used by the active nodes (0.1% of

the total initial energy).

1Previous work on DAPR [6] has already shown the positive effects of application cost on energy

savings for routing.

125

Figure 6.2: Nine sensors are monitoring two different entities (e.g., two different sol-

diers in range of one another). The required precisions for the two variables of interest

are 1.0 and 0.9, with a tolerance of 0.2. Three cases are possible: only the first entity

(with sensors represented by circles), only the second entity (with sensors represented

by stars) or both entities are of interest.

6.4.1 One Variable with Low QoS Requirements

We first compare our application cost to the inverse of the energy cost in order to val-

idate our choice of application cost. For this simulation, three sensors, each with the

same initial energy, are able to monitor one variable with precisions 0.1, 0.5, and 0.9

for sensors 1, 2, and 3, respectively. The only QoS requirement is a non-zero precision,

i.e., some idea of the measured variable is all that is needed.

Figure 6.3 shows the remaining energy of each node using application cost and the

inverse of remaining energy cost for a given P vector. The sensors’ energy decreases

by the same amount when the cost is the inverse of the energy since all nodes are

eligible to be picked for activation, and thus they are selected in a round-robin manner.

Conversely, application cost allows the energy of the most important sensor (with QoS

0.9) to be spared for longer. When sensor 1 dies, sensors 2 and 3 have half and full

remaining energies; when sensor 2 dies, sensor 3 has a third of its energy remaining.

Application cost would allow for better QoS as illustrated by the shaded area, were the

application to request it.

The effect of P is not trivial: when a higher weight is assigned to high precisions,

node 3 is spared for longer than when all weights are the same, at the disadvantage of

126

(a)

(b)

Figure 6.3: Node remaining energy over time. All three nodes are able to monitor a

single variable with precisions 0.1, 0.5, and 0.9. The QoS requirement is 0.1. a) and b)

have different P vectors.

the remaining sensors. It may be good to conserve the energy of important sensors, but

this could be unnecessary in some applications where high precision is never needed.

We believe statistical information on the application can help find a suitable P .

These results show the merits of our application cost. However, both application

127

Figure 6.4: A measure of the QoS differences between a system with MiLAN managing

DAPR and a system designed for the strictest QoS. The graph at the bottom shows the

application QoS requirement.

cost and the inverse of energy cost bring a significant improvement compared to a sys-

tem architecture that does not use a middleware to manage the network. To understand

the full improvements of our design, we need to evaluate the lifetime and QoS for a

network that does not have the benefit of a middleware, and thus simply selects sensors

providing the highest QoS available in the network.

6.4.2 QoS Increase with a Middleware

The conditions of these simulations are similar to the previous experiments. We com-

pare our system design (MiLAN managing DAPR) to a system that has no smart middle-

ware. The latter architecture is only able to activate nodes that will provide the highest

QoS available in the network and does not adapt the network QoS to the changing ap-

plication needs. To quantify the gains in QoS, we calculate an index that averages the

percentage of requirement satisfaction. For instance, if the application requires a preci-

sion of 0.9 but the network can only provide 0.5, the index is equal to 0.5/0.9. Obviously,

this QoS index has no concrete significance since the precisions are not linear; however,

we believe it provides a good basis for comparison.

Figure 6.4 shows this QoS index during the simulation time (top graph). MiLAN

128

leads to significant improvements by adapting the network QoS to that of the applica-

tion (bottom graph). On the other hand, the simpler design that selects the sensor with

the highest precision at all times uses the energy of high precision or scarce nodes first,

even when this is not necessary. During the simulation time, our architecture is always

able to provide nominal QoS, while the system with no middleware support offers poor

precision during many of the critical stages where a maximum QoS is needed. The

shaded areas represent the QoS gains ascribable to MiLAN.

6.4.3 Change of Query Interval

The notion of complex queries introduced in Section 6.3.1.7 also involves a changing

query interval that responds to the needs of the application and the conditions on the

network. For fixed queries, the interval between two consecutive route discovery phases

is set prior to deployment, and since it should fit the whole network, it has to be a con-

servative value. However, one query interval may not fit all scenarios indiscriminately.

In this section we prove this concept through the simulation of a sensor network whose

primary objective is to monitor a region.

The simulations were carried out in NS-2.28 without any input from MiLAN, for

various but fixed values of the query interval and for continuous monitoring. The

lifetime at xL% (xF %) is defined as the last (first) time when the network could (no

longer) provide coverage of at least x percent. In Figure 6.5, the lifetime is defined

as the first time when the network failed to provide the required coverage as would be

asked for the monitoring of sensitive property like a financial institution. Figure 6.5(a)

shows that for the mid-to-low range coverage (less than 55F %), a longer query interval

(1,500s) increases the network lifetime compared to other values. On the other hand,

Figure 6.5(b) presents the same results for high range coverage. A query interval of

500s yields longer lifetimes at 100L% to 55L% coverage by as much as 400% over the

longest query interval. In Figure 6.6, the application is such that the end user can tol-

erate short periods of time (< 2 query length intervals) when the network is incapable

of monitoring at least xL% of the region. We draw the same conclusions as previously,

although for higher-range coverage (> 95%).

When queries are sent frequently, the cross-layer design wields its full optimization

and energy savings characteristics. This results in a longer lifetime. Figures 6.5 and 6.6

129

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

DAPR Alone − Number of nodes: 100

Query Interval: 500

Query Interval: 1000

Query Interval: 1500

Query Interval: 4000

(a)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

DAPR Alone − Number of nodes: 100

Query Interval: 500

Query Interval: 1000

Query Interval: 1500

Query Interval: 4000

(b)

Figure 6.5: (a) Lifetime of the network as defined by the time when the network was

first incapable of providing a coverage of xF % for different but fixed values of the query

length interval. (b) zooms on the results for high-range coverage.

130

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

DAPR Alone − Number of nodes: 100

Query Interval: 500

Query Interval: 1000

Query Interval: 1500

Query Interval: 4000

(a)

0 0.5 1 1.5 2 2.5

x 10
4

0.95

0.96

0.97

0.98

0.99

1

Time (s)

C
o
v
e
ra

g
e
 (

%
)

DAPR Alone − Number of nodes: 100

Query Interval: 500

Query Interval: 1000

Query Interval: 1500

Query Interval: 4000

(b)

Figure 6.6: (a) Lifetime of the network as defined by the time when the network was

last capable of providing a coverage of xL% for different but fixed values of the query

Length interval. (b) zooms on the results for high-range coverage.

illustrate this characteristic toss-up and show that a middleware can adapt the query

interval to the application needs as well as to the current coverage level in the network

in order to maximize the lifetime as defined by the application. From Figures 6.5(b)

and 6.6(b), we can infer that a good query interval for high QoS would be between

500s and 1,500s, while a longer interval may be desirable when the maximum QoS is

not achievable.

Figure 6.7 presents a comparison of simulations with an adaptive and a fixed query

interval from the perspective of QoS delivery. In these simulations, two sensors are able

to monitor a variable with precisions 0.5 and 0.9. The application requires precisions

of 0.5, 0.9, or has no interest in the variable, as shown in Figure 6.7 (c). In the adaptive

query interval scheme, the QoS provided by the network is submitted to “gravity”:

when the application QoS requirement increases, MiLAN waits for it to be constant for

131

Figure 6.7: Network QoS response of the adaptive (a) and fixed (b) query length

schemes to the application needs (c).

30s (a “weight”) before it issues a new query. Conversely, when the QoS requirement

decreases, MiLAN sends a query immediately. In the fixed scheme, the query interval

is set to 100s. Every 100s, MiLAN checks for the current application requirement and

floods a query with this information. The network will try to meet the QoS for the

remaining query interval. In both cases, flooding a query costs the same amount of

energy, 0.5% of the initial energy in our simulations.

Figure 6.7 (a) and (b) present the QoS provided by the network in both schemes.

Figure 6.7 (b) shows that much of the energy is wasted when the query is issued at the

time of a QoS application requirement peak. The network can also miss QoS require-

ments for up to 90s. In contrast, an adaptive query length design is able to respond to

an increase in the application need within its 30s weight. Consequently, the QoS index

for the adaptive query length scheme is 40% higher than that of the fixed query interval

scheme.

132

Some applications may need an immediate response from the network. We sim-

ulated an adaptive query length scheme with no gravitational pull and found that the

application requirements are always met, but for a shorter time—the network lifetime

is reduced by about 10%.

6.5 SRI: A General Cost Function

Because it is difficult to map the value of vector P to actual application requirements,

SRI (Sensor Replacement Index) was introduced in [76] to differentiate between sen-

sors. SRI helps quantify the importance of a node to the application so that critical

sensors may be alive and available when they are most needed.

SRI breaks the importance of a node into three metrics:

• The normalized importance of a node to the application;

• The location of interest under a specific system state: in the instance of fire detec-

tion, every ceiling sensor in a building may be of equal importance but the nodes

monitoring a safe may become critical to the application after a fire is detected;

• The variables of interest under the previous two parameters.

SRI is the evaluation of sensors based on the weighted combination of these metrics.

SRI helps weed out high importance nodes from a pool of possible routers.

Simulations show that SRI more than doubles the network lifetime under a fire

alarm application by keeping important sensors alive for critical (raging fire) states.

6.6 Summary

We have shown the advantages of using a middleware to supervise a cross-layer pro-

tocol: the combination of MiLAN and DAPR is able to continuously adapt the sensor

network to the application QoS requirements. Gains in network lifetime and QoS are

substantial when the system design spares sensors whose data are critical to the appli-

cation. We have also shown the advantages of using MiLAN to adapt the QoS require-

ments over a design with non-adaptive QoS. Finally, MiLAN takes full advantage of

133

DAPR’s flexibility by adjusting its tunable parameters such as complex queries, query

interval, and application cost. Through this tight cooperation, MiLAN is able to effec-

tively manage the underlying DAPR protocol while providing a level of abstraction to

the application programmer.

This chapter has shown that middleware can help protocols dynamically adapt their

behavior to application requirements, which illustrates some of the optimizations made

possible by the Middleware Interpreter presented in Chapter 5.

With the wealth of information from X-Lisa, the Middleware Interpreter and mid-

dleware now available at all levels of the protocol stack, new advances can be planned

for the future of sensor networks. Next, we investigate such advances that enable adap-

tation of the protocol for the family of channel probing MAC protocols.

Chapter 7

Schedule Adaptation of the

Low-Power-Listening MAC Protocol

Family

Applications for wireless sensor networks (WSN) are becoming increasingly complex,

and they require the network to maintain a satisfactory level of operation for extended

periods of time. Consequently, sensor networks have to make the best possible use of

their initial energy resources, specifically by constantly adapting their protocols to the

changing conditions in the network. Both protocol-specific and cross-layer schemes

have offered a plethora of energy reducing techniques. In particular, there are several

protocols that focus on reducing energy at the data link / MAC layer, which constitutes

the scope of this work. In this chapter, we investigate how to keep the radio in its

energy-conserving sleep mode for as long as possible.

We offer three ways to adapt several key aspects of MAC protocols. The first idea,

presented in this chapter, discusses switching between MAC schedules to adopt the

most energy-efficient pattern of packet transmissions and receptions. Because different

areas in the network experience different and changing loads of traffic, the MAC pro-

tocol should utilize the schedule most economical for the local conditions. Secondly,

we propose to synchronize nodes in Chapter 8 so as to reduce transmission time and

thus energy consumption and packet delivery delays. A third technique controls the

inter-listening time to conditions in the network and is exposed in Chapter 9.

134

135

7.1 Introduction

As new sensor platforms have appeared on the market, a simple observation was made

that idle listening, far from being negligible, was a major source of energy consump-

tion [18] [19] [20]. Low-Power-Listening (LPL) and Preamble Sampling (PS) MAC

protocols were introduced as a result. In his taxonomy of MAC protocols [15], Lan-

gendoën identifies LPL and PS protocols as two branches of random access MAC pro-

tocols, with the only difference that LPL MAC protocols need not know anything about

their neighbors and their wake-up schedules. Both types of MAC protocols, including

B-MAC [18], WiseMAC [17], SyncWUF [77] and X-MAC [21], use the insight behind

Aloha with PS [16]: the sending node occupies the medium for long ti
1 intervals to

signal its imminent packet transmission. Receiving nodes are thus allowed to sleep for

at most the duration of this preamble (ti s), and they must stay awake when they sense

a busy medium until the packet transfer is complete. In this work, we consider only the

LPL branch of the Langendoën taxonomy (although many of our results can be trans-

posed to other MAC protocols), and we define “(LPL) MAC schedule” as the pattern of

packet transmissions occurring within the ti interval.

Changes in radios have forced researchers to abandon B-MAC and a few other LPL

protocols in some cases: although it paved the way to new MAC protocols, B-MAC,

which uses a variable-length preamble to signal the impending packet transmission, can

no longer be implemented as proposed on the new IEEE 802.15.4 compliant platforms

because the IEEE 802.15.4 standard has a fixed preamble length of only a few bytes. We

assume such a target radio, and make design and research decisions accordingly—thus

B-MAC is not included in our work. After the introduction of new radios, researchers

introduced new LPL protocols: X-MAC [21], C-MAC [23], and SpeckMac-D [22] are

among the most popular contributions. These protocols are based on repeating either

the data packet itself (SpeckMAC and CSMA-MPS), or an advertisement packet (X-

MAC / C-MAC), in place of a long preamble. The details of the transmission schedules

(the “MAC schedules”) are given in Figure 7.1.

We prove that while the LPL family of MAC protocols generally lowers energy con-

sumption without resorting to explicit exchange of active / inactive schedules between

nodes, low duty cycles (or equivalently, high ti values) drastically favor receiving nodes

1The notation ti was borrowed from the work in [18].

136

Figure 7.1: MAC schedule for B-MAC, X-MAC, MX-MAC, and SpeckMAC-D.

over mostly-sending nodes and induce higher delays and contention. As Figure 7.1

shows, for these LPL protocols, only one data packet can be transmitted per ti cycle,

which can cause a packet to experience high delay over several hops, and the network

to deliver small data rates. Concern for delay may force network designers to select a

high duty cycle that would limit energy savings. We address this problem in Chapter 8

by synchronizing the transmitting / receiving schedules of nodes on a slowly-changing

routing tree.

This chapter’s contributions are twofold:

• We propose switching MAC schedules from a pool of MAC protocols at the

transmitter to minimize energy consumption based on parameters such as packet

size, whether the packet is broadcast or unicast, and the estimated ratio of trans-

mit to receive packets in the local neighborhood. The protocols are “compatible”

because they are interchangeable: the receiver does not need to know what spe-

cific schedule is being used, it simply wakes up and senses the channel every

ti seconds and sends an ACK frame when required by the received packet. As

137

a consequence, this protocol, called MiX-MAC, requires no overhead, and our

implementation of this approach shows that lifetime gains can reach up to 30%.

• Because we utilize existing MAC protocols for our pool, we provide a detailed

study of two existing LPL MAC protocols, X-MAC and SpeckMAC, in a head-

to-head comparison, showing the advantages and disadvantages of each approach

for both unicast and broadcast packets. We also identify MX-MAC, a modified

version of CSMA-MPS, that is compatible with the X-MAC and SpeckMAC

schedules.

7.2 MiX-MAC: A Highly Adaptable MAC Protocol

7.2.1 Principles of MiX-MAC

No protocol in the LPL family outperforms the others over all potential conditions in

the network. Selecting a MAC protocol supposes a compromise between excellent

performance under certain circumstances (hoped to be the common case), and subop-

timal operation otherwise. Various protocols may perform differently according to the

broadcast / unicast nature of the exchanged packets, the size of the packets, or whether

a node is mostly receiving or sending packets. Adapting the MAC schedule allows

optimal performance across those parameters.

Additionally, adaptation must occur during runtime since the traffic patterns in the

network may not be known a-priori. In a tracking application for instance, the ap-

pearance of an object modifies the ratio of broadcast-to-unicast packets (more unicast

packets are sent by nodes located in the neighborhood of the stimulus) and their sizes

(reports on the object can be large). A MAC protocol chosen for its good perfor-

mance when no object is detected would probably be sub-optimal when a target is

being tracked.

We propose creating a pool of MAC schedules that are compatible with one an-

other: while the sender may decide which schedule to follow based on the parameters

mentioned above, the receiver need not be informed of the changes in MAC schedules.

For instance, a sender choosing a certain MAC schedule may expect an ACK frame be-

tween packet transmissions; it will thus stay in receiving mode for a given time before it

138

returns to transmitting mode. At the other end of the communication, a receiver simply

wakes up periodically, and occasionally receives packets. If a received packet is marked

with an acknowledgment request, it immediately sends an ACK frame. Switching be-

tween interchangeable MAC schedules guarantees that gains in energy and latency are

achieved without any overhead other than the computation required to determine the

best schedule to use. We call this approach, whereby the MAC schedule is adapted

over time, MiX-MAC.

A small look up table within MiX-MAC helps in deciding what schedule is best

suited for the current node, network and application conditions. This solution proves

inexpensive in terms of computation power during runtime. The threshold values dic-

tating a change in the MiX-MAC schedule can be established before deployment using

simulation and implementation results. As we will show, inaccuracies in the estimates

of current node, network and application conditions do not have a major impact on the

performance of MiX-MAC.

Existing MAC protocols were included as part of the pool of compatible MAC

schedules: X-MAC [21] and SpeckMAC-D [22], which were introduced around the

same time. However, we also added an adaptation of CSMA-MPS, called MX-MAC.

7.2.2 X-MAC: A Short Preamble MAC Protocol

Under the X-MAC [21] schedule, a sender repeats the transmission of an advertisement

packet containing the address of the intended receiver. Upon hearing the advertisement

packet, the receiver replies with an ACK, which is followed by the transmission of the

data packet by the sender. Figure 7.1 illustrates this process.

In [21], Buettner et al. do not propose implementing X-MAC for broadcast packets.

X-MAC cannot broadcast packets as is, as the flow of advertisement packets cannot be

answered by an ACK packet. A natural extension to X-MAC is to repeat advertisement

packets for ti and then send the data packet; however, receiving nodes have to wait until

the completion of the advertisement cycle before they can receive the data packet—and

go back to sleep (on average, they must wait for ti
2

+ ttxPacket). In such cases, X-MAC

performs equally to B-MAC, with the added advantage that it can be implemented using

fixed preambles.

139

7.2.3 MX-MAC: a LPL Variant of CSMA-MPS Compatible with

X-MAC and SpeckMAC Schedules

In [21], Buettner et al. make a convincing case for the energy and latency gains achieved

by their proposed X-MAC protocol. Although efficient for unicast packets, this simple

scheme is not well suited for broadcast transmissions. One additional drawback to X-

MAC is its sensitivity to the hidden node problem and the persistence of a high risk

of false positive packet reception acknowledgements. Indeed, early ACKs are sent and

received before the data packet is transmitted, which does not guarantee successful

reception of the packet.

Although it was introduced prior to X-MAC, CSMA-MPS [78] can be seen as a

modification of X-MAC suitable for broadcast transmissions. CSMA-MPS repeats the

data packet with its own wake-up schedule information and waits for ACK frames be-

tween transmissions. A received ACK signifies that the data packet has been correctly

received and stops the transmission flow of data packets. This renders the MAC proto-

col immune to false positive packet receptions.

Although Mahlknecht et al. do not mention this point directly, the MAC schedule

they propose can be adapted to broadcast packet transmissions so long as the sender

does not request acknowledgment of the frames. Consequently, multiple receivers of

the same packet may wake up, stay in RX mode until the full reception of a packet, and

go back to sleep.

However, because CSMA-MPS must include scheduling information in every frame,

which we do not need thanks to the implicit synchronization presented in Chapter 8,

and because it decouples channel probes from transmissions (much like WiseMAC, but

unlike X-MAC), the MAC schedule presented by Mahlknecht et al. is not fully compat-

ible with X-MAC and SpeckMAC. This is the reason why Langendöen [15] classifies it

on the PS branch of MAC protocols. Therefore, we introduce MX-MAC, the LPL pen-

dant to CSMA-MPS. Figure 7.1 illustrates the timeline for MX-MAC. In MX-MAC,

the data packets contain no scheduling information, and a node may wake up only once

per ti period to probe the medium and possibly send a packet immediately following

the probe.

140

7.2.4 SpeckMAC-D: Repeating the Data Packet

Another medium sensing protocol is SpeckMAC-D [22]. In SpeckMAC-D, if a sender

wants to transmit a packet to a receiver, it performs a clear channel assessment (CCA),

and if successful, starts repeating the packet for at least ti s. When a receiver wakes up,

it checks the medium. If busy, it listens until it has received a full data packet or until it

realizes that it is not the intended destination for the packet.

Figure 7.1 illustrates the transmission schedule for SpeckMAC-D.

Although not specified by Wong and Arvind in [22], we can imagine that ACKs be

manually sent. If the sender is requesting an ACK, it needs to number the repeated data

packets in a way that the receiver knows when to wake up and send an ACK after the

sender is done transmitting. However, this small change adds two additional bytes of

overhead in each packet in the absence of time synchronization; we consider that for

ti ranging from 0 to 1 s, 2 bytes are necessary to number packets (it is not uncommon

to schedule more than 255 packet repeats for the smallest packet size and thus 1 byte

would not be sufficient). This number has to be updated every time a packet repeat

is sent out, forcing the MAC protocol to reload the TXFIFO buffer before switching

to Tx mode. Figure 7.1 illustrates the transmission schedule for this protocol, labeled

SpeckMAC-D-ACK.

7.2.5 Lifetime Calculation

MiX-MAC alternatively uses the MAC schedules of X-MAC / C-MAC, MX-MAC or

SpeckMAC-D based on a look-up table. In order to implement MiX-MAC, we must

populate the table and find the appropriate switching thresholds through simulations

and actual implementation of various scenarios, as discussed next.

Following the work of Polastre et al. [18], we provide a quick reference for calcu-

lation of X-MAC and SpeckMAC-D lifetimes in Table 7.2. The notations and values

of the variables for the CC2420 802.15.4 radio used for these equations appear in Ta-

ble 7.1.

For a given scenario, the lifetime can be calculated for known battery capacities by

evaluating the total energy for average wake up times at the receiver. In the sequel, r

is the frequency of data reports sent, and n is the number of neighbors communicating

141

Table 7.1: Notations and values for the CC2420 radio.

Operation Time Current

Val. Notation Val. Notation

(µs) (mA)

Init radio volt. reg. 300 treg on 0.02 creg on

crystal osc. 860 tosc on negl. cosc on

Turn Tx on 192 tidle/tx 17.4 cidle/tx

Turn Rx on 192 tidle/rx 19.7 cidle/rx

Switch Tx/Rx 192 ttx/rx 19.7 ctx/rx

Switch Rx/Tx 192 ttx/rx 17.4 ctx/rx

Clear Chan. Assessment 128 tCCA 19.7 cCCA

Tx 1 byte 32 ttxb 17.4 ctxb

Rx 1 byte 32 trxb 19.7 crxb

Sample sensor 1,100 tsensor 20 cdata

with the node.

WakeUpT ime is the time at which a receiver wakes up and is uniformly distributed

between 0 and ti seconds. Eqn. 1 represents the number of advertisement packets the

sender has to transmit within ti and before the receiver wakes up for X-MAC. Eqn.

4 provides the number of packet repeats needed for SpeckMAC. Eqn. 2 specifies the

amount of time spent in X-MAC sending advertisements and listening for ACKs—this

time is then translated in terms of energy in Eqn. 3. Eqns. 5 and 6 are the equivalent

of Eqns. 2 and 3 for SpeckMAC. Eqns. 7 and 9 evaluate the time spent receiving a

packet. trxAdv (trxPacket) is the time to receive the remainder of an ongoing advertise-

ment (packet) and the one directly after, and is a function of WakeUpT ime. Eqns. 11

and 13 specify the time spent probing the medium and include turning the oscillator on

(from the radio state “power down”) and sampling the medium twice to compensate for

potentially waking up between two packet transmissions (X-MAC) or once for 192 µs

(SpeckMAC-D). Naturally, the time for which a node sleeps is when it does not do

anything else (Eqns. 17 and 18).

142

Table 7.2: Time and energy analysis of X-MAC (X) and SpeckMAC-D (S) for unicast

transmissions.

Op Analytical form #

Tx X m = function of wake up time and ti 1

ttx = r · [m · (trx/tx + Ladv · ttxb + ttx/rx + LACK · trxb) + trx/tx +

Lpacket · ttxb]

2

Etx = V r · [m · (trx/tx · crx/tx + Ladv · ttxb · ctxb + ttx/rx · ctx/rx +

LACK · trxb · crxb) + trx/tx · crx/tx + Lpacket · ttxb · ctxb]

3

S m = function of ti 4

ttx = r(m + 1)(trx/tx + Lpacket · ttxb) 5

Etx = V r(m + 1)(trx/tx · crx/tx + Lpacket · ttxb · ctxb) 6

Rx X trx = nr[trxAdv(wakeUpT ime) + trx/tx + LACK · ttxb + ttx/rx +

Lpacket · ttxb]

7

Erx = V nr[(trxAdv + Lpacket · ttxb) · crxb + trx/tx · crx/tx + LACK ·
ttxb · ctxb + ttx/rx · ctx/rx]

8

S trx = nr[trxPacket(wakeUpT ime)] 9

Erx = V nr · trxPacket · trxb · crxb 10

Probe X tprobe = [tosc on + 2(tidle/rx + tCCA) + tidle]
1
ti

11

Eprobe = [tosc on·cosc on+2(tidle/rx·cidle/rx+tCCA·crxb)+tidle·cidle]
V
ti

12

S tprobe = (tosc on + tidle/rx + 2tCCA) 1
ti

13

Eprobe = (tosc on · cosc on + tidle/rx · cidle/rx + 2tCCA · crxb)
V
ti

14

Sense X/ tdata = r · tsensor 15

S Edata = V · tdata · cdata 16

Sleep X/ tsleep = 1 − ttx − trx − tprobe − tdata 17

S Esleep = V · tsleep · csleep 18

7.3 Fine Tuning Channel Probing Protocols

In this section, we describe some possible improvements that can be brought to channel

probing protocols, specifically the X-MAC family and SpeckMAC-D.

143

7.3.1 Adapting the Channel Probing Interval ti

7.3.1.1 Lifetime considerations

The channel probing interval ti has a different impact depending on whether a node

is sending or receiving packets. It can be seen as both an estimate of the time spent

sleeping between two channel probes and the time spent sending packet repeats. Al-

though usually fixed, ti may take different values in different regions of the network.

Obviously, in such cases, two nodes communicating with each other need to share their

value of ti. A node may only transmit with a value of ti greater than (wasteful) or equal

to that of the destination in order to ensure the receiving node will wake up during the

transmission.

Although simpler, a common ti throughout the network may not be appropriate in

all cases. Variations in sensor node densities throughout the network may make uniform

ti values impractical.

Longer ti values favor receiving nodes since a packet is almost always available (in

both X-MAC and SpeckMAC-D) when they wake up. On the other hand, a longer ti

has the opposite effect in sending nodes since more packet repeats have to be sent (for

a fixed packet size). While the number of neighbors (and their cumulative energy) is a

good indication of a node’s importance to the network as a whole, it is not a sufficient

parameter to determine ti because of adverse effects on sending and receiving nodes’

lifetimes.

Optimal ti can be obtained through simulation or analytically as suggested in [21]

for certain send-to-receive ratios. As the average send-to-receive ratio changes, so

should ti.

In Figure 7.2, we show the lifetime of the X-MAC and SpeckMAC-D protocols as

a function of ti and for various ratios of transmissions over receptions. These analytic

results are obtained using the equations of table 7.2 and the values in table 7.1. As

the number of transmissions increases, the optimal ti value decreases from 500 ms to

100 ms (X-MAC) and 350 ms to 50 ms (SpeckMAC-D). Compared to X-MAC, the

SpeckMAC-D curve is steeper as ti moves away from its optimal point because many

more (or many less) packets have to be transmitted by the sender. This phenomenon

is exacerbated when more transmissions happen (i.e., for higher transmissions over

receptions ratios).

144

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t
i
 (s)

L
if
e

ti
m

e
 (

y
e

a
rs

)

SpeckMac−D NoACK − Unicast, n=50

All Rx

4% Tx

16% Tx

50% Tx

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t
i
 (s)

L
if
e

ti
m

e
 (

y
e

a
rs

)

X−Mac − Unicast, n=50

All Rx

4% Tx

16% Tx

50% Tx

Figure 7.2: Lifetime as a function of ti for SpeckMAC-D and X-MAC for various ratios

of transmissions vs. receptions.

7.3.1.2 Contention considerations

In the previous subsection we observed that modifying the value of ti had sometimes

opposing effects on a node’s lifetime. A protocol designer should also consider con-

tention problems in the network. Contention in an area has adverse impacts on nodes

that wish to send packets. When contention occurs, nodes tend to experience longer

delays before they can transmit their packets, and thus waste energy probing the chan-

nel until it is free. Consequently, packets may arrive at their destination already stale,

or may be dropped, causing costly packet retransmissions. Contention thus naturally

affects lifetime.

An increase in ti causes destination nodes to sleep for longer periods of time, and

thus the average channel usage for one packet transmission increases linearly with ti in

low contention scenarios. Contention can be eased using various techniques:

• The application layer may choose to report only critical events to the base station.

• The routing protocol may elect routes that are not experiencing contention or

poor link reliability.

• The MAC protocol may choose to lower the value of ti.

145

• The physical layer may change the transmission power: decrease it to lower in-

terference to other nodes, or increase it to reach contention-free nodes.

7.3.2 Adapting the Packet Transmission Schedule

All packets do not have the same importance for the network or for the application.

For instance, a critical event detection packet is essential to the application and the end

user, but carries very little significance for the life of the network. Conversely, route

set-up packets derived from energy costs help increase the network lifetime but bear

little meaning to the application.

While other protocols higher in the stack may reorder or suppress outgoing packets,

the focus of this work is the MAC / data link layer. We propose integrating the following

rules to any channel probing MAC protocol:

• Packets marked as urgent should be handled immediately, while other packets

may be sent only at the scheduled wake-up time (that is, after ti s of sleep).

This feature allows longer lifetimes in nodes whose burden is mainly to transmit

packets and who do not experience severe contention.

• Service packets, even though they may not be urgent, should precede non-urgent

data packets. This should help provide the network with up-to-date information,

thus avoiding route failures or node activation errors, among others.

• If a packet is part of a burst (e.g., a succession of frames in a video application),

the node should not go to sleep and should transmit subsequent packets immedi-

ately. Such features can be implemented easily under the 802.15.4 standard by

setting the frame pending subfield (part of the Frame Control Field) to 1 after the

completion of a packet (an ACK in some cases). The new frame is transmitted

after a short random wait for fairness.

We illustrate a timeline of these simple rules in Figure 7.3. Each packet is designated

by an ID number, its unicast (U) or broadcast (B) nature, its urgency (1 or 0), the nature

of its contents, and the number of packets in the burst. Figure 7.3 shows the scheduling

decisions taken by the MAC protocol based on information about the packets. Urgent

packets are treated immediately (packet 2), and service packets have precedence over

146

B 1 admin 0

U 0 data 0

U 0 data 0

U 0 data 2

B 0 0

U 0 data 2

U 0 data 1

B 0 0

U 0 data 2

U 0 data 2

U data 1

U 0 data 0

0

P1

P2

P3

P4

P5

P1 P3

P3

P4

P1

P6

P5

P3

U 0 data 0

U 0 data

U 0 data

1

2

P6

P5

P3

U data 00

App.: send packet to sink

Routing: broadcast query

App.: send packet to sink

service

service

Service: time synch beacon

Send P2 Send P1 Send P4 Send P3 Send P5 Send P6

Message Pool

Figure 7.3: Adapting the node’s schedule to packet types.

non-urgent data packets—data packet urgency is decided upon by the application re-

quirements.

7.4 Simulation Comparison of MAC Protocol Schedul-

ing Techniques

This section provides a direct comparison of the LPL MAC protocols X-MAC, MX-

MAC, SpeckMAC-D and SpeckMAC-D-ACK for both broadcast and unicast packets

and for different ratios of transmit to receive and different packet sizes, in order to

determine which MAC schedule performs best under different conditions.

The analytical model described by the equations in Table 7.2 can be seen as an

“ideal” representation of the radio, when not burdened by an operating system. Us-

ing this model provides insights into the inner qualities and drawbacks of the various

MAC protocols. The values for the parameters are selected based on the CC2420 radio.

Section 7.5 provides a discussion of the implementation of these MAC protocols for

TinyOS platforms.

147

Table 7.3: CC2420 Radio Parameters

Notation Parameter Value Unit

Cbatt Capacity of battery 18000 As

V Voltage 3 V

Lpacket Packet length 40 Bytes

LACK ACK length 11 Bytes

Ladv Advertisement length 11 Bytes

r Packet rate 1
300

packet.s−1

7.4.1 Performance Comparison

We begin by comparing X-MAC, MX-MAC, SpeckMAC-D and SpecMac-D-ACK for

a scenario similar to the one described in [18]. One node receives packets at a rate r

from n neighbors. This node sends m packets at rate r to one (unicast) or all (broadcast)

neighboring nodes. neighboring node. Unless otherwise specified, m is equal to 1. The

lifetime is calculated based on the values in table 7.3, and for the highest transmit power

setting (0 dBm). Note that the value for Ladv is set to 11 bytes which includes 5 bytes of

preamble and 6 additional bytes for headers and footers as standardized by the CC2420

radio.

7.4.1.1 Broadcast packets

In this scenario, all packets are broadcast, so there are no ACK exchanges. However,

SpeckMAC-D has to be divided in two categories: SpeckMAC-D-ACK (SMD-ACK)

which adds two bytes of overhead to the packets and requires loading the TXFIFO

before every transmission, and regular SpeckMAC-D (SMD), which does not. A pro-

grammer could not freely switch from one to the other because a fixed MAC header is

required to access all the fields within the header. Since this decision has to be made

prior to network deployment, we elected to compare both schemes.

Figure 7.4(a) shows the lifetime given fixed ti and n for X-MAC, MX-MAC, SpeckMAC-

D and SpeckMAC-D-ACK. As is to be expected, SpeckMAC-D performs better than

SpeckMAC-D-ACK at all times and for all cases since the latter adds bytes of overhead

148

to the transmission and keeps the radio active longer to reload the TXFIFO. MX-MAC

and X-MAC both exhibit more modest lifetimes than SpeckMAC-D. X-MAC suffers

from the problem exposed in Section 7.2.2: as ti increases, so do the receive times at the

nodes because in broadcast mode, the stream of advertisements cannot be interrupted.

MX-MAC does not suffer from the same problem, but it still has a shorter lifetime than

SpeckMAC-D, as MX-MAC forces the sending node to spend more time in Rx mode

than the latter and Rx mode is more energy costly than Tx mode for CC2420 radios.

The “optimal” ti is approximately 400 ms and 150 ms for SpeckMAC-D / MX-MAC

and X-MAC, respectively.

7.4.1.2 Unicast packets

In this scenario, all packets are unicast. Figure 7.4(b) shows the lifetime given fixed

ti and n for X-MAC, MX-MAC, SpeckMAC-D and SpeckMAC-D-ACK. X-MAC and

MX-MAC perform similarly, although the results show clearly the impact of packet

size. In unicast scenarios, MX-MAC can be considered to be X-MAC with longer

packets. When a receiving node running MX-MAC wakes up at a time when it misses

the beginning of a new packet, it must stay in Rx mode longer than those running X-

MAC. As n increases, this discrepancy materializes in greater proportion and causes

the lifetimes of nodes running MX-MAC and X-MAC to cross-over. For both, the

“optimal” ti is in the interval [500 ms; 750 ms]. As m is 1, the main task for the studied

node is to receive, causing the optimal ti to be larger than in m ≈ n scenarios, and as

explained in Section 7.3.1.1.

SpeckMAC-D gives a completely different picture of the evolution of its lifetime as

a function of ti. Most surprisingly, SpeckMAC-D, in spite of repeating data packets for

at least ti s without interruption, brings a lifetime comparable to the X-MAC protocols.

However, this is achieved for smaller values of ti such that a sending node would spend

much less time in Tx mode. Two observations should be made: the optimal value

of ti is a narrow “sweet spot” and SpeckMAC-D without ACKs puts the burden of

acknowledgment on upper layers (not included here). SpeckMAC-D-ACK follows the

same pattern, although its lifetime is reduced by increased size and time overhead.

These results motivate several observations:

• If no ACK is required by the protocol issuing the packet, a longer lifetime may

149

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t
i
 interval (s)

L
if
e

ti
m

e
 (

y
e

a
rs

)

Fixed n=25

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t
i
 interval (s)

Fixed n=50

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t
i
 interval (s)

Fixed n=75

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t
i
 interval (s)

Fixed n=100

SMD

SMD−ACK

X−MAC

MX−MAC

SMD

SMD−ACK

X−MAC

MX−MAC

SMD

SMD−ACK

X−MAC

MX−MAC

SMD

SMD−ACK

X−MAC

MX−MAC

Lifetime

(a)

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t
i
 interval (s)

L
if
e

ti
m

e
 (

y
e

a
rs

)

Fixed n=25

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t
i
 interval (s)

Fixed n=50

Lifetime

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t
i
 interval (s)

Fixed n=75

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t
i
 interval (s)

Fixed n=100

SMD

SMD−ACK

X−Mac

MX−MAC

SMD

SMD−ACK

X−Mac

MX−MAC

SMD

SMD−ACK

X−Mac

MX−MAC

SMD

SMD−ACK

X−Mac

MX−MAC

(b)

Figure 7.4: Node’s lifetime for X-MAC, MX-MAC, SpeckMAC-D and SpeckMAC-D-

ACK with a fixed n. All packets sent are (a) broadcast, (b) unicast.

be achieved with SpeckMAC-D provided that ti can be kept around its optimal

value and that contention is low (SpeckMAC-D utilizes the channel for the entire

ti s).

150

• Otherwise SpeckMAC-D-ACK may provide the longest lifetime under similar

conditions although for a smaller domain. SpeckMAC-D-ACK spends less time

in Rx mode (more energy consuming in the CC2420) than X-MAC. As ti in-

creases however, this advantage pales in the face of numerous packet repetitions.

• For unicast packets, the relative performances of X-MAC and MX-MAC are

comparable but smaller neighborhood sizes are better suited to the latter, yielding

minute lifetime increases.

7.4.1.3 Ratio of transmissions vs. receptions (m ≈ n)

As explained in Section 7.3.1.1, a node’s ratio of transmissions to receptions may shift

the optimal value for ti by a considerable amount. Figure 7.5 shows the changes in node

lifetime when the node sends approximately as many unicast packets as it receives (the

unlikely scenario where the node forwards all received broadcast packets is not shown).

X-MAC and MX-MAC still perform equally well, although a small difference can

be perceived: the cross-over observed above no longer happens because nodes running

X-MAC send many more packets, which, due to the X-MAC schedule, sets the radio

in Rx mode for longer periods of time than for MX-MAC. Since advertisement packets

are shorter than data packets, X-MAC spends more time switching modes and listening

to the medium than MX-MAC. As expected, the optimal ti value is significantly smaller

than before.

For m ≈ n, the optimal ti sweet spot is much more narrow. Changes made to ti

by the MAC protocol must be very gradual because the effect of transmitting a packet

vs. that of receiving a packet can be very severe outside of a very narrow band within

which the MAC protocol must operate.

7.4.1.4 Packet size

Figure 7.6 shows interesting results when the packet size is doubled from 40 bytes

to 80 bytes and unicast transmissions are used with m = 1. In this case, X-MAC’s

maximum lifetime is equal to that of SpeckMAC-D. As missing the beginning of a

packet transmission requires staying in Rx mode for longer periods of time, X-MAC

does better than MX-MAC.

151

0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

t
i
 interval (s)

L
if
e

ti
m

e
 (

y
e

a
rs

)

Fixed n=25

0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

t
i
 interval (s)

Fixed n=50

Lifetime

0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

t
i
 interval (s)

Fixed n=75

0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

t
i
 interval (s)

Fixed n=100

SMD

SMD−ACK

X−Mac

MX−MAC

SMD

SMD−ACK

X−Mac

MX−MAC

SMD

SMD−ACK

X−Mac

MX−MAC

SMD

SMD−ACK

X−Mac

MX−MAC

Figure 7.5: Node’s lifetime for X-MAC, MX-MAC, SpeckMAC-D and SpeckMAC-D-

ACK with a fixed n. All packets sent are unicast, and m = n + 1.

For large packets, choosing X-MAC over MX-MAC can increase the lifetime of

individual nodes by up to 30%. It could also be the motivating factor to abandon

SpeckMAC-D for X-MAC, which is also less prone to contention. Consequently,

packet size is a relevant parameter in choosing the best schedule for a packet transmission—

and is easily obtained information.

7.4.1.5 Contention and Delays

In this section, we simulate the impact of each protocol design on contention and delays.

The SpeckMAC-D protocol occupies the channel for the duration of ti s while the X-

MAC and MX-MAC schedules do so for only ti/2 s on average. The X-MAC and MX-

MAC schedules allow packets transmissions to be “staggered” over ti. SpeckMAC-D

can complete only one transmission during that interval.

In order to simulate contention, we used a simple model where n nodes wish to send

m packets at a rate r. The channel is considered busy if any transmission is ongoing.

In our simulation, ten nodes have 150 s to transmit ten packets at a rate 1/5. We assume

that the same event triggered all nodes to start transmitting a packet within five seconds.

Figures 7.7(a) and 7.7(b) show the packet delivery ratio and time for which the

152

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t
i
 interval (s)

L
if
e
ti
m

e
 (

y
e
a
rs

)

Fixed n=25

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t
i
 interval (s)

Fixed n=50

Lifetime

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t
i
 interval (s)

Fixed n=75

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t
i
 interval (s)

Fixed n=100

SMD

SMD−ACK

X−Mac

MX−MAC

SMD

SMD−ACK

X−Mac

MX−MAC

SMD

SMD−ACK

X−Mac

MX−MAC

SMD

SMD−ACK

X−Mac

MX−MAC

Figure 7.6: Node’s lifetime for X-MAC, MX-MAC, SpeckMAC-D and SpeckMAC-D-

ACK with a fixed n. All packets sent are unicast, and the packet size has doubled to 80

bytes.

medium is busy for all three protocols. When ti increases, the channel is more of-

ten busy for all protocols, but more so when the SpeckMAC-D schedule is used. In

Figure 7.7(b), we can see that X-MAC and MX-MAC only occupy the channel for

approximately half the time for SpeckMAC-D until ti exceeds a threshold value after

which packets are dropped. This threshold is smaller for SpeckMAC-D than for the

X-MAC and MX-MAC schedules. The direct consequence is to increase the delay as

shown by Figure 7.7(c). SpeckMAC-D becomes more sensitive to delay as ti increases,

although it remains relatively small (300 ms) in this however very demanding scenario.

On average, the delay incurred by SpeckMAC-D is twice that of the other two proto-

cols.

153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

110

t
i
 (s)

S
u

c
c
e

s
s
fu

ll
T

ra
n

s
m

is
s
io

n
s
 (

%
)

Successfull Transmissions for Unicast, n=10 m=10

X−MAC

MX−MAC

SMD

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

t
i
 (s)

M
e
d
iu

m
 U

s
a
g
e
 (

s
)

Medium Usage for Unicast, n=10 m=10

X−MAC

MX−MAC

SMD

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t
i
 (s)

D
e
la

y
 (

s
)

Average Delay for Unicast, n=10 m=10

X−MAC

MX−MAC

SMD

(c)

Figure 7.7: 5 nodes attempt to send 10 packets at a rate 1/5 for various ti values. (a)

gives the packet delivery ratio, (b) the channel usage, and (c) the average delay.

7.4.2 MiX-MAC: Adapting the MAC Schedule to Conditions in the

Network

7.4.2.1 Picking the right MAC schedule

The previous section shows that all MAC protocols sacrifice performance in unicast

mode to that of the broadcast mode or vice-versa. We show that MiX-MAC performs

154

well against every combination of parameters.

SpeckMAC-D-ACK does not belong to the set of compatible protocols since plac-

ing a 2 byte number sequence within packets requires universal a-priori knowledge of

the MAC protocol to be used, and this must remain fixed during runtime. B-MAC,

however, would be part of the pool if it could be implemented on the CC2420 radio.

MiX-MAC adopts SpeckMAC-D’s schedule for broadcast packets, and for unicast

packets, it uses four axes to decide the appropriate schedule. These include ti value,

packet size, estimated ratio of transmitted vs. received packets, and the ACK require-

ments determined by the upper level protocols or services.

A small look up table within MiX-MAC helps in deciding what schedule is best

suited for the current node, network and application conditions. The threshold values

dictating a change in the MiX-MAC schedule can be established before deployment

using figures such as Figures 7.4(a) through 7.6.

7.4.2.2 Resulting lifetime increase

Figure 7.8 presents a comparison of the lifetimes for MiX-MAC, X-MAC and SpeckMAC-

D for a packet size of 40 bytes, 20% of the total traffic being broadcast packets (all other

packets are unicast) (Figure 7.8(a)) and all unicast packets (Figure 7.8(b)). The rate r

is 1/10.

These results show that MiX-MAC achieves the upper bound of node lifetime by

selecting the best schedule for various scenarios. X-MAC suffers greatly in broadcast

mode, even for relatively small proportions of broadcast packets (20%). MiX-MAC

helps the MAC protocol obtain the best of all worlds: lifetime gains are obtained over

other protocols on a full range of ti values. This last point is important because in a

network where the rate of packet transmissions varies, the optimal value of ti would

naturally vary as was seen previously.

7.5 TinyOS Implementation of LPL Protocols

This section compares LPL MAC protocols implemented in TinyOS for the Tmote Sky

platform in order to find the switching thresholds of the MiX-MAC look-up table.

155

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t
i
 interval (s)

L
if
e

ti
m

e
 (

y
e

a
rs

)

n=25 w/ ratio=0.2

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t
i
 interval (s)

n=50 w/ ratio=0.2

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t
i
 interval (s)

n=75 w/ ratio=0.2

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t
i
 interval (s)

n=100 w/ ratio=0.2

SMD

X−MAC

MX−MAC

MiX−MAC

SMD

X−MAC

MX−MAC

MiX−MAC

SMD

X−MAC

MX−MAC

MiX−MAC

SMD

X−MAC

MX−MAC

MiX−MAC

Lifetime

(a)

0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t
i
 interval (s)

L
if
e
ti
m

e
 (

y
e
a
rs

)

Fixed n=25

Lifetime

0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t
i
 interval (s)

Fixed n=50

0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t
i
 interval (s)

Fixed n=75

0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t
i
 interval (s)

Fixed n=100

SMD

X−MAC

MX−MAC

MiX−MAC

SMD

X−MAC

MX−MAC

MiX−MAC

SMD

X−MAC

MX−MAC

MiX−MAC

SMD

X−MAC

MX−MAC

MiX−MAC

(b)

Figure 7.8: Node lifetime as a function of ti for MiX-MAC, X-MAC, MX-MAC and

SpeckMAC-D. The packets are 20% broadcast / 80% unicast (a) and all unicast (b),

sent at a rate r = 1
10

.

Because in the TinyOS implementation, the relatively slow CPU must operate sen-

sors, protocols, and the CC2420 radio, our simulation model may need refining or

amending. We also provide guidelines for rigorous MAC protocol evaluation, and we

156

underline the strengths and weaknesses of more simple simulation models. We also

offer a sense of which model assumptions are valid, and which do not hold.

7.5.1 Debugging at the MAC Level

TOSSIM is a platform emulator for PC’s under TinyOS and does not model MAC

protocols in details. Consequently, it can be very difficult to debug MAC protocols in

TinyOS as the use of LEDs is very limiting and is not adapted to fast-paced operations

as typically encountered when programming MAC protocols. Designing a debugger

was a critical step in developing a MAC protocol. The easiest solution involves the

UART, which allows the Tmote to communicate with the PC. The debugger consists of

markers (whose significance can be defined by the programmer) that may be recorded

to an array by invoking:

call Debugger.debug(value);

The array of debugging values is periodically sent to the PC through its USB connector

for print out on the screen. Thus, it allows the programmer to follow what operations

are sequentially being performed by the protocols.

7.5.2 Reconstruction Model

Since we are comparing four different MAC protocols along a host of parameters such

as ti values, number of received and sent packets (n and m), packet size, and the unicast

or broadcast nature of the packet, it is impractical to measure the energy consumed by

a mote over its lifetime as we vary all of these parameters. While possible, measuring

the actual battery voltage over the life of the mote does not map linearly with energy

consumption. Moreover, such a method would have forced us to wait well over six

months for every created scenario. Instead, we chose to accurately evaluate the lifetime

of a mote by measuring the current drawn under various basic operations using a fast

data acquisition board. Figure 7.9 is a picture of the acquisition board plugged into the

computer during a measurement.

Figure 7.10(a) provides a sample of the output from the data acquisition board when

the mote is probing the medium. Figure 7.10(b) shows the current drawn by the mote

157

R

+

−

T
m

o
te

PC

Figure 7.9: Picture of the acquisition board set up to measure the current drawn from

the mote.

during a packet transmission initialization and the first five packet repetitions. Fig-

ure 7.10(c) shows the amperage for a packet reception, followed by an ACK. The iden-

tifiable radio operations are indicated on Figure 7.10 and account for most of the energy

consumption. Since the measurements were done at a constant voltage, and the sam-

ples taken at a fixed and small rate, the energy can be easily calculated through Riemann

Integrals.

We measured the energy and time spent probing the medium (probe), starting a

transmission (startTx), sending one frame and switching the radio back to TX mode

(frame), stoping a transmission after a successful (endTxS) and failed (endTxF, only for

X-MAC and MX-MAC schedules) transmission, and receiving a packet (Rx). Some of

these measurements were repeated for various packet sizes in order to find a correlation

between energy expended and packet size. Linear regression was subsequently used to

create a model for various radio operations, all with an R value greater than or equal to

0.99.

The tframe∗ value in table 7.4 verifies that our model correctly represents TinyOS

158

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Time (ms)

I
(m

A
)

Current Draw of Medium Probe

(a)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Time (ms)

I
(m

A
)

Current Draw of Packet Transmission with Initialization

TXFIFO load and CCAs

Packet TX

Wait for ACK

TX/RX Switch RX/TX Switch

(b)

2 4 6 8 10 12 14
0

5

10

15

20

25
Current Draw of Packet Reception with MX−MAC

Time (ms)

I
(m

A
)

RXFIFO Read and Packet Processing

CCAs / Packet RX
Send ACK

TX/RX Switch

RX/TX Switch

(c)

Figure 7.10: Current drawn by the Tmote Sky during a medium probe (a), a 40 B packet

transmission (b), and a 40 B packet reception (c).

and the CC2420 radio: all protocols show that it takes a little under 32 µs to send one

byte (we measured 31.89 µs exactly), which is confirmed by the CC2420 datasheet.

Moreover, our measurements allow us to determine the turn around time for each pro-

tocol. For SpeckMac based schedules, the time to revert to TX mode is 772 µs and it

is 1.351 ms for MX-MAC and X-MAC based protocols. These latter values depend

heavily on the TinyOS code and may differ from one programmer to the next.

In order to validate further our reconstruction model, we compared it to real-life

measurements on the mote. Because Matlab, which is used to obtain the data values

from the data acquisition board, is limited in vector sizes, we could only acquire ten

minutes of current draw and had to break the acquisition in five samples of two min-

utes. We ran three scenarios on the mote: we used various values of m and n, as well

159

Table 7.4: Actual radio model under TinyOS. S designates the packet size in bytes.

Units are µJ and ms.

Notation Speck MiX as. Speck MX X

Eprobe 132.4 142.6

tprobe 8.9 9.6

EstartTx 1.1 · S + 155.9 1.3 · S + 206.7 1.2·PS+230.3 264.8

tstartTx 0.02 · S + 6.7 0.02 · S + 7.5 0.02 · S + 7.9 8.4

ETxAdv NA 138.2

tTxAdv NA 2.6

Eframe 1.7 · S + 35.1 1.7 · S + 70.2 1.7 · S + 63.6

tframe∗ 0.03 · S + 0.8 0.03 · S + 1.4 0.03 · S + 1.2

EendTxF 71 75 72

tendTxF 3.7 3.8 3.5

EendTxS NA NA 144.3 144.3

tendTxS NA NA 4.9 3

ERx = N (µ, σ) µ = 5.9 · S +

166.7

µ = 6 · S +

163.6

µ = 5.1 · S +

208.2

µ = 5.4 · S +

488.6

σ = 43 σ = 80 σ = 70 σ = 66

tRx = N (µ, σ) µ = 0.1 · S + 9.3 µ = 0.09 · S +

10.4

µ = 0.09 · S +

14.8

σ = 0.76 σ = 1.1 σ = 1.2 σ = 1.1

as different values of packet size. We sent packets using the SpeckMAC schedule to

eliminate varying packet transmissions in order to fix the real-life scenario and match

it to the reconstruction scenario. We also considered that random transmission dura-

tions, as found with MX-MAC and X-MAC, would not average out over a period of ten

minutes, and thus, could not execute the desired scenario.

Figure 7.11 shows that the relative difference between the real-life scenario and its

reconstruction does not exceed 3%. We have observed that most of the error emanates

from the estimation of the idle power which tends to vary over time due to temperature

changes in the acquisition circuit. In scenarios with little traffic (the star ‘∗’ scenario),

160

0

0.5

1

1.5

2

2.5

3

D
if
fe

re
n
c
e
 (

%
)

Difference Between Reconstruction Model and Data Acquisition Measurements

Tx Rate=
1
/
30

, Rx Rate=
1
/
52

, 30B Pkts

Tx Rate=
1
/
15.5

, Rx Rate=
1
/
26

, 30B Pkts

Tx Rate=
1
/
5
, Rx Rate=

1
/
5
, 90B Pkts

Figure 7.11: Relative difference between real life scenarios and their prediction through

the reconstruction model.

the idle power accounts for a large part of the power consumption. As the amount of

traffic increases, the relative share of the idle power decreases, and our model gains

accuracy. When plugging the idle power value of the real-life scenario into our recon-

struction model, the error dips under 1%.

7.5.3 Protocol Design Choices

We tried to optimize as many aspects of the MAC schedule as possible: the time sep-

arating two clear channel assessments (CCA) as well as the number of CCAs when

sensing the medium, the number of CCAs before a packet transmission, the behavior of

a node when detecting another ongoing transmission (a sender hearing another stream

of packets during its switch to RX mode after every frame), etc. Since our goal is only

to compare MAC protocols without bias toward one schedule, we endeavored to opti-

mize the behavior of all three MAC protocols. Because all MAC schedules are meant

to be compatible, they were implemented by the same TinyOS code. Consequently, all

three protocols have the same essential parameters such as the number of CCAs and the

time separation between them.

161

7.5.3.1 Time Separation Between CCAs

On CC2420 radios, the channel probing result is read on the CCA pin (Clear Channel

Assessment) and can only be obtained after the radio has been in receive mode (RX

mode) for at least 8 symbol periods (or 128 µs). The CC2420 data sheet indicates that

switching from transmit (Tx) or idle modes to RX mode takes 192 µs. We assume that

there is no formal time synchronization between nodes.

Two CCAs are usually sufficient to detect an ongoing transmission, provided they

are separated by the correct time. We developed an analytical model to calculate the

probability that a node would correctly hear an ongoing stream of packets as a function

of the time between CCAs (t2CCAs), the sender’s radio switch time, and the size of

the packets. Figures 7.12(a) and 7.12(b) plot the numerical value of this probability of

successfully receiving the frame for the two radio switching times that we measured

(770 µs and 1, 350 µs). These figures show that good choices for t2CCAs tend to be

around 600 µs and 1, 100 µs. From the perspective of energy consumption, a shorter

time separation between consecutive CCAs is beneficial because it shortens the time

spent probing the medium.

Our Tmote Sky implementation helped us refine these values: because this model is

an ideal representation of the radio, we coded values for t2CCAs that were much smaller

than 600 µs and 1, 100 µs in order to account for the slower execution of the whole

protocol stack on the Tmote Sky.

Figure 7.13 shows the packet delivery ratios for two nodes randomly sending 100

packets to each other, including collisions, missed packets, bad radio states, etc. As the

packet size increases, it is generally easier for a receiver to hear a transmission. The

dotted line shows a value for t2CCAs that was not retained because of poor reliability.

We found that an acceptable coded value for t2CCAs is between 320 µs and 512 µs

for SpeckMAC, and 512 µs for MX-MAC and X-MAC, which represent the best com-

promise between energy use in very low traffic networks and fairness to all protocols.

For MiX-MAC, which must use compatible parameters for all MAC schedules, we set

t2CCAs to 512 µs for all protocols.

For packet sizes close to their maximum value (128 B), we found the radio to “jam”

under SpeckMAC: the radio would issue RXFIFO overflows because the FIFO was

filled before it could be read, and hence the packet delivery ratios in this case dropped

162

significantly.

7.5.3.2 Automatic ACKnowledgment

For MX-MAC and X-MAC schedules, the automatic hardware ACKs were chosen.

With the CC2420 radio, this means that automatic address recognition and automatic

CRC check be enabled. The former allows the radio to signal it has heard the first

bytes of a transmission to another node, to which TinyOS can answer with a power

down command. Under these circumstances, we consider that overhearing is negligible

compared to the overall medium probe and equally affects all protocols.

The automatic ACK is issued immediately after receiving a packet that is destined

for the node, that passed the CRC check, and that requests an ACK. We chose auto-

matic ACKs over triggered ACKs for their speed of execution which eventually led to a

shorter t2CCAs. Non-automatic hardware ACKs can only be triggered after reading the

packet from the RXFIFO, which is typically a slow process.

In fact, the automatic hardware ACK mechanism is so rapid that assumptions about

ACKs need to be rethought. In cases when the packet size is very large (above 80 B),

the RXFIFO cannot be read before the ACK is sent. When no automatic ACK is en-

abled, the radio stays in receiving mode until the packet is read, whereas automatic

ACK frames can be sent while the RXFIFO read-out is waiting completion. Since the

TX mode consumes less energy than the RX mode on the CC2420, sending an ACK

frame actually reduces the energy expended.

The use of automatic ACKs further motivated removing WiseMAC [17] from the

list of compatible MAC schedules because each node must piggyback its wake-up

schedule to acknowledgement frames. Moreover, doing so requires to use software

acknowledgement, and to reload the TXFIFO (a time consuming process) every time.

This results in a significant increase in energy consumption.

7.5.3.3 The SpeckMAC Design

Start of Frame Delimiter (SFD) captures notify the TinyOS code that frame delimiters

have been received. This gives information about the state of current receptions. We

suspended SFD capture notifications as soon as a packet is received in order to avoid

overwhelming the TinyOS code with unnecessary interruptions. This is particularly

163

needed in the case of SpeckMAC schedules because the flow of packets may not be

interrupted, and constant irruption of time consuming events warning of the reception

of a packet may delay their processing and the power down command of the radio.

This, however, does not prevent the radio from receiving packets, which can be read

out at a later time.

7.5.3.4 The X-MAC Design and Choice of Advertisement Packet Size

As Figure 7.13 shows, the packet delivery ratio for packets of size 11 B is only 65%

for X-MAC, even with t2CCAs set to 512 µs. This prompted the choice of larger adver-

tisement packets (40 B), as is supposed by C-MAC [23]. In order to remain compatible

with the other protocols, we considered all 40 B long packets to be advertisements.

The receiver, upon reading a 40 B packet from its RXFIFO stays awake to receive the

subsequent data packet. In other words, when a MAC protocol needs to send a 40 B

packet, it has to use the X-MAC schedule.

7.5.3.5 MAC Schedule Compatibility

Through design choices, we allowed the three MAC protocols to be compatible. This

means that the same TinyOS code can let a mote send and receive packets using the

MX-MAC, X-MAC or SpeckMAC schedule.

More importantly, the basic principle behind schedule compatibility is that a re-

ceiver does not need to know the ongoing schedule, and simply ACKs packets that

request it. For MX-MAC and X-MAC, the acknowledgment request field must be set

to one. If no ACK is requested, the receiver simply turns off after the packet has been

received..

7.5.4 Determination of the Switching Thresholds

In order to populate the MiX-MAC look-up table, we must compare the X-MAC, MX-

MAC and SpeckMAC-D schedules and determine which is most appropriate to the

current set of parameters on the network. We compare the three MAC schedules using

three metrics: reliability of delivery, lifetime and throughput. The reliability compari-

son appears in Figure 7.13 and was discussed in the previous section.

164

7.5.5 Reliable Throughput or Goodput

In order to evaluate the throughput of the MAC protocols, we let one node send 100

packets to three different neighbors. 200 ms after a transmission, packets are sent to

the next neighbor, resulting in packet rates sometimes higher than 1/ti for MX-MAC

and X-MAC, as these protocols are interruptible and thus do not always transmit for

the full ti period. This should ensure that the application packet generating rate is not a

limiting factor.

A second transmission mechanism illustrates the benefit of rescheduling transmis-

sions immediately after a node has successfully sent a packet as explained in Sec-

tion 7.3.2. We had a packet transmission occur 250 ms after a successful commu-

nication, much like it would happen when a packet is deemed urgent. The 200 ms

and 250 ms times are conservative settings, and their value could be easily lowered to

mechanically increase the throughput.

Figure 7.14 shows the amount of correct bits transmitted in one second. For smaller

values of ti, X-MAC has the highest throughput. With larger values of ti and for larger

than 20 B packets, MX-MAC performs best. This is because MX-MAC and X-MAC

are interruptible, and thus take on average ti/2 s to send a packet, and can attempt the

next packet transmission 250 ms later provided the source node is sending to different

destinations. As the packet size increases, packets are received more reliably, which

increases the throughput by up to 50%

Since X-MAC uses fixed sized advertisement packets (40 B), its throughput in-

creases linearly with the data packet size as shown by the figure. However, its perfor-

mance is not equal to that of MX-MAC since MX-MAC’s larger packets get transmit-

ted more reliably (as shown in Figure 7.13). For a different reason, SpeckMAC based

schedules are also linear: SpeckMAC can send only one packet per ti period. When the

packet size increases, so does the throughput.

These results teach us that MiX-MAC can select the MAC schedule that will yield

the best goodput for a certain packet size and ti value. The results in Figure 7.14 suggest

that for ti = 1 s, the X-MAC schedule yields the best throughput for small packets (less

than 40 B), while the MX-MAC schedule has the best performance for larger packets.

165

7.5.5.1 Lifetime for Unicast Packets

Figure 7.15 illustrates the differences in lifetime when increasing the time between

CCAs. For values of m and n equal to {0.005; 0.005}, {0.005; 0.05}, {0.005; 0.5},

and {0.005; 1} (for the curves from top to bottom), the maximum loss of lifetime is

6%, although on average, it is under 1%. However, this hides the fact that the receiver

is more likely to correctly receive the packet under MiX-MAC than with SpeckMAC.

This can be observed if we consider the case when a sender receives notification that a

packet was correctly received through piggybacked ACKs. Figure 7.15(b) shows that in

this case, there is no lifetime loss. Instead, the lifetime of the node peaks at a different

value of ti due to the change in energy expended to probe the medium.

Figure 7.16 shows the lifetimes for MX-MAC, X-MAC, and SpeckMAC schedules

for various {n; m} values and 15 B unicast packets—n designates the rate of received

packets, and m2 the rate of transmitted packets. As per the simulations, SpeckMAC

does not perform as well as MX-MAC and X-MAC. While this validates the simula-

tions, Figure 7.16(a) shows that X-MAC performs best for smaller packets as opposed

to previously shown. This holds only when the node is mostly sending. This is because

the advertisement packets size went from 11 B to 40 B, which increases the chance

of being heard during a transmission, and thus prevents retransmissions. At the same

time, an increase in packet size increases the energy consumption by only 3-4%. This

is because the radio transmits for ti s, whatever the packet size.

When the node starts receiving many packets as in Figure 7.16(b), this advantage

is lost because a packet received under the X-MAC schedule costs roughly twice as

much energy. The advantages of X-MAC are reduced further when the data packet size

reaches that of the advertisement size because the advertisement packet is no longer

easier to hear than the data packet.

This section shows that for packets smaller than 40 B, and for cases when the node

is mostly sending, X-MAC allows the node to increase its lifetime. In other cases,

MX-MAC leads to a longer lifetime. While the receiver does not get to pick the MAC

schedule, cross-layer information, as provided by X-Lisa, allows the sender to select

the MAC that will spare the energy of the node with the smallest remaining energy.

2m and n may be the same if the node is a relay that does not introduce new packets onto the network.

n = 0 would typically designate a source node, and m = 0 a sink node.

166

The receiver does not need to be informed of any changes in MAC scheduling. Based

on the packets received, the receiver knows which schedule the transmitter is following.

7.5.5.2 Lifetime for Broadcast Packets

Contrary to unicast packets, one MAC schedule consistently spares the energy of the

node, over the range of packet sizes. Figure 7.18 shows that X-MAC performs very

poorly, as shown by the simulations as well (Section 7.4.1.1). Figure 7.18 also shows

that the lifetime increase provided by SpeckMAC is modest (2%) when the node is

mostly sending, and larger (10%) when the node is mostly receiving.

These relatively small lifetime increases hide the fact that with the SpeckMAC

schedule, the destination nodes are much more likely to correctly receive the packets

(section 7.5.3.1). Thus, using the SpeckMAC schedule for broadcast allows for longer

lifetime and more reliable communication.

The results for the broadcast case show that MiX-MAC should always select the

SpeckMAC-D schedule: as it will enjoy small gains in lifetime, and it will greatly

improve packet delivery reliability compared to MX-MAC and X-MAC.

7.5.6 MiX-MAC Achieves the Upper Bound of Node Lifetime

In order to show the benefits of MAC schedule adaptation, we present the lifetime of a

node sending unicast packets of different size. MiX-MAC selects either the MX-MAC

or X-MAC schedules based on the packet size.

7.5.6.1 Picking the right MAC schedule

The previous results show that all MAC protocols sacrifice performance in unicast mode

to that of the broadcast mode or vice-versa. MiX-MAC performs well against every

combination of parameters because it constantly picks the best MAC schedule for these

parameters.

MiX-MAC adopts SpeckMAC-D’s schedule for broadcast packets, and for unicast

packets, it uses four axes to decide the appropriate schedule. These include ti value,

packet size, estimated ratio of transmitted vs. received packets, and the ACK require-

ments determined by the upper level protocols or services.

167

The simplified look-up Table 7.5 gives the optimal schedule as a function of several

parameters. There exists an inherent trade-off between the size and complexity of the

look-up table, and the granularity of switching MAC schedules over all the considered

parameters.

168

L (B)

t 2
C

C
A

s
 (

µ
s
)

Probability (t
switch

=770µs): from 0.31696 (blue) to 1 (red)

20 30 40 50 60 70 80 90 100 110 120

500

1000

1500

2000

2500

3000

3500

4000

(a)

L (B)

t 2
C

C
A

s
 (

µ
s
)

Probability (t
switch

=1350µs): from 0.20588 (blue) to 1 (red)

20 30 40 50 60 70 80 90 100 110 120

500

1000

1500

2000

2500

3000

3500

4000

(b)

Figure 7.12: Probability to successfully hear an ongoing stream of packets as a function

of the packet size (L) and t2CCAs, for an RX / TX switch time tswitch = (a) 770 µs

(SpeckMAC), and (b) 1, 350 µs (X-MAC / MX-MAC).

169

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Packet Size (B)

P
a
c
k
e
t
D

e
liv

e
ry

 R
a
ti
o
 (

%
)

Number of packets received by destination for MX−Mac, X−Mac and SpeckMac

MX−Mac / X−Mac 320µs between CCAs

SpeckMac (SP) 320µs between CCAs

MX−Mac / X−Mac 512µs between CCAs

SpeckMac 512µs between CCAs)

Figure 7.13: Comparison of the packet delivery ratio of the MAC schedules as a func-

tion of packet size and time between CCAs.

170

0 10 20 30 40 50 60 70 80 90 100 110
0

200

400

600

800

1000

1200

1400

Packet Size (B)

T
h

ro
u

g
h

p
u

t
(b

p
s
)

Throughput to 3 Neighbors − t
i
 = 250ms

MX−Mac schedule (512µs between CCAs)

X−Mac schedule (512µs)

SpeckMac schedule (512µs)

SpeckMac schedule (320µs)

(a)

0 10 20 30 40 50 60 70 80 90 100 110
0

200

400

600

800

1000

1200

1400

Packet Size (B)

T
h

ro
u

g
h

p
u

t
(b

p
s
)

Throughput to 3 Neighbors − t
i
 = 500ms

MX−Mac schedule (512µs between CCAs)

X−Mac schedule (512µs)

SpeckMac schedule (512µs)

SpeckMac schedule (320µs)

(b)

0 10 20 30 40 50 60 70 80 90 100 110
0

100

200

300

400

500

600

700

800

900

1000

Packet Size (B)

T
h

ro
u

g
h

p
u

t
(b

p
s
)

Throughput to 3 Neighbors − t
i
 = 1000ms

MX−Mac schedule (512µs between CCAs)

X−Mac schedule (512µs)

SpeckMac schedule (512µs)

SpeckMac schedule (320µs)

(c)

Figure 7.14: Throughput for ti values of 250 ms, 500 ms, and 1 s.

171

0 0.5 1 1.5
0

50

100

150

200

250

300

350

t
i
 (s)

L
if
e

ti
m

e
 (

d
a

y
s
)

Unicast: Lifetime for packet size=40B, {n; m} = {{0.005; 0.005} {0.005; 0.05} {0.005; 0.5} {0.005; 1}}

SpeckMac (320µs between CCAs)

SpeckMac (521µs between CCAs)

{n; m} = {0.005; 0.005}

{n; m} = {0.005; 0.05}

{n; m} = {0.005; 0.5}

{n; m} = {0.005; 1}

(a)

0 0.5 1 1.5
0

50

100

150

200

250

300

350

t
i
 (s)

L
if
e
ti
m

e
 (

d
a
y
s
)

Unicast: Lifetime for packet size=40B, {n; m} = {{0.005; 0.005} {0.05; 0.05} {0.5; 0.5} {1; 1}}

SpeckMac (320µs between CCAs)

SpeckMac (512µs between CCAs)

{n; m} = {0.005; 0.005}

{n; m} = {0.05; 0.05}

{n; m} = {0.5; 0.5}

{n; m} = {1; 1}

(b)

Figure 7.15: Comparison of the lifetime of SpeckMAC and MiX-MAC. The two sched-

ules only differ by the time between their CCAs. In (b) we assume that the receiver no-

tifies the sender of the reception of packets through piggy backed or stand-alone ACKs.

(a) assumes no such mechanism.

172

0 0.5 1 1.5
0

50

100

150

200

250

300

350

t
i
 (s)

L
if
e
ti
m

e
 (

d
a
y
s
)

Unicast: Lifetime for packet size=15B, {n; m} = {{0.005; 0.005} {0.005; 0.05} {0.005; 0.5} {0.005; 1}}

MX−Mac

SpeckMac

X−Mac
{n; m} = {0.005; 0.005}

{n; m} = {0.005; 0.05}

{n; m} = {0.005; 0.5}

{n; m} = {0.005; 1}

(a)

0 0.5 1 1.5
50

100

150

200

250

300

350

t
i
 (s)

L
if
e

ti
m

e
 (

d
a

y
s
)

Unicast: Lifetime for packet size=15B, {n; m} = {{0.05; 0.005} {0.5; 0.005} {1; 0.005}}

MX−Mac

SpeckMac (512µs between CCAs)

X−Mac {n; m} = {0.05; 0.005}

{n; m} = {0.5; 0.005}

{n; m} = {1; 0.005}

(b)

Figure 7.16: Comparison of the MX-MAC and X-MAC schedules for 15 B unicast

packets for scenarios where the node is mostly sending (a), and mostly receiving (b).

173

0 0.5 1 1.5
0

50

100

150

200

250

300

350

t
i
 (s)

L
if
e
ti
m

e
 (

d
a
y
s
)

Unicast: Lifetime for packet size=40B, {n; m} = {{0.005; 0.005} {0.005; 0.05} {0.005; 0.5} {0.005; 1}}

MX−Mac

SpeckMac

X−Mac

{n; m} = {0.005; 0.005}

{n; m} = {0.005; 0.05}

{n; m} = {0.005; 0.5}

{n; m} = {0.005; 1}

(a)

0 0.5 1 1.5
0

50

100

150

200

250

300

350

t
i
 (s)

L
if
e
ti
m

e
 (

d
a
y
s
)

Unicast: Lifetime for packet size=100B, {n; m} = {{0.005; 0.005} {0.005; 0.05} {0.005; 0.5} {0.005; 1}}

MX−Mac

SpeckMac (512µs between CCAs)

X−Mac

{n; m} = {0.005; 0.005}

{n; m} = {0.005; 0.05}

{n; m} = {0.005; 0.5}

{n; m} = {0.005;1}

(b)

Figure 7.17: Comparison of the MX-MAC and X-MAC schedules for 40 B unicast

packets (a) and 100 B packets (b) when the node is mostly sending.

174

0 0.5 1 1.5
0

50

100

150

200

250

300

t
i
 (s)

L
if
e
ti
m

e
 (

d
a
y
s
)

Broadcast: Lifetime for packet size=40B, {n; m} = {{0.05; 0.005} {0.5; 0.005} {1; 0.005}}

MX−Mac

SpeckMac

X−Mac

{n; m} = {0.05; 0.005}

{n; m} = {0.5; 0.005}

{n; m} = {1; 0.005}

(a)

0 0.5 1 1.5
0

50

100

150

200

250

300

350

t
i
 (s)

L
if
e
ti
m

e
 (

d
a
y
s
)

Broadcast: Lifetime for packet size=15B, {n; m} = {{0.005; 0.005} {0.005; 0.05} {0.005; 0.5} {0.005; 1}}

MX−Mac

SpeckMac (512µs between CCAs)

X−Mac {n; m} = {0.005; 0.005}

{n; m} = {0.005; 0.05}

{n; m} = {0.005; 0.5}

{n; m} = {0.005; 1}

(b)

Figure 7.18: Comparison of the MX-MAC and X-MAC schedules for 40 B broadcast

packets (a) when the node is mostly receiving, and 15 B packets (b) when the node is

mostly sending.

175

Table 7.5: Look up table to determine which protocol (SpeckMAC-D (S), X-MAC (X),

or MX-MAC (M)) performs best in terms of lifetime.

Unicast Broadcast

Mostly Receiving Sending and Receiving Mostly Sending

Pkt size m = 0.005 n = 0.005

n = m =

0.05 1 0.05 1

15 B X M X X X S

40 B X M X X X S

80 B M M M M M S

120 B M M M M M S

7.5.6.2 Implementation Example

In this section, we present the node lifetime as a function of packet size in Figure 7.19

as an easy-to-read graph of schedule switching benefits.

The figure shows that MiX-MAC increases the lifetime by up to 30% compared to

using the fixed schedules of X-MAC, MX-MAC, or SpeckMAC-D. While the mapping

may not be perfect, the error of the point at which schedules are switched stems from

the fact that schedules have very similar energy patterns at these packet sizes. The error

in schedule switching is thus inherently small.

As can be seen in the figure, for the values of {m; n} presented here, the lifetime

may actually increase with the size of the packets sent. This is because a sending

node is on for a fixed amount of time, and more reliable communications help avoid

retransmissions as shown in Section 7.5.5.

176

10 20 30 40 50 60 70 80 90 100
100

110

120

130

140

150

160

Packet Size (B)

L
if
e
ti
m

e
 (

D
a
y
s
)

Unicast packets, t
i
=1, m=0.05, n=0.05 − MiX−MAC Achieves Upper Bound of Lifetime

MX−Mac

SpeckMac

X−Mac

MiX−Mac

Figure 7.19: A simple mapping function lets the protocol switch between schedules in

order to increase the lifetime.

7.5.6.3 Effects of erroneous estimates resulting in suboptimal scheduling deci-

sions

Since MiX-MAC picks schedules from a pool of existing protocols, erroneous estimates

for the optimal ti (because of the wrong measurement of m or n for instance) would

equally affect the performance of X-MAC, MX-MAC, and SpeckMAC-D.

However, if the lookup table were to point to an incorrect schedule, due for instance

to an outdated or inaccurate estimate of the number of transmissions over receptions

ratio, the network would simply operate at the level of performance of the chosen MAC

protocol, without further degradation. For small estimate errors around the points where

schedules are switched (the intersection in Figure 7.19), the difference between the en-

ergy consumption of the optimal schedule and that of other schedules is small. A small

error around these points cuts lifetime by only a few percentages as our experiment

suggests.

Elsewhere, a small estimate error has no effect: because the error is too small to

impose a different schedule, the sending node picks the same schedule as the optimum.

For very large estimate errors (for which the point of switching schedules is between

the estimate and the actual value of a parameter), the resulting performance loss may

177

be significant; however, large estimate errors (over 20%) should be rare by nature.

With this section, we saw that adapting the best-suited MAC schedule could in-

crease node lifetime by up to 30%. The focus that we adopted was that of a node,

without consideration for its neighbors. This meant that the transmit / receive sched-

ules of nodes along a path were independent of one-another. We now shift focus to

whole paths and try to synchronize nodes along routes in order to obtain further energy

savings.

7.6 Discussion and Summary

We discuss the contributions and results of this work in this section.

• MiX-MAC: Adapting the MAC Schedule to Conditions in the Network. Exist-

ing MAC protocols employ identical schedules for both unicast and broadcast

packet transmissions or, when impossible, simply modify their “unicast sched-

ule” to work with broadcast packets. For instance, IEEE 802.11 cannot perform

an RTS / CTS handshake for broadcast packets, and thus only utilizes CSMA for

broadcast packets, regardless of the impact on lifetime or contention. We pro-

pose MiX-MAC, a MAC protocol that switches MAC schedules based on a set

of easily obtainable parameters such as the unicast / broadcast nature of packets,

their size, their numbers, etc. MiX-MAC chooses the MAC schedule best fit for

the existing conditions in the network. This idea was made possible through the

realization that many LPL MAC protocols were compatible and could be imple-

mented with the same code, at the cost of no overhead.

• Protocol Comparisons Against Several Parameters. We identify three LPL MAC

protocols that were compatible with one another and could be run with the same

code: SpeckMAC-D, X-MAC, and MX-MAC. MX-MAC is a proposed modifi-

cation of X-MAC to accommodate broadcast packets and limit false positive ac-

knowledgement. In order to determine which MAC schedule MiX-MAC should

adopt, we evaluated all three protocols through simulation and implementation

in TinyOS against several metrics. Results show that no protocol performed con-

sistently better in terms of lifetime. Parameters such as packet size, ti value, and

the ratio of packets sent vs. packets received have various impacts on a node’s

178

energy consumption. The ratio of n vs. m can be understood as burdens set on

the sender or on the receiver. Since the stream of packet repeats of SpeckMAC-

D cannot be interrupted, the brunt of the energy consumption is placed on the

sender. SpeckMAC-D will thus perform better at lower ti values for they allow

shorter transmissions. Since X-MAC and MX-MAC can interrupt their packet

streams, on average after ti/2, they do not place as heavy a burden on the sender.

Under the X-MAC schedule, a receiver needs to stay on approximately twice as

long as with other schedules, thus resulting in a shorter lifetime when the node is

receiving many packets.

If considered independently from packet delivery reliability, larger packets only

marginally increase the energy consumed by a sender, although they have a

greater impact on the receiver. The reason, specific to channel probing schemes,

is apparent when considering the time for which the radio is on. Whether sending

large or small packets, the radio needs to be active for ti s and the time it takes

to transmit a few (less than five) additional packets. The energy expended for

sending larger packets stems solely from the packets sent after the ti period, and

is mitigated by the fact that the radio is in Tx mode more often for large packets.

The MAC protocol comparison results can be mapped to a look up table deter-

mining which schedule is best fit for conditions in the network and application

requirements on delays and reliability. There is an inherent trade off between the

correctness of MAC schedule selection and the table complexity.

• Implementation Under TinyOS. After running simulations using a popular analyt-

ical model, we implemented all MAC schedules in TinyOS. Doing so brought a

wealth of important lessons. Among the most important teachings is the fact that

TinyOS incurs significant delays for some operations. For instance, reading the

RXFIFO turned out to be a very slow process relative to other instructions. Also

noteworthy is the fact that sending automatic hardware ACK frames may expend

less energy than abstaining from doing so. Automatic ACKs are sent promptly

after a packet reception and require careful coding to avoid incorrect radio states.

Also important is the time separating two (or more) CCAs, as this value may not

fit all protocols or packet sizes. A programmer who knows that smaller packets

will never be sent on the network may elect a slightly different time separation

179

between CCAs.

• Method to Accurately Measure the Energy Consumption. We propose a new and

accurate method to measure energy dissipation during complex operations such

as typically found at the MAC layer. Our method allows us to measure the current

draw from a mote without disrupting its operations. It also lets us precisely time

each radio function. We were able to notice that every change in the TinyOS code

could be felt in the current draw measurements.

• Simulation Vs. Implementation Results Comparison. We compare results ob-

tained through simulation and through our TinyOS implementation. While the

implementation results are closest to what end users would observe with current

TinyOS deployments, the analytical simulations represent the results obtained for

the radio without any operating system and may correspond to future implemen-

tations under an ultra-lightweight OS or faster CPUs.

For broadcast packets, our simulations show a larger lifetime improvement than

in the implementation. The difference originates from the time it takes TinyOS

to revert to Tx mode after a packet transmission: this results in increased energy

consumption. While in the analytical model, the time to switch to Tx mode has

a ratio of 4-to-1 from X-MAC / MX-MAC to SpeckMAC-D (736 µs to 192 µs),

this ratio is only 2-to-1 in TinyOS. The energy difference is further reduced by

longer probes in TinyOS. However, investigation of packet delivery ratio shows

that the SpeckMAC-D schedule is more reliable.

For unicast packets, the main difference between simulation and implementation

results stems from the size of the advertisement packets sent by X-MAC. Because

11B packets are typically hard to hear for nodes using two CCAs, we increased

the size of advertisement packets to 40 B. This shifted ranges of ti values and

packet sizes for which X-MAC or MX-MAC allowed for longer lifetimes. How-

ever, in both sets of results, we observe that the optimal ti value decreases with an

increase in packet transmissions. We also noticed that in most cases SpeckMAC-

D cannot outperform the lifetime obtained with the other two protocols, and that

it suffers greatly from numerous packet transmissions for longer ti values.

180

MAC schedule adaptation is not the only technique that can help dynamically adjust

the behavior of LPL MAC protocols: in the following chapters, we investigate how the

receive and transmit schedules of nodes running a subfamily of LPL MAC protocols

can help lower their energy consumption and the packet delivery delays (Chapter 8).

Later, we propose to utilize stochastic control theory to dynamically adapt the duty

cycle and recast LPL MAC protocols for networks with high data loads (Chapter 9).

Chapter 8

Node Synchronization Along a Path

We propose to synchronize nodes along a slowly-changing routing path so as to mini-

mize energy consumption and packet delay, without explicit scheduling between nodes

or overhead of any sort. Only three LPL protocols can be selected to synchronize on

unicast packets (and not lose this synchronization on broadcast packets): X-MAC, C-

MAC and MX-MAC. These protocols form a subfamily of LPL protocols that can be

interrupted by the receiver. For unicast packets, the sender stops its stream of adver-

tisement (X-MAC / C-MAC) or data (MX-MAC) packets after receiving an acknowl-

edgement frame. Sender and receiver can then be synchronized to wake-up sequen-

tially within a short interval. Conversely, a non-interruptible MAC protocol such as

SpeckMAC-D needs explicit notification within nodes to synchronize.

One of the major drawbacks of LPL MAC protocols is that they tend to place a

significant burden on the sending node for medium to low duty cycles, even if we adapt

the transmission schedule via MiX-MAC. The choice of a network-wide ti value is a

delicate decision: a programmer may wish to elect a large value, but such a low duty

cycle may waste energy when transmitting packets, making it an unlikely choice. While

researching MiX-MAC, we conjectured that certain LPL protocols could be synchro-

nized in a way that would allow staggering wake-up schedules. This section details

the various synchronization techniques that can be used to minimize delays and energy

consumption. While synchronization along a path comes with virtually no overhead,

the rare case when packets need to be exchanged on a bidirectional path requires a small

amount of overhead (three extra packets per bidirectional path).

181

182

In the following, the term “interruptible LPL” or int-LPL refers to the subfamily of

LPL MAC protocols whose stream of packets can be interrupted by an acknowledge-

ment frame; to the best of our knowledge, these are limited to the three MAC protocols

X-MAC, C-MAC, and MX-MAC.

We chose to study MiX-MAC with only the MX-MAC schedule, although the re-

sults in this section can be easily extended to the whole family of int-LPL protocol

schedules. Unlike X-MAC / C-MAC, MX-MAC is equally adapted to unicast and

broadcast packets, and risks of false acknowledgement are smaller with MX-MAC.

Most importantly, Section 7.5 showed that the small advertisement packets in X-MAC

can be hard to hear, leading to rather poor link quality. Since our study applies to rout-

ing trees with at least two hops, the chance of packet delivery failure over one of the

many hops on the routing path would be prohibitively high with X-MAC. We thus se-

lected MX-MAC with 50 B packets, although the principle of transmission / reception

schedule adaptation holds for all int-LPL protocols. For this data packet size, the packet

delivery ratio over one hop is close to 98%, which translates into a packet failure rate of

about 92% over a four-hop path, assuming independent links. For simplicity purposes,

packets are delivered in a best-effort manner, and unsuccessful transmissions result in

dropping the packet.

8.1 Synchronization Over a Unidirectional MX-MAC

Link

8.1.1 Principle

Under the MX-MAC schedule, a node implicitly learns of the active schedule of its

destination when it receives an ACK frame after successfully transmitting a data packet.

It is this particularity that allows nodes running MX-MAC to synchronize.

Consider two nodes 0 and 1, with a unidirectional link from 0 to 1. After receiving a

packet, node 1 sets its timer to wake up ti s later. The sending node 0 also sets a timer, in

this case for ti minus a small synchronization back-off tS > 0. For the synchronization

to take place, tS must be greater than tRx, the time to receive a packet (one frame). This

allows node 0 to wake up slightly before node 1 during the next rounds, thus reducing

183

(a)

(b)

Figure 8.1: Synchronization principle for (a) two (b) three nodes running an int-LPL

protocol.

the time for which node 0 is transmitting. Figure 8.1(a) shows how the synchronization

takes place for two nodes.

The requirement of unidirectionality is a minor one: WSNs are usually character-

ized by centrifugal broadcast packets (from the Data Sink to the peripheral nodes) and

centripetal unicast packets (from the nodes to the Data Sink). Broadcast packets are

commonly used to establish routes, refresh information about the end application, etc.

On the other hand, unicast packets tend to flow from the periphery of the network to

the data sink. For the nodes to correctly synchronize, the unicast packets must follow a

slowly-changing route. Moreover, regardless of the direction taken by broadcast pack-

ets, the schedule for broadcasting packets under MX-MAC does not break the existing

synchronization between nodes as the broadcast schedule may not be interrupted by an

ACK frame.

The synchronization process for more than two nodes is less intuitive. Synchroniza-

tion over multiple hops is achieved by following the same rules: a sender must always

184

back-off by the same amount of time after it has successfully sent a packet. For the case

of three nodes, full route synchronization is not achieved until after two packets have

been sent, as illustrated in Figure 8.1(b).

8.1.2 Synchronization Process

Let n = h be the number of hops from node 0 to node n. τ j
k designates the time,

modulo ti, at which node k wakes up to probe the medium or send a packet, and after

it has sent the jth packet. At the beginning, wake-up times are separated by random

periods of time. The effects of missing the beginning of a transmission (causing the

receiver to receive the next frame in the stream) are negligible compared to tS . When

node 0 sends the first packet to node 1, both nodes synchronize and their wake-up times

differ by the synchronization time tS . The propagation of the first packet over the path

leads to changes in the nodes’ wake-up times as follows:

τ 0
k = τ 0

k−1 + dk−1

τ 0
n = τ 0

0 +

n−1
∑

p=0

dp

When node 0 sends the first packet to node 1, both nodes synchronize and their

wake-up times differ by the synchronization time tS . τ j
k = f(τ j−1

k) designates the

transformation that happens to the wake-up time of node k after it just sent the jth

packet:

τ 0
1 = τ 1

0 + tS

τ 0
n = τ 1

0 +
n−1
∑

p=1

dp + tS

185

At the kth hop along the path, the transformation f happens:

From

{

τ 0
k = τ 1

k−1 + tS

τ 0
k+1 = τ 0

k + dk,

τ 1
k = f(τ 0

k) = τ 1
k−1 + tS + dk − tS = τ 1

k−1 + dk

At the last hop, nodes n − 1 and n are separated by tS:

τ 0
n = τn = τ 1

n−1 + tS = τ 1
n−2 + dn−1 + tS

= τ 1
0 +

n−1
∑

p=1

dp + tS

In other words, τn − τ 1
0 remains the same during the course of the first packet transmis-

sion from the source to the destination.

When the jth packet is transmitted from node k − 1 to node k we have:

From

{

τ j−1
k = τ j

k−1 + tS

τ j−1
k+1 = τ j−1

k + dk+j−1

τ j
k = f j(τ 0

k) = τ j
k−1 + tS + dk+j−1 − tS = τ j

k−1 + dk+j−1

Thus, after the jth packet, we have:

τn = τ0 +
n−1
∑

k=j

dk + jtS

The nodes are all synchronized when τn
0 = τn − ntS , that is after at most j = n

packets have been properly sent1.

Once the path is synchronized, the delay can be expected to be equal to tS + (n −
1)(ti + tS) + tRx, as suggested by Figure 8.2.

1Synchronization will happen as long as the jth packet reaches at least node n − (j − 1)

186

This short analysis also shows that clock drift has little effect on path synchro-

nization because this process uses only the nodes’ relative—not absolute—positions in

time. Synchronization is reinforced with every packet sent, making this protocol re-

silient as long as the clock drift is significantly smaller than tS , which can be expected.

The measured clock drift for the Tmote Sky is at most 5 ppm. This means that the

relative drift between two motes is αdrift ≤ 10−5. If T is the time between two packet

streams, then we must have T < (tS−tRx)
αdrift

. In our implementations, we commonly used a

tS value of 50 ms, leading to T < 3, 600 s: in order to guarantee the proper preservation

of the nodes’ synchronized wake-up schedules, a unicast packet must be sent at least

every hour on the path. For WiseMAC, T is only half that because nodes use absolute

schedules to synchronize themselves. Therefore, nodes running WiseMAC should start

sending 2tS before their next-hop wakes up. The results in Section 8.4.1.5 take this into

consideration.

8.1.3 Urgent Packets

Regular packets are forwarded in the next duty cycle after they have been received. On

the other hand, urgent packets can be retransmitted immediately after they have been

received. If a packet is marked as urgent (the implementation details are not relevant to,

and beyond the scope of, this work) because of application or QoS requirements, the

radio is kept on, waiting for the upper layers of the protocol stack to request sending

the packet. When the “send” command is issued, the MAC protocol immediately starts

the stream of packets. In order to be successful, the packet transmission must start

before the next hop probes the channel. The delay associated with urgent packets is

less than ti s, thus greatly reducing the packet delivery latency over regular packets.

Over synchronized paths, the delay of urgent packets is equal to ntS + tRx.

The decision to send urgent packets within the same ti period, but to exclude reg-

ular packets from immediate retransmission is a design choice motivated by practical

implementation considerations. Support for urgent packets requires protocols from the

Data Link layer to the Routing Protocol to collaborate and capably handle urgent de-

liveries. Today, this is rarely the case. Processing on each packet (snooping, queue

reordering, next-hop calculation, loading the radio FIFO, etc.) must be very limited in

order to meet the next-hop’s wake-up time. If tp is the processing time, we must have

187

Figure 8.2: Node 0 pipelines packets and increases the packet rate.

tRx + tp < tS .

In spite of these caveats, a protocol designer may wish to treat all packets as urgent

ones, and would thus benefit from very short delays.

8.1.4 Pipelining of Packets on a Synchronized Path

Because packet transmissions happen in a sequential way, packets can be pipelined over

the path so that a packet is sent every 2ti, as illustrated by Figure 8.2.

Pipelining is only possible with synchronized nodes because if nodes are not syn-

chronized they would interfere with one another and exacerbate the hidden node prob-

lem, common to all LPL protocols.

8.2 Synchronization Over a Bidirectional Path

Although uncommon in WSNs, some network topologies and applications may send

unicast packets over paths that are in part or in whole bidirectional. This could be the

case when several data sinks are deployed in the network. We developed an algorithm

that coordinates bidirectionality on a path, although it induces overhead.

Let nodes i and j be the two ends of a sub-path Pi→j. In order to synchronize nodes

188

Figure 8.3: Bidirectional path synchronization time line.

over Pi↔j, the MAC protocol must allow packets to travel in only one direction at a time

during synchronized rounds. Furthermore, cross-layer information such as the number

of packets sent per round, and the number of hops from i and j is needed.

Each source node is allowed to send only a limited number of packets on the path at

a time. Upon forwarding the last packet of the synchronized round, each node backs-

off by −tS(2hk,{i,j} − 1) s, where hk,{i,j} is the number of hops from node k to i or j.

The path Pi→j starts with unicast packets being forwarded from node i to j. If node

j has to forward a packet to i, the link becomes bidirectional. A Route Set-Up header

is added to the packet and contains the number of packets that node j plans to send

during the round (only one at first), and the number of hops hk,j from node k to j. This

process is inherently slow and breaks the synchronization of the nodes on Pi→j. Node

i replies with a Route Reply header containing the same information for i. Node i then

transmits enough packets to restore synchronization between the nodes on Pi→j (e.g.,

hi,j − 1). The normal bidirectional operation between i and j begins, and the nodes

exchange bursts of Ni and Nj packets, which depend on the packet rates of i and j and

their queue size2. As it is forwarding the last packet in the burst, relay k back-offs by

−tS(2hk,{i,j} − 1) s. Figure 8.3 illustrates this bidirectional synchronization process.

2Ni and Nj will be typically low in order to limit the packet delay.

189

(a)

(b)

Figure 8.4: (a) Synchronized nodes along two parallel paths: nodes {10, 11, 12, 30}
form one path, and {20, 21, 22, 30} another one. The dotted lines indicate that the nodes

can communicate with each other (and thus interfere). (b) Mitigation of the problem.

8.3 Path Synchronization With Multiple Sources

8.3.1 Synchronization Over Several Unidirectional Paths and Con-

flict Resolution

In some specific cases, the risk for packet collision still exists on synchronized paths.

This is particularly true when a routing tree is formed of two or more (nf) parallel

branches: nodes i hops away from the destination tend to wake up at the same time,

causing contention. This node configuration is illustrated by Figure 8.4(a).

190

The incidence of this problem depends on several factors such as the routing pro-

tocol (which may forward packets along parallel paths for robustness), the network

topology (nodes from the same region may report highly redundant information if no

packet fusion or aggregation strategy is employed) and the application (which may re-

quire high data rates from co-located sources).

Several techniques may be used to mitigate this phenomenon, including duty cycle

reduction (Section 8.3.2 and Chapter 9), packet rate reduction, etc. However, the node

schedule already offers a good solution to prevent collisions and to guarantee fairness

among information flows under a light load.

If two neighboring nodes are part of two different synchronized paths as Nodes

12 and 22 are in Figure 8.4(a), they will attempt to send packets at about the same

time. However, if node 12 can send its packet, it will wake up slightly after node

22. This is because node 12 will back off by tS from the moment it receives an ACK

frame, which happens after the time it takes to receive the data packet (tRx)—a few

tens of milliseconds. In effect, after successfully transmitting a packet, a node’s wake-

up schedule gets delayed by tRx, which separates it from other contenders and allows

other flows access to the common destination. This process is not dependent on the

number of flows converging to the same node, rather, tRx limits flow fairness as it

should be above ∼ ti · nf · 2αdrift. Figure 8.4(b) illustrates this with a time line: after

sending a packet, nodes 12 and 22 are separated by tRx s. They alternatively wake

up before the other one as they send packets, guaranteeing fairness between the two

branches of the routing tree.

However, when the data load increases beyond 1 packet every ti s, it can no longer

be accommodated, and multi-branch synchronization must be explicitly invoked.

8.3.2 Strategy

Let Figure 8.5 represent a three-hop network with two sources (marked by ∗) sending

packets to a common destination h = 3. First, we define several terms used throughout

in this section: a branch node refers to node k, as the location where several flows meet.

Nodes from a packet source to the branch node form a branch. The nodes placed after

the branch node are part of the root of the path.

The key idea to support the convergence of l flows to one node k consists in in-

191

Figure 8.5: A multi-hop network with two sources k − 10 and k − 11.

creasing the duty cycle of root nodes (≥ k). The ti value must be divided by l to

accommodate fair access to node k by all sources k − 1j
3.

Upon receiving a new unicast packet, node k checks the ID of the previous-hop and

adds it to a neighbor table if not present already. If a new source is detected, node k

modifies the received packet to include a MAC header containing the value l, the ID

k+1 of its next-hop, and the ID of the new previous-hop. The new ti value is calculated

as:

tnew
i = tnew

i,k = ti,k
l

l − 1

The packet is then broadcast to all immediate neighbors. Nodes k and k + 1 adopt

the new duty cycle after forwarding the packet to their next-hop neighbor.

In the case of two flows converging toward node k, the node designated as the

previous-hop in the broadcast packet header must delay its scheduled wake-up time by

tnew
i /2 s. This ensures that both nodes k − 1j will not attempt to transmit a packet at

the same time. For more than two flows, the broadcast packet need not specify who the

new source node is: upon attempting to send a packet and finding a busy network, a

node k − 1j will back-off by tnew
i /l s until all schedules are staggered.

3The notation k − 1j , where j ∈ N
+, j < l, designates the previous hop of node k on branch j.

192

8.4 Simulation and Implementation of Synchronization

Principles

8.4.1 Simulations

In this section, we explore the advantages and limits of node synchronization through

Matlab simulations. We use the same accurate Matlab model for time and energy con-

sumption as that of Section 7.5. Thus, the results provided by this section are those of

an implementation reconstruction, rather than those of a simulation. However, to distin-

guish between direct results from our implementation, we use the words reconstruction

or simulation.

In this section, ten nodes are randomly placed to form a multi-hop network. Unless

otherwise specified, a source node sends packets at a rate of 1/2 pkt.s−1.

8.4.1.1 Synchronization Principle

We simulated a scenario in which ti = 1.5 s, and the synchronization back-off tS is

50 ms. Notice that the tS value is about twice the reception time of a 50 B packet. The

duty cycle was chosen to be fairly low, since we expect that the improvements brought

by path synchronization will allow the ti value to increase.

Figure 8.6 shows that five nodes synchronize on the temporarily fixed path {1, 5, 4,

3, 10}. In the Figure, a triangular marker △ represents a probe, ◦ a packet to send, ∗ a

successful packet reception and × a failed one. After one packet, nodes 3 and 10 have

staggered probes, nodes 4, 3 and 10 after the second packet.

This scenario also illustrates the behavior of the nodes when synchrony is lost: in

the worst case scenario, it would take n packets to reconstruct a synchronized path.

However, complete loss of synchronization is highly unusual because whenever a node

fails to receive a packet from its neighbor, it simply wakes up ti seconds later, i.e., in

the same relative time position.

8.4.1.2 Packet Delay

Next, we investigate the packet delay after the nodes have been correctly synchronized.

We define packet delay as the time between the first attempt to send a packet and the

193

0 1 2 3 4 5 6 7
0

0.5

1
1 1 115 5 5554 4 443 3 3 3 310 10 10 10 10

Time (s)

N
o
d
e
 e

v
e
n
t

3 3 3 3 310 10 10 10 103 3 3 3 310 10 10 10 103 3 3 3 310 10 10 10 10

8 9 10 11 12 13 14
0

0.5

1
1 1 15 5 4

44 3 3310 10 10

Time (s)

N
o
d
e
 e

v
e
n
t

14 3 3 3310 10 10 103 3 3310 10 10 101 554 3 33 3310 10 1010 10

15 16 17 18 19 20 21 22
0

0.5

1

1 554
431010

Time (s)

N
o
d
e
 e

v
e
n
t 1 154 310 10104 3 310 10 1010

1 55 4 3 3 33310 10 10 1010

Random time separations

Synchronized nodes

Figure 8.6: On the path {1, 5, 4, 3, 10}, the nodes synchronize correctly after only a

few packets.

successful reception of this packet, noting however that the packet could have been

created at most ti s before the first transmission attempt. We consider that if a synchro-

nized path is incapable of transmitting the required packet rate (the node queue keeps

expanding), ti needs to be lowered in order to accommodate higher traffic. We offer a

solution to do so in Chapter 9.

8.4.1.2.1 Delay of Non-Urgent Packets Figure 8.7(a) shows the packet delay for

the node configuration of the previous section. Because of the initial time differences

between node schedules, the path was synchronized in only four packets. The packet

delay then hovers around 4.74 s, which is approximately equal to tS + 3(ti + tS) + tRx

(tRx is modeled by a random variable with a normal distribution).

The first packet is sent without any synchronization between the nodes and its delay

194

is 5.8 s, a value that depends on the initial random wake-up times. Synchronization cut

the packet delay by over 18%.

8.4.1.2.2 Packet Delay of Urgent Packets Figure 8.7(b) shows the packet delay of

non-urgent and urgent packets. The very first packet is sent without any synchroniza-

tion, and takes 9.7 s to be delivered. Once synchronized, the delay is reduced by 50%.

Packets 9 through 20 are marked as urgent: they are delivered almost immediately, with

a delay of around 220 ms, which corresponds to ntS + tRx when n = 4. The simulation

shows that the synchronization is not broken by urgent packets.

8.4.1.3 Bidirectionality

Although it is rarely expected in a WSN, bidirectionality may exist. We tested our

algorithm over the same five-hop, now bidirectional, path {1, 5, 4, 3, 10}. We had to

lower the ti value to 0.5 s in order to accommodate a larger load on the path. The larger

issue of ti control for int-LPL is addressed in Chapter 9, which offers a method inspired

by control theory to dynamically set the duty cycle. In this section, the packet delay

is defined as the time difference between the moment a packet is intended for delivery

and the time when it is successfully received. This definition, slightly different from

the other cases, allows results to reflect the time spent in the queue by a packet.

Figure 8.8 shows the delay for bidirectional packets sent by node 1 at a rate of

1/3 pkt.s−1 and node 10 at 1/5 pkt.s−1. The average packet delay comes at 3.6 s,

mostly because packets must be queued while a node is not allowed to use the path.

The very first unidirectional packet experiences a high delay (4 s), and the following

two must be queued while the bidirectional path is established. Note that the packet

transmission from node 1 to 10 occupies the channel for the same amount of time

as unidirectional packets (because the various nodes are synchronized). We can then

consider that, on average, packets spend 1.8 s in the queue for 1.8 s of travel from node

1 to 10.

This shows that our algorithm is capable of maintaining synchronization over a

bidirectional path, while keeping packet delay in check.

195

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Packet delay

D
e

la
y
 (

s
)

Packet number

(a)

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Packet number

D
e
la

y
 (

s
)

Packet delay (t
i
 = 1500ms)

(b)

Figure 8.7: (a) Packet delay on the same path as Figure 8.6. (b) Same configuration,

but packets 7 through 15 are marked as urgent.

8.4.1.4 Path Synchronization With Multiple Sources

We simulated the process of node synchronization along a path with multiple branches.

Two sources 00 and 01 sent their packets to the same destination 4 at a rate of 0.5 pkt.s−1

each. ti was set to 1.5 s, enough to accommodate only one source. Retransmission

mechanisms were put into place to replicate the likely design goals of a programmer:

if a node already has more than two packets in its queue, it does not wait for the next

196

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Packet number

D
e

la
y
 (

s
)

Packet delay (t
i
 = 500ms)

Node 1 → Node 10

Node 10 → Node 1

Figure 8.8: Delay on the same path as Figure 8.6 for bidirectional packets.

cycle to forward the packet in its queue.

The simulation starts with only one source 00. After 20 s, the second source is

turned on, forcing nodes on the root of the path to divide their ti value. The branch

synchronization process incurs delays until the destination 4 has doubled its duty cycle

(it only takes a few cycles).

Figure 8.9(a) shows the packet delay when branch synchronization is supported.

Figure 8.9(b) is the packet delay for the regular case.

In both cases, the initial synchronization process is slower because the source node

sends packet before they are received at the destination 4 and have helped stagger every

node’s schedule. This can be avoided by considering all packets as urgent (they would

be forwarded as soon as they are received).

Branch synchronization successfully delivers the combined data load of the sources

with small packet delay. Most packets have a delay around 3 s, but some packets see

their delay increased to ≈ 4.7 s. This is because some nodes on the path periodically

empty their queue and do not forward the received packet within the same ti. Urgent

packets would all have the same delay.

In the case of regular synchronization, delivery of packets from either source is

not necessarily denied, as was predicted by Section 8.3.1. Many packets reach the

destination, whether from node 00 or node 01. From Figure 8.9(b), we can see that

197

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

Packet number

D
e

la
y
 (

s
)

Packet delay (t
i
 = 1500ms)

Node 0
0
 → Node 4

Node 0
1
 → Node 4

(a)

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

Packet number

D
e

la
y
 (

s
)

Packet delay (t
i
 = 1500ms)

Node 0
0
 → Node 4

Node 0
1
 → Node 4

(b)

Figure 8.9: (a) Packet delay for with (a) branch synchronization (b) regular synchro-

nization.

nodes never completely empty their queue (the problem is particularly acute at node

1 whose queue kept increasing). Queuing causes many packets to be delayed, and

over 200 s of simulation, 126 packets can be delivered, against 186 for the branch

synchronization case. The increase in PDR is thus over 45%.

198

Table 8.1: Energy Consumption and Packet Delay.
MX-MAC WiseMAC

Sync Non-sync

Energy Delay Energy Delay Energy Delay

Parameter (J) (s) (J) (s) (J) (s)

h 1 1.59 0.065 12.73 0.76 2.53 0.13

2 1.50 1.63 9.76 2.91 2.57 0.87

(ti = 3 1.49 3.21 9.37 6.10 2.60 1.52

1.5 s) 4 1.54 4.91 9.00 10.63 2.61 2.28

5 1.45 6.34 8.80 13.54 2.61 5.15

ti 0.5 1.77 1.74 5.73 3.08 2.72 1.12

1 1.67 3.26 8.99 6.62 2.62 2.11

(h = 4) 1.5 1.54 4.91 9.00 10.63 2.61 2.28

2 1.31 6.26 9.10 13.98 2.59 2.92

8.4.1.5 Energy Consumption

In order to fairly evaluate the energy benefit of node synchronization (and not just of

LPL schemes), we compared the energy consumption of the proposed scheme with

that of nodes running MX-MAC where neighbors wake up randomly within the ti time

interval.

Table 8.1 gives the average energy consumption of nodes on a path for MX-MAC

and WiseMAC. Node 0 is furthest from node n = h, the destination. With our naming

convention, h is also the maximum number of hops on the path. Because the destination

node h is always receiving, its energy consumption is very low and depends only on the

ti value (as ti increases, node h still uses the same amount of energy to receive packets,

but it performs fewer channel probes). Thus, we excluded the energy consumption of

node h from the average.

Typically, the non-synchronized nodes consume on average six times as much en-

ergy as the synchronized case. The reason for this difference is given by the average

delay shown in the Table. When h = 1, the packet delay is about ti/2 ≈ 0.76 s when

the nodes are not synchronized, and tS + tRx ≈ 65 ms otherwise. This means that non-

synchronized nodes must spend much more time with their radio active and transmit-

ting than synchronized nodes. Consequently, the per-node average energy consumption

199

greatly increases, by a factor of about ti/2(tS+tRx).

When the number of hops h is fixed and equal to 4, an increase in ti reduces the

per-node average energy consumption. This is only true when nodes are synchronized:

if ti increases, non-synchronized nodes must spend more time transmitting (for ti/2 s

on average). On the other hand, synchronized nodes must send for approximately tS +

tRx s, whatever the duty cycle. However, as the duty cycle decreases, the nodes have

to spend less energy probing the medium, and thus synchronized nodes see their global

energy consumption reduced. The same is true of WiseMAC, which reduces energy

consumption for lower duty cycles.

Compared to WiseMAC, MX-MAC with synchronization consumes 30% less en-

ergy because it combines probes and transmissions, and because it uses hardware ac-

knowledgements, which allow shorter packet reception times. However, the delivery

delay of regular packets of MX-MAC is larger than for WiseMAC (it would be smaller

for urgent packets).

8.4.2 Implementation on Tmote Sky

We implemented the principles behind node synchronization in TinyOS for the Tmote

Sky platform. We present results from this implementation.

8.4.2.1 Methodology

Once the MX-MAC code was set onto the Tmotes, gathering results about packet delays

appeared to be an intractable issue. In order to visualize synchronization, we needed to

deploy a network of more than one hop. We chose to replicate the case of h = 4 (in

a linear topology), often used in our simulations. In order to demonstrate synchroniza-

tion, we opted to let Matlab—not the motes themselves—collect information about the

packets. This is because in very time-sensitive MX-MAC, time stamping operations

can be a delicate task for which CPU resources may not always be available on the

motes. This however meant that all motes had to be in range of one-another and of the

computer running Matlab, and had to be loaded with predefined neighbor graphs.

Yet, with this solution, motes that in a real deployment would not have to compete

for the channel could now hear each other, artificially degrading the performance of our

protocol. However, because of the nature of synchronized paths, packet collisions from

200

motes placed at different levels of the routing tree did not compete for the medium at

the same time, thus considerably alleviating this problem.

Our results are obtained from a mote receiving all packets transmitted over the

channel and forwarding them to Matlab. Consequently, we cannot display channel

probes since they are “silent” (the radio is in Rx mode only). We present results in spite

of these caveats.

Finally, we cannot show the energy consumption of our implementation. This is

because the Tmote sky can only measure its internal voltage through the ADC. This

value is typically noisy, and the battery voltage does not evolve as a linear function

of the energy remaining. Because the MX-MAC protocol is very energy efficient, the

voltage drop over a measurable period of time is well within the natural ADC noise,

with or without node synchronization.

8.4.2.2 Synchronization Principle

The goal of this section is to prove that node synchronization is practical and offers

results in actual platform implementations.

Figure 8.10 shows that the motes on the 4 hop path P0→1→2→3→4 successfully

synchronize after the predicted number of packets. They also send packets in about

4.5 s once they are synchronized, which is the delay predicted by the simulation model

(within 4%, probably because Matlab starts time-stamping packets only after the first

one has been received, and stops before the ACK frame is sent).

8.4.2.3 Urgent Packets

Next, we present the delay of urgent packets in Figure 8.11(a) and confirm the results

obtained through the reconstruction model. Packets 7 through 10 are marked as urgent,

and they see their delay hover between 766 ms and 172 ms, the actual value of the

delay being hard to measure because of the typically slow link between the mote and

the PC. It also shows that urgent packets do not break the path synchronization.

The fast delivery of urgent packets is obtained through the immediate repetition

of a received packet as shown in Figure 8.11(b). Small variations in the transmission

times at every mote are natural, but the differences observed here are mostly due to

the capture by Matlab, which does not receive ACK frames and can only deduce that a

201

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

D
e

la
y
 (

s
)

Packet Delay for 4 hops −−− Sync. Average Delay = 4.4818 s

Packet Number

Failed Packets

Figure 8.10: Packet delay over the same path of the implementation (failed packets do

not reach the eventual destination and are not counted in the average delay).

transmission has ended after another has started. This causes some bars in the graph to

be “glued” together.

8.4.2.4 Packet Pipelining

Finally, Figure 8.12 shows the medium activity when the source node 0 sends a packet

every 2ti. Thanks to node synchronization, packet transmissions can be staggered over

non-continuous wireless links. The packet rate can then climb to 1/2ti pkt.s−1, even

though the packet delay remains the same.

This set of results shows that node synchronization over a temporarily fixed path is

practical and works for the cases tested in simulation.

8.4.3 Combined Effects of MiX-MAC and Node Synchronization

Figure 8.13 shows the cumulative increases in node lifetime with MiX-MAC and syn-

chronization. The conditions of the simulation are the same as in 7.5.6.2, although the

results were averaged over fewer iterations. As in Figure 7.19, MiX-MAC achieves the

highest lifetime for most packet sizes, with and without node synchronization, although

synchronization greatly increases the lifetime of nodes running MiX-MAC (by up to

95%). When packets fail to be heard at the receiver, synchronization does not help in

202

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

Packet Number

D
e

la
y
 (

s
)

Packet Delay with 4 hops

Urgent Packets

(a)

75.5 75.6 75.7 75.8 75.9 76 76.1 76.2

0

0.5

1

1.5
Time Lines−−−Nodes With Higher Bars are Farther From Base Station

Time (s)

S
e

n
d

in
g

 T
im

e
s

Node 3→ 4

Node 2→ 3

Node 1→ 2

Node 0→ 1

(b)

Figure 8.11: (a) Delay of non-urgent and urgent packets over a synchronized path. (b)

Time line of transmissions of an urgent packet.

any way: the packet will have to be retransmitted, regardless of when the receiver woke

up—and missed— the packet. However, since MiX-MAC selects the protocol with the

highest delivery reliability for each packet size, packet failures are less common, and

synchronization can then play its full role of saving energy and reducing packet delay.

203

87 88 89 90 91 92 93 94

0

0.2

0.4

0.6

0.8

1

1.2

Time Lines−−−Nodes With Higher Bars are Farther From Base Station

Time (s)

A
c
ti
v
e

 T
im

e
s

Node 0 → 1

Node 3 → 4

Node 1 → 2

Node 2 → 3

Node 0 → 1

Node 2 → 3

Node 0 → 1

Node 1 → 2

Node 3 → 4

Node 2 → 3

Figure 8.12: Packet pipelining: node 0 sends a new packet every 2ti. Transmissions

end up being staggered.

8.4.4 Multi-Source Synchronization Implementation

We tested node synchronization for networks with multiple branches. Contrary to the

results presented above, this technique requires overhead.

Our test network consisted of four nodes, with two sources (00 and 01) sending to

node 1. The initial ti value was 1.5 s. The TinyOS code was successfully tested for

more sources, but since they are harder to read, these results are not shown here.

Figure 8.14 illustrates the process of path synchronization with two sources send-

ing data packets to a common destination every 20 s and 10 s. The Y-axis indicates

the ID of the transmitting node. During the first half-minute, the path is established

through a simple route discovery protocol and only one source is turned on. It takes

two packets to synchronize the first source, which can be observed by the narrowing

of the transmission bars. After 45 s, the second source turns on and sends its packet.

It is immediately followed by a broadcast packet (sent over the full duration of the ti

interval). Immediately after, we can see that the schedules are staggered. After 75 s,

node 00 sends a packet to node 1, immediately followed (ti/2 s later) by node 01. Node

1 then forwards both packets successively.

Figure 8.14(b) shows the packet delivery delay for both sources. Once the nodes

are synchronized, the packet delay hovers around 1 s—except for each sources’ fourth

packet, because 01 sends its data before 1 can forward the packet from 00. The first

204

10 20 30 40 50 60 70 80 90 100
100

120

140

160

180

200

220

240

260

280

300

Packet Size (B)

L
if
e
ti
m

e
 (

D
a
y
s
)

Unicast packets, t
i
=1s, m=0.05, n=0.05 − Combined effects of MiX−MAC and Synchronization

MX−MAC No Sync.

X−MAC No Sync.

MiX−MAC No Sync

MX−MAC Sync

X−MAC Sync

MiX−MAC Sync

Figure 8.13: Comparison of the lifetime of nodes running MiX-MAC with and without

node synchronization.

packets for both sources experience almost the same long delay (greater than 3 s),

although for different reasons: when source 00 sends its first packet, nodes are not

yet synchronized, and packet delivery is delayed by long transmission times. We see

this delay being reduced in the following packet because node 1 synchronizes with its

next-hop neighbor. The first packet of the second source, however, is delayed by the

transmission of the broadcast packet indicating a new ti value. Since synchronization

is already in place on the existing path, source 01 is synchronized with node 1 with

the first packet, which explains why the following packet (with ID 2) from node 01

experiences low delay.

8.5 Summary

We proposed and demonstrated a simple approach to synchronizing nodes on a temporarily-

fixed path for the sub-family of int-LPL protocols. Through analysis, we proved that

the path is automatically synchronized after n = h packets have been sent from node 0

(the farthest) to node n. In other words, the requirement to have a fixed path is a weak

one.

205

30 40 50 60 70 80 90 100 110

1

0_1

0_0

Time Lines (Larger Lines Equal Longer Transmissions)

Time (s)

Broadcast packet

Second source turns on

(a)

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

Packet Number

D
e

la
y
 (

s
)

Packet Delay with 2 Hops

Source 0
0

Source 0
1

(b)

Figure 8.14: (a) Successful path synchronization for two nodes sending data packets to

a common destination. The packet rates are 1/20 and 1/10 pkt.s−1. (b) The reduction in

packet delay.

Synchronization of transmit / receive schedules has several benefits: it drastically

reduces the packet delay, and it reduces the energy use at every node by a factor of

about ti/2tS , removing the limit standing in the way of lower duty cycles.

206

In addition, we proposed several strategies to increase the packet rate and further

reduce the packet delay. By pipelining packets over synchronized paths, we doubled

the packet rate. Our approach also allows urgent packets to be delivered almost imme-

diately, taking the delay from tS + (n − 1)(ti + tS) + tRx to ntS + tRx.

Although MiX-MAC and node synchronization may be implemented without the

benefit of the other, their combined impact on node lifetime and packet delivery delay

exceeds that of each protocol independently. This is because MiX-MAC may select the

most reliable MAC schedule, which in turns greatly facilitates node synchronization.

Finally, we proposed a synchronization technique for tree networks with several

branches, allowing each source to send a packet every ti s.

While this chapter focuses on adapting the wake-up schedule of nodes along a path,

we present a third way to adjust node behavior to conditions in the network by dynam-

ically controlling the duty cycle of nodes running a LPL MAC protocol.

Chapter 9

Duty Cycle Control for Dynamic

Adaptation of Low-Power-Listening

MAC Protocols

In previous chapters, we sought to adapt the MAC schedule of LPL MAC protocols

(Chapter 7) and the transmission / reception schedule of the nodes (Chapter 8). With

these techniques, we can reduce energy consumption and packet delay. However,

packet pipelining and branch synchronization techniques are not always enough to de-

liver all the packets in the network. In this chapter, we investigate how to control the

duty cycle to accommodate a varying (and sometimes high) traffic load on the network.

We begin the study of ti control by considering a one-hop link. As we saw in

Chapter 7, longer ti values favor receiving nodes, because longer ti values lower a

node’s duty cycle while the time spent in Receive mode remains the same. On the other

hand, nodes that are mostly sending can greatly reduce their energy consumption if the

ti value is low: they can stay in Sending mode for shorter periods of time. Consequently,

there is a trade-off between the nodes at the two ends of a unidirectional wireless link. In

addition, lower duty cycles often cause contention in areas of the network experiencing

higher rates of packet transmissions. As Figure 7.1 shows, only one data packet can

be transmitted per cycle, which can cause a node to miss the target rate m∗ of packet

transmissions. Alternatively, we could consider the delay it takes to transmit a packet

in place of the number of packets successfully sent. Our model lends itself well to this

207

208

substitution.

In [32], Jurdak et al. convincingly argue that a fixed ti value does not fit WSN

deployments where the node locations and traffic patterns are not uniform over the net-

work. Because a fixed ti value is decided a-priori, it would have to be set conservatively

to accommodate areas in the network where traffic is expected to be heavy, thus forcing

idle subregions to waste energy.

In this chapter, we borrow from control theory to propose a new approach to dynam-

ically adjust the duty cycle of the nodes based on a small set of parameters. We begin

with one-hop networks. The goal of our method is to minimize the energy consumed

by the node with the lowest remaining energy (or the node which the application deems

most important), referred to as node N , while exchanging a target number of packets.

If N is mostly sending, lowering ti (increasing the duty cycle) will have no adverse

effect on the target rate m∗ of successfully sent packets, and it will reduce the energy

dissipation for N , so there is no need for ti control. However, when N is mostly receiv-

ing, lowering the duty cycle (increasing ti), while reducing the energy dissipation for

N , will cause packets to be dropped. This is the conflict that we propose to arbitrate.

Our method can also be extended to control the energy consumed by both the sending

and receiving nodes on a wireless link. More generally, we provide a methodological

framework that can be applied to control other aspects of the network as well.

We generalize this method to multi-hop networks, starting with only one data source,

as is often the case when source selection is performed. We propose a path synchro-

nization scheme that, among other many benefits, reestablishes linearity in the system.

We then lift the last restriction to have only one source through the study of ti control

for multi-hop networks with several sources. To successfully control the duty-cycle, a

new path synchronization technique is introduced.

9.1 Estimation and Control for Multi-variable Systems

Because low duty cycle schemes tend to create contention and delays, a node wishing

to send m∗ packets may not be able to do so in a timely manner. Let us consider a one-

hop network with various flows among neighbors. Node A wants to send m∗ packets

to node B in a certain time period T , where node B is designated as node N , a critical

209

y(t) (output)
Controller

r(t) (reference) +

−

u(t) (command) Plant

(Network)

x(t) (state)

Figure 9.1: Representation of the system with input / output and its controller.

node for the application, or one with very low remaining energy. Unfortunately, the

medium is sometimes occupied by other transmissions. If node A only gets to send

m < m∗ packets, it may elect to increase its duty cycle. When the duty cycle is larger

than its optimal value, node N wastes precious energy, and may wish to scale back its

duty cycle (ti increased). The control of the duty cycle to send m∗ packets is the subject

of the first part of this section. We use ti(t) to designate the time-varying nature of ti.

9.1.1 Background

We provide mathematical background common to all our work throughout this chapter.

Although its adaptation to different networks changes, the theoretical foundation is the

same from one-hop to more complex networks.

9.1.1.1 Generalities

We start by assuming that the system we wish to represent and control is mostly linear.

For instance, the relationship between energy consumption and ti is linear, as energy

consumption grows linearly with the number of probes done per second. Likewise, the

number of packets received is mostly linearly related to energy consumption.

Figure 9.1 illustrates the system at hand. The network is represented by a “plant”

that reacts to an input u(t) by producing an output y(t), which it tries to match to a

reference r(t). A controller modifies u(t) so as to obtain the desired output y∗(t) =

r(t). In order to do so, the process under control can be defined by its state x(t). A

deterministic noisy linear process can be represented in its discrete form as follows [79]:

x(t + 1) = Ax(t) + Bu(t) + Cw(t) + w(t + 1) (9.1)

where x(t + 1) designates the value of the system state at time (k + 1)T and w is the

noise. T represents the period between re-evaluations of the control u(t).

210

For controlling ti(t), we can set y(t) to m(t) (the number of packets that are suc-

cessfully sent at time t) and u(t) to the ti(t) value at time t. The objective value y∗(t+1)

becomes m∗(t + 1), the desired number of packets to be transmitted at time t + 1.

Because the fundamental characteristics of the system (A, B and C) and its state

x(t) cannot be a-priori known, the system’s output must be estimated using an internal

parameter θ and a history of p values of {x(t)} (or {y(t)}) and {u(t)} values stored in

φ.

9.1.2 The Adaptive Regulator

In this first part of our work, we would like to control ti to send the target number of

packets m∗. We introduce a SISO (single variable) estimator and controller.

9.1.2.1 Stochastic SISO Estimator and Controller

We begin with the formulation of our goal, i.e. the minimization of the expected error

between the desired output at time t + 1, y∗(t + 1) and the actual output at time t + 1,

y(t + 1), which is mathematically represented by the following:

J = E[(y(t + 1) − y∗(t + 1))2] (9.2)

This control problem is referred to as linear-quadratic: the system dynamics are lin-

ear (Equation 9.1), but the cost function to be minimized (Equation 9.2) is quadratic.

Because the system response contains a random component (the exact wake-up timing

between two neighbors), we study a system estimator and controller for the stochastic

case.

First, and as suggested in [79], we introduce the following notation for time delay:

x(t − 1) = q−1x(t)

We can write the system as:

y(t) = ay(t − 1) + bu(t − 1) + cw(t − 1) + w(t) (9.3)

⇔ (1 − aq−1)y(t) = bq−1u(t) + (1 + cq−1)w(t) (9.4)

From [79], Equation 9.3 can be put in the form:

C(q−1)y0(t + 1|t) = α(q−1)y(t) + β(q−1)u(t) (9.5)

211

where

C(q−1) = 1 − aq−1 + q−1g0 = 1 + (g0 − a)q−1

α(q−1) = g0

β(q−1) = b

and y0 represents the next value taken by y and g0 is a constant.

The control law is thus shown to be:

u(t) =
y∗(t + 1) + (g0 − a)y∗(t) − g0y(t)

b 6= 0

Let g0 − a = c,

u(t) =
y∗(t + 1) + cy∗(t) − (a + c)y(t)

b
(9.6)

which is the minimum variance control, also the control law used in [33]. It follows

easily that Equation 9.6 minimizes the mean-square error function J .

Next, we define the φ and θ vectors as:

φ(t)T θ(t) = ŷ(t + 1)

where ŷ(t+1) is the estimated system output at time t+1. As a starting point, we chose

to keep only the previous values of the input and output, or p = 1. From Equation 9.6,

we use the two vectors:

φ(t) =

y(t)

u(t)

y∗(t)

θ(t) =

a + c

b

−c

The estimator can be computed using the Normalized Least-Mean-Square Algorithm

(NLMS) [79] [80]:

θ(t + 1) = θ(t) +
µ(t)φ(t)

φ(t)T φ(t) + ω
[y(t + 1) − φ(t)T θ(t)] (9.7)

where µ(t) is a scalar, and ω should be chosen to avoid a division by zero when

φ(t)T φ(t) is null. With our notations, φ(t) is thus the values of the output y(t) = m(t),

the command u(t) = ti(t) and the target y∗(t) = m∗(t). The tuple {a, b, c} is estimated

using Equation 9.7.

New ti values are computed periodically. During each round (of duration T),

the number of packets successfully transmitted since the last ti update (i.e., m(t)) is

recorded.

212

9.1.2.2 Application to Our Estimator

The system control can be approached by estimating the system first, and using the

system model to find the input value that minimizes the predicted output.

Preliminary results show that, while the estimator is able to correctly predict the

system output, the control law tends to decrease the value of ti(t) when m < m∗. This

behavior is in fact to be expected as the system should decrease its duty cycle to increase

the number of packet transmissions. Unfortunately, since J carries no consideration for

energy use, ti never increases, even after the number of packets to be sent has reached

the target (m = m∗). The reason is that the error between m̂ and m∗ is zero, which does

not modify the value of the controlled input u(t) = ti(t). Figure 9.2(a) illustrates this

problem. At t = 500 s, the packet rate increases to one packet per second, causing ti to

decrease due to packet losses. However, a few seconds later, the packet rate decreases

to its original value of 0.5 packet per second, yet ti does not increase again.

Figure 9.2(b) shows the packet loss in this scenario, where the number of dropped

packets is reduced by over 94% by the duty cycle controller. However, since the duty

cycle is much higher than required after the adaptation when the traffic rate is reduced,

the energy consumed by the controlled scheme is larger than the uncontrolled one.

Consideration must be given to the energy consumed ǫ, which is an incentive to lower

the duty cycle. We note ǫ∗(t + 1) as a target energy consumption at t + 1.

In this now multi-variable case, we decided to estimate both the number of packets

sent and the consumed energy separately. For m and ǫ, the φ and θ vectors are:

φm
k =

[

mk . . . mk−p tik . . . tik−p m∗
k . . . m∗

k−p

]T

θm
k =

[

am
0 . . . am

p−1 bm
0 . . . bm

p−1 cm
0 . . . cm

p−1

]T

φǫ
k =

[

ǫk . . . ǫk−p tik . . . tik−p m∗
k . . . m∗

k−p

]T

θǫ
k =

[

aǫ
0 . . . aǫ

p−1 bǫ
0 . . . bǫ

p−1 cǫ
0 . . . cǫ

p−1

]T

where a, b, c ∈ R are the estimator coefficients. We chose p ' 3, a value that allows

the estimate for ǫ and m to be accurate, while being still manageable in limited memory

space.

213

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t
i
 over Time − Node 1

t i (
s
)

Time (s)

No Control

With Controller

Failed Packet(s)

Packet Rate

(a)

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

Number of Failed Packet Deliveries | 114 (no Control) vs. 7 (Controller) − Node 1

N
u
m

b
e
r

o
f
F

a
ile

d
 P

a
c
k
e
ts

No Control

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

N
u
m

b
e
r

o
f
F

a
ile

d
 P

a
c
k
e
ts

Time (s)

With Controller

(b)

Figure 9.2: (a) Evolution of ti(t) as the packet rate increases and then decreases when

only packet loss is considered. (b) Packet loss in the same scenario.

9.1.2.3 Cost Minimization

As per Section 9.1.2.2, the controller should minimize a cost function with a packet

loss and an energy component. We tried to combine the two costs in various ways,

including taking the maximum, the sum, and the weighted sum of the costs. The latter

214

offered the swiftest and most stable response from the network. Thus, the controller

attempts to minimize the following cost function J :

J = (m∗+ − m̂k+1)
2 + Kǫ(ǫ

∗+ − ǫ̂k+1)
2 (9.8)

where

{

m̂k+1 = φmT
k θm

k

ǫ̂k+1 = φǫT
k θǫ

k

, m∗+ and ǫ∗+ designate the target values of m and ǫ at time

(k +1)T . Kǫ is a weight given to the energy component of the cost function in order to

indicate a preference to save energy (large Kǫ) or to strictly meet the number of packets

to be sent (small Kǫ); for instance, Kǫ can be chosen in [2; 20]. The control law finds

the value of ti that minimizes J .

Taking the derivative of J at time kT (we omit the k index notation for clarity), we

obtain Equation 9.6 for our application:

ti =
θm

p (m∗+ − ∑u
i6=p φm

i θm
i) + Kǫθ

ǫ
p(ǫ

∗+ − ∑v
i6=p φǫ

iθ
ǫ
i)

(θm
p)2 + Kǫ(θǫ

p)
2

where the i-index value on φi and θi are the ith value of these vectors, and u and v are

the number of elements in φm
k and φǫ

k (u = 2p and v = 3p).

In order to smooth the response of the system, we adopt a conservative update policy

ū for the duty cycle with the following set of rules:

{

t̄ik+1 = t̄ik + α(ti − t̄ik)

ūk+1 = f∆
δ [t̄ik+1]

(9.9)

where t̄i is the smoothed ti and

f∆
δ [x] =

δ if x < δ

∆ if x > ∆

x otherwise

δ and ∆ are the minimum and maximum values that ti can ever take, and can be set to

0.1 s and 5 s as reasonable values.

α ∈ R is the slope of the update of ti and helps stabilize the system response,

which would otherwise be unstable because of steep variations of the reference r(t)

(the desired number of packets for instance) and delays in the feedback. A large α (i.e.,

close to 1) aggressively updates ti and incurs oscillations before reaching a determined

215

value. On the other hand, if α is close to 0, no oscillations can be discerned but ti is

slow to reach its eventual value. Poor choices of α may cause energy waste or packet

loss. The command used to control the duty cycle is in fact ū as a smoothed output is

critical to a physical network.

9.1.3 Evaluating the Target Energy

9.1.3.1 The Evaluation of ǫ and ǫ∗

In some cases, the system designer may want to minimize the consumed energy and

choose ǫ∗ = 0. The risk incurred by this approach is that the duty cycle will tend to be

lowered, even below a reasonable value—one that strikes a balance between the number

of lost packets and energy consumption. This could be desirable when designing a

system that needs to respond faster to lower energy consumption, and that can tolerate

repeated packet losses.

In other systems, an acceptable energy consumption value has to be evaluated so

that ti(t) does not consistently increase past a reasonable value. This target energy has

critical importance as the system will have a tendency to stabilize around the value of ti

that yields this energy consumption, provided all packets are correctly sent. The control

problem thus becomes a linear quadratic tracking (“LQ tracking”) problem where the

output of the network must match the energy (and packet delivery) reference.

We chose to evaluate the target energy as the sum of several basic operations (chan-

nel probe, packet reception, etc.) for which we precisely measured the energy con-

sumption via a data acquisition board on the Tmote Sky platform. We evaluate the

target energy as the minimal energy that can be expended during a round of T seconds:

ǫ∗ = max(0, m∗E[ERx] + EPD(tT − m∗E[tRx])) (9.10)

where E[ERx] is the expected energy spent to receive a packet, EPD is the energy

consumed by the radio for one second of power down mode, and tT is the duration of a

feedback round T . The target energy ǫ∗ assumes that each packet is sent every ti s, and

that no energy is wasted on probing a clear channel. It contains no information about

other transmissions in the neighborhood as packet loss is taken into account in the first

element of J .

216

9.1.3.2 An Alternative Solution to Evaluating the Consumed Energy

Because it may be impractical to evaluate the energy consumption components ǫ and ǫ∗,

an alternative solution consists in increasing the command periodically if all the packets

have been successfully sent and received. Once the maximum ti value to correctly send

m∗ packets is reached, the ti may no longer be increased. This reduces the complexity

of the system to only one component m.

The relative simplicity of this method is offset by the slower nature of the response

to increase ti when the data load diminishes. In our work, we prefer evaluating the

energy, but we show in our later results that such a method gives satisfactory results.

9.1.4 Algorithm for ti Control

We implemented the previous theoretical foundations in Matlab; Algorithm 4 presents

the pseudo-code of the controller used to command the network. The initialization of

the algorithm variables includes assigning a starting value to the φ and θ vectors. φ can

take the initial values of m∗, ti and ǫ∗, while θ is initialized with values between −1

and 1. For instance, an increase in ti translates into a decrease in m and ǫ of node N ,

and thus the corresponding weights in θ are negative.

In our implementation, we chose an initial α = 0.01 and then adjust α to be 0.2 after

three iterations of the controller to prevent large oscillations during the first rounds of

the estimators. Our network consists of 10 nodes, all in range of one another (the

medium can be occupied by only one node at a time). We evaluate the new command

ū every T = 5

packetRate
seconds: for instance, if a node sends packets at a rate of 2

packets per second, the controller will run every 2.5 seconds. The feedback period T
can be increased to reduce overhead, although a large value could cause the network

adaptation to be sluggish—or worse, instable.

9.1.5 Preliminary Guidelines for an Implementation

For an implementation on real platforms, nodes need to periodically exchange infor-

mation about their remaining energy and the new ti values. Nodes should inform their

neighbors (using broadcast packets for instance) of their remaining energy in order to

determine the link node N whose energy should be spared. After ti(k + 1) has been

217

Variable initialization:

φm =
[

m∗ 0 0 ti 0 0 m∗ 0 0
]T

φǫ =
[

ǫ∗ 0 0 ti 0 0 m∗ 0 0
]T

θm =
[

0.95 0.1 0.1 −0.5 −0.1 −0.1 0.3 0.1 0.1
]

5: θǫ =
[

0.95 0.1 0.1 − 0.5 − 0.1 − 0.1 0.3 0.1 0.1
]

for ever do

m∗ = f(packetRate, T)

ǫ∗ = f(radio, m∗)

θm+=µm

rm φm(m − φmT θm)

10: θǫ+=µǫ

rǫ φ
ǫ(ǫ − φǫT θǫ)

u =
θm
p (m∗+−

Pu
i6=p φm

i θm
i)+θǫ

p(ǫ∗+−
Pv

i6=p φǫ
iθ

ǫ
i)

(θm
p)2+(θǫ

p)2

ū = f 5
0.1[ū + α(u − ū)]

φm =
−→
φm +

[

m ū m∗
]

φǫ =
−→
φǫ +

[

ǫ ū m∗
]

15: Where −→. is a matrix shift operator

rm+=φmT φm

rǫ+=φǫTφǫ

end for

algorithm 4: Control pseudo-code for p = 3.

calculated, node A (the sending node) should communicate this new ti value to node

N using ti(k) and by piggy-backing the new value onto packets. For the family of LPL

MAC protocols, bigger packets incur no overhead as the radio remains in sending mode

for the same period of time (ti s) regardless of the packet length. Both nodes can then

start using the new calculated duty cycle. Node A estimates the energy consumed by

node N to receive its packet without requiring N to report it. The reasons to proceed in

this way are threefold: we were able to closely measure and model the energy required

to receive packets—it has a Gaussian distribution with an average that is a function

of packet size. Moreover, node N would also have to evaluate the energy consumed

because N may be running other processes (packet processing, sensing activity, packet

aggregation) that draw energy but are not relevant to the link A—N . A third reason,

although very hardware dependent, is that platforms like the Tmote Sky can only mea-

218

(a) (b)

(c)

Figure 9.3: (a) Nodes are in range of one another. (b) A receiver has several descen-

dants. (c) A sender has several destinations (rare case).

sure their battery voltage, which can be mapped to remaining energy but does not yield

a sufficient precision when energy consumption is small. Errors made to evaluate the

energy consumption are modeled in the noise component of the system.

We can also quantize the values taken by ti in order to limit the duty cycle updates

on individual links: node A would modify the ti value only if the change is greater than

a quantization step.

In WSNs, the directions of packets is usually fixed over a small period of time

(e.g., ∼ 10T) and centripetal: packets tend to travel from peripheral nodes toward

the base station. Thus, most packets travel from node A to node B, with occasional

(generally broadcast) packets going in the opposite direction. If nodes A and B are

possible choices for node N , node A can elect to minimize the consumed energy at

both nodes. Our method works equally well by estimating the energy consumption at

both A and B, although the ti value tends to be noisier.

If a node is the receiving end of multiple links, as illustrated by Figure 9.3(b), it

should adopt the smallest ti value tiL calculated by its descendants in order to receive

all packets successfully. The amounts of energy wasted on the links using a lower duty

cycle are negligible because the sending nodes will stop their packet transmissions after

219

half tiL s on average—protocols like X-MAC and MX-MAC can interrupt their sending

streams after receiving an ACK frame.

Finally, if a node has multiple unicast destinations, (see Figure 9.3(c)), a rare case

in WSNs, which tend to have only one data sink, node A calculates the appropriate ti

values for each link and sends them to the intended receivers individually. Support for

multi-hop networks is introduced in Section 9.2.

9.2 ti Control For Multi-Hop Networks

The previous section validates the principle behind ti control for one-hop networks. In

this section, we expand this work to single-branch multi-hop networks: only one data

source sends packets to one data sink several hops away.

In this part of the work, the source (node 0) intends to send m∗ packets to the

destination (node n). Each packet travels along the same slowly changing path (i.e.,

constant for a long period of time, corresponding to our simulation time for instance)

over h = n hops. Each node keeps a queue of a maximum of 100 packets.

9.2.1 Challenges Introduced By Multi-Hop Control

The introduction of several hops along a source-destination path complicates key as-

pects of ti control: the delay between the beginning of a transmission at the source

and its reception at the destination greatly increases. This delay is exacerbated by the

nature of LPL MAC protocols because they rely on duty cycling. One consequence

for ti control is that instability increases, although it can be compensated by a smaller

updating slope α of the command u(t)—we lower it to 0.1 or less.

Most importantly, the larger number of hops on the path induces non-linearities in

the system. Before a packet can be transmitted, a node must wait for the packet’s next-

hop to wake-up. At every link along the path, the packet is held for a varying amount of

time (although on average equal to ti/2 s). Since the duty cycle is usually reevaluated

every 5 to 10 packets, the packet delay (and its corollary, the number of transmitted

packets m) show wide variations from one feedback to the next, with little correlation

to the ti value.

220

In addition to this problem, two approaches to control the duty cycle can be consid-

ered: a per-link strategy and a per-path strategy. The former strategy offered the appeal

of simply replicating the work done in Section 9.1 for every link along the path, and we

tried it first. Investigative work rapidly showed that this approach could not be success-

ful because queueing would happen at one point in the path, deceiving other nodes into

increasing their ti because they correctly transmit m∗ packets. In general, this solution

offered many untractable problems such as keeping a set of two values of ti at every

node (one for the node itself, one for its next-hop so that the first one could send to the

second), coordinating together to avoid queuing, etc.

Instead, the simple observation was made that since only one packet may be trans-

mitted by a node k every ti s, the nodes farther along the path (> k) would witness the

same packet rate. Conversely, nodes placed before k would need to send at the same

rate as k in order to maintain a constant queue at k. Therefore, we opted for a common

duty cycle among all the nodes of a path, avoiding queuing whenever possible.

9.2.2 Node Synchronization Along a Path

While per-path ti control eased many of the challenges we faced, non-linearities re-

mained the main obstacle to multi-hop duty cycle control. We solved this problem

through node synchronization along a path.

We used the property of certain LPL MAC protocols that have the unique ability

to synchronize without explicit notification (i.e., without overhead) along a slowly-

changing one-branch path. The synchronization process was presented in Chapter 8. A

node following the schedule of either one of the LPL-Int protocols learns of its next-hop

neighbor k + 1’s wake-up time at the end of every unicast transmission, that is, when it

receives an acknowledgement frame. It follows that a node k can decide to back-off by

a small tS time so that it may wake-up right before k +1 during the next cycle. Done at

every node along a path of h hops, nodes are automatically synchronized after the hth

packet has been successfully received.

Among other features, path synchronization allows urgent packets to be received

and forwarded immediately (within the same ti period) without loss of synchrony.

Broadcast packets do not break node synchronization either.

More importantly, this technique reintroduces linearity in the system since nodes’

221

wake-up times are separated by a constant amount of time tS s. Packet delays are equal

to tRx + tS + (h− 1)(ti + tS) for regular packets, and htS + tRx for urgent ones, where

tRx is the time to receive a packet, approximately 14 ms on average for our packet size.

9.2.3 Impact on the Energy Component of J

Because the wake-up schedules of nodes are staggered, the time to transmit a packet

is predictable and almost constant (tS + tRx), whatever the duration of ti. In addition,

since there is only one data source per path, each relay node must receive and send the

same number of packets. Therefore, the expected energy consumption is the same at

every relay node along the path since both the energies to send and receive a packet are

equal at every hop. This reinforces the decision to utilize path-long duty-cycles.

In the case of only one data source on the network, saving the energy of one particu-

lar node on a multi-hop path no longer applies since all relays are expected to consume

the same energy. Consequently, to lower the energy consumption of every relay node,

the number of probes must be lowered such that a node may only wake-up to send or

receive a packet. The data source or the data sink are notable exceptions, since the

originator of the data does not receive packets. The data sink, which does not send

packets, is generally a node with larger resources and is less likely to request its energy

be spared. Unless specified otherwise, we discuss the more general results of the relay

nodes, although similar techniques can be applied for the nodes at the extremities of the

path, as is done in Section 9.1.

Along synchronized paths, the energy consumption is thus the lowest when ti is

the highest but still allows the target number of packets m∗ to be received. Hence, the

controller arbitrates the trade-off between lower energy consumption and the objective

to send m∗ packets.

9.2.4 Practical Considerations

The control of the duty cycle requires information now located more than one-hop

away. In this section, we discuss possible practical solutions for implementing multi-

hop duty cycle control.

222

9.2.4.1 Target Number of Packets

In all cases, we set packets to the same high priority. This meant that for path synchro-

nization, they were all treated as urgent, and could thus be delivered within the same ti

period (htS + tRx s later). In this section, we discuss where to close the feedback loop,

i.e., which node should be the ti controller.

9.2.4.1.1 Calculation at Node 0 The target number of packets m∗ now depends on

the packet rate of the data source, located at the beginning of a multi-hop path. To

calculate the new ti value every feedback period T , a node must know m∗, as well as

the actual number of packets m received by the destination n. Because all nodes are

sharing the same ti value and because they are synchronized along the path, the number

of packets sent by node 0 is equal to m, provided none of the packets are dropped for

unforseen reasons (a bad radio state, localized noise spike, etc.).

Once calculated at node 0, the new ti value can then be piggy-backed onto a data

packet. As it is propagated along the path, a relay node adopts the new ti value after

the packet has been forwarded to its next-hop child node to ensure proper delivery of

the packet.

9.2.4.1.2 Calculation at Node n − 1 The previous technique does not guarantee

proper delivery of m∗ packets at the destination if some of the links along the path are

faulty. Because node n − 1 receives an ACK frame every time the destination receives

a packet, it can easily calculate m. For this reason, the next-to-last node can be chosen

to perform ti control.

In this case, node 0 must inform its parent nodes of its intended data rate only once

until the next change. It may do so by piggy-backing a byte to a unicast packet, which

will be read by all the relay nodes on the path. The new ti value must be broadcast and

flooded onto the path.

This method may be preferred by programmers who suspect that nodes may fail

and that detection of such failures will be slow. However, there is an inherent trade-off

between packet overhead to spread the new ti value and delivery reliability.

223

9.2.5 Simulation Results

We used Matlab to simulate these different strategies for a four-hop network with only

one source. The control of the duty cycle was strikingly similar, whether ti was cal-

culated at node 0 or node n − 1. However, our simulation did not model unforseen

congestion at nodes > 1 (caused by other transmissions in the vicinity of a node for

instance), thus allowing the controller at node 0 to perform equally well.

Since we later present results that were obtained when node n − 1 does ti control

(Section 9.3), this section will focus on results using node 0 as the ti controller to show

the similarity of the techniques.

We first present results that were obtained through the direct evaluation of the con-

sumed energy. Figure 9.4(a) shows the evolution of the duty cycle of the nodes when

the packet rate of the source changes over time. When the packet rate of source node 0

doubles after 400 s, it fails to send m∗ packets per T period. The controller is success-

ful in bringing the duty cycle to a value that allows the target number of packets to be

reached. When the packet rate returns to 0.5 pkt.s−1, the duty cycle decreases again.

Because we opted for a small update rate α = 0.1, ti increases slowly.

Figure 9.4(b) shows that ti control reduces the number of packets failing to be de-

livered. With the controller, the number of dropped packets is cut by a factor of four.

The number of packets transmitted by node 0 to node 1 are delivered to the destination

within the same cycle. For the non-controlled case however, packets must be queued

between 400 s and 1, 250 s. While queued packets can be eventually sent to the desti-

nation after the packet rate decreases, stale information is of little use to the application.

This improvement in packet delivery is obtained by a relative increase in energy

consumption of 10% at relay nodes after 2, 000 s, although the eventual energy con-

sumption at the relay node can be eased when the duty cycle returns to a low value.

The second set of results is presented for the case when the energy consumption

is not evaluated, and the command u(t) is automatically increased by 0.1 s when 5 T
have passed without packet loss.

Figure 9.5(a) shows the correct reduction of ti to accommodate sending more pack-

ets. When the network is favorable to a ti increase, the response is more sluggish than

in the regular case. However, this translates in fewer dropped packets (reduced by a

factor of 9 in Figure 9.5(b)), but in a higher energy consumption of 14% over the non-

224

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t
i
 over Time − Node 0

t i (
s
)

Time (s)

No Control

With Controller

Failed Packet(s)

Packet Rate

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

Number of Failed Packet Deliveries | 170 (no Control) vs. 38 (Controller) − Node 0

N
u

m
b

e
r

o
f

F
a

ile
d

 P
a

c
k
e

ts

No Control

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

N
u

m
b

e
r

o
f

F
a

ile
d

 P
a

c
k
e

ts

Time (s)

With Controller

(b)

Figure 9.4: Comparison of (a) the evolution of ti and (b) the dropped packets for the

controlled and non-controlled cases when the energy is evaluated.

controlled network.

These results illustrate the trade-off existing between the two techniques for utiliz-

ing energy information, described in Section 9.1.3.2: the speed of the response trans-

lates into different energy consumption and packet delivery ratios. The decision to

225

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t
i
 over Time − Node 0

t i (
s
)

Time (s)

No Control

With Controller

Failed Packet(s)

Packet Rate

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

Number of Failed Packet Deliveries | 170 (no Control) vs. 18 (Controller) − Node 0

N
u

m
b

e
r

o
f

F
a

ile
d

 P
a

c
k
e

ts

No Control

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

N
u

m
b

e
r

o
f

F
a

ile
d

 P
a

c
k
e

ts

Time (s)

With Controller

(b)

Figure 9.5: Comparison of (a) the evolution of ti and (b) the dropped packets for

the controlled and non-controlled cases when the energy is not evaluated as per Sec-

tion 9.1.3.2.

implement one technique or the other depends on the application needs and constraints.

226

9.3 ti Control for Multi-Hop Networks With Multiple

Sources

While adaptation of our scheme to multi-hop networks has greatly expanded the ap-

plications of ti control, the limitation imposed by only one data source limits its use

to networks performing source selection—target tracking or building monitoring net-

works are instances of these networks.

In this section, we modify our ti control strategy to support multi-hop networks

with multiple data sources.

9.3.1 ti Control For Synchronized Paths With Multiple Sources

The greatest challenge posed by the use of multiple sources does not directly fall onto

the theory behind ti control, but rather concerns how path synchronization can be main-

tained when several sources are converging at one node.

The key idea to support the convergence of l flows to one node k is to use the path

synchronization for multiple sources presented in Section 8.3. While ti control does not

need path synchronization for multiple branches per se, the synchronization technique

allows per-flow fairness and avoids wasting energy on the branches. Occasional denial

of service, as observed in Figure 8.9(b) would push the duty cycle beyond the real needs

of the network. Compared to that approach, path synchronization results in energy

savings for the branches of the network since their ti value can be double that of the

root (for two sources).

Since the node controlling the duty cycle must learn about the target number of

packets m∗, it should be placed after the branch node. Thus, node n − 1 is a good

candidate to be the controller for a path with multiple branches. Upon starting and

stopping its flow of packets, a source must notify the controller of the number of packets

it needs to transmit every second. This value is piggy-backed onto the unicast data

packet and is read by the controller. After the new ti value has been computed, it is

broadcast and flooded onto the path.

227

9.3.2 Simulation Results

The tested network consists of two sources sending packets over a three-hop path with

initial ti of 1.25 s. The controller is the node placed before the destination, and this is

compared to the case when the duty cycle is fixed. However, both schemes benefit from

path synchronization to guarantee fairness in the comparison.

Figure 9.6(a) shows the evolution of the duty cycle for the controlled and non-

controlled networks. During the initial phase of the simulation, the network experiences

difficulties delivering all its packets, and thus decreases ti. After 400 s, the second

source is turned on, and the total packet rate is tripled. The branch synchronization

process activates, which can be visualized by a division of ti by two. The duty cycle

of the network without ti control is still halved because of the synchronization process

taking place after a second source has been detected. The response from the controller

is to correctly raise the duty cycle to accommodate the new load. During this time,

the controller is a little too eager to increase the ti value, and occasionally exceeds a

safe value (around 500 ms) that allows delivery of m∗ packets. At 1, 250 s, the second

source is turned back off, and the duty cycle is reduced to save energy.

The controlled network was able to drop fewer packets by a factor of six compared

to the non-controlled network: Figure 9.6(b) shows that packets are mostly lost after

the second source is turned on. Immediately following its activation (after 400 s), a loss

of three, then two packets pushes the ti value lower.

Figure 9.6(c) shows the extra energy consumed at node 2 when the duty cycle is

increased. The controller’s decisions to reduce ti raises energy consumption by 3%.

There is a clear trade-off between improvement in quality of service (through the in-

crease in immediate delivery of packets) and energy consumption. However, it can

be argued that although the energy expanded in the case of the non-controlled scheme

is lower (because of a lower duty cycle and because contention forces nodes to sleep

longer), it is done in vain since many of the packets fail to be delivered.

9.4 Summary

Low-Power-Listening MAC protocols show great promise to increase WSN lifetime

by reducing idle listening. However, such MAC protocols were typically reserved for

228

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t
i
 over Time − Node 2

t i (
s
)

Time (s)

No Control

With Controller

Failed Packet(s)

Packet Rate

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

Number of Packets Send Failed in Evaluations | 178 (no Control) vs. 28 (Controller) − Node 2

N
u

m
b

e
r

o
f

F
a

ile
d

 P
a

c
k
e

ts

No Control

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

N
u

m
b

e
r

o
f

F
a

ile
d

 P
a

c
k
e

ts

Time (s)

With Controller

(b)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
Total Energy Consumed vs Time − Node 5

E
n

e
rg

y
 (

J
)

Time (min)

3.01% →

No Control

With Controller

(c)

Figure 9.6: Comparison of (a) the evolution of ti, (b) the dropped packets and (c)

the energy consumed for the controlled and non-controlled cases for two sources in a

multi-hop network.

networks with low packet rates so as to allow low duty cycles (and greater energy

savings).

In this chapter, we introduce a control theory method that jointly optimizes the

energy consumed at vulnerable nodes, and the number of packets to be transmitted

over one-hop networks. This results in energy savings on the order of 20%, or in a

drastic reduction of dropped packets.

We generalized these results to multi-hop networks with multiple sources. The key

229

to successful ti control was a path synchronization technique that allowed linearity to

be maintained in the system. In our experiment, we saw a reduction of dropped packets

by a factor of six when the offered load increases. The higher duty cycle caused only a

limited increase in energy consumption.

This work showed that ti control allows networks to respond to sudden bursts of

packets as caused by the occurrence of an event, making LPL MAC protocols fit for

a greater number of WSN applications. ti control allows network designers to choose

a very low duty cycle, thus saving considerable amounts of energy when the network

load is low, while accommodating higher loads whenever needed. The increase in de-

livered packets typically comes at a temporary higher premium on energy consumption,

although energy savings mean little if the network is unable to serve the application.

More importantly, the proposed ti control method, which does not require knowl-

edge of a system’s physical model, can also be applied to the control of many other

parameters in a network.

This method of controlling ti may be compared to the TCP / IP congestion control

technique. Other estimators may also be considered for our work: we could replace the

NLMS algorithm by the Newton’s method of gradient descent.

This chapter ends our investigation of some of the possibilities for LPL MAC proto-

col adaptation and optimization offered by X-Lisa and the Middleware Interpreter. We

conclude this thesis in the next chapter.

Chapter 10

Conclusions and Future Directions

This thesis suggests ways to adapt sensor networks to conditions in the network and to

application requirements by exploiting and organizing cross-layer interactions. To this

end, we propose a new cross-layer information sharing architecture with a Middleware

Interpreter as well as ways in which protocols at various levels in the stack can be

adapted to exploit this network and application information.

10.1 Summary of Contributions

This dissertation compiles the work that has been completed toward adaptability in

wireless sensor networks and includes the following:

• A case study that suggests that the majority of the gain from cross-layer designs

stems from information exchange among the layers;

• Based on this observation, we proposed the X-Lisa architecture, which standard-

izes cross-layer information exchange to facilitate flexibility while providing op-

portunity for protocol adaptation;

• We introduced the Middleware Interpreter, which channels information between

middleware and the protocol stack and allows proactive query notification;

• The application provides important additional information to protocols. Our re-

search showed how middleware helps tune cross-layer “knobs” to improve the

quality of service provided to the end user;

230

231

• We showed how the availability of information provided by X-Lisa allows MAC

protocols to adapt their schedules to information about the packet and the net-

work, thereby improving their performance;

• Such protocols can also adapt their wake-up schedule and duty-cycle to lower en-

ergy consumption and delivery delay, and increase packet delivery ratio in chang-

ing network conditions.

10.2 Future Directions

Future research will keep the objective of adapting the sensor nodes’ behavior to local

conditions in the network and application needs at all time. Consequently, we plan to

investigate further how control theory results may be applied to other aspects in the

network such as flow fairness and load balancing.

We plan to refine X-Lisa by standardizing the information exchange between adja-

cent layers. Right now, even with X-Lisa, programmers may choose to design complex

cross-layer interactions between two neighboring layers. However, this may hinder

software development and maintenance. A fixed interface should instead be provided

between layers that allows receiving and sending packets, as well as requesting buffers

and path information.

We will work to make the Middleware Interpreter even more expressive by allowing

to define logical connectors between subqueries to form a composite query. Currently,

all subqueries must have fired in order to trigger a composite query (logical “AND”);

we will investigate how to specify different logical functions such as OR, XOR, etc.

We would like to propose a new way of analyzing protocols in terms of energy

consumption and delay. It follows that we can define an application cost that may be

modulated as a function of delay and energy consumption objectives, which optimizes

for both metrics concurrently. As conditions in the network change and application

requirements evolve, the routing protocol may thus be able to favor routes that are more

energy efficient or that induce smaller packet delivery delays. The decision to select one

path over another one can originate from information channeled by the Middleware

Interpreter.

We also plan to introduce results from neural network theory: as applications for

232

sensor networks are becoming more involved, sensor nodes will be asked to recognize

very complex and noisy patterns. Multi-layer neural networks offer guidelines to train

networks to identify very fuzzy patterns. Another type of neural network will allow

formation of self-organizing groups in a sensor network, leading to, among other appli-

cations, in-network sensor troubleshooting and even live social networking.

Bibliography

[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System archi-

tecture directions for network sensors,” in Proceedings of the Ninth International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2000.

[2] University of California, Berkeley. TinyOS: http://www.tinyos.net.

[3] D. White, E. Arseneau, and C. Cifuentes, “Squawk: A

Java VM for wireless sensor and actuator networks.”

http://developers.sun.com/learning/javaoneonline/2006/coolstuff/TS-1598.pdf?,

2006. Sun Microsystems Inc.

[4] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gru-

enwald, A. Torgerson, and R. Han, “MANTIS OS: An embedded multithreaded

operating system for wireless micro sensor platforms,” in ACM/Kluwer Mobile

Networks and Applications (MONET), Special Issue on Wireless Sensor Net-

works, guest co-editors P. Ramanathan, R. Govindan and K. Sivalingam, vol. 10,

pp. 563–579, Aug. 2005.

[5] P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage

modes in aluminum foam and polymer foam sandwich structures,” in Journal of

Sandwich Structures and Materials, vol. 8, Sept. 2006.

[6] M. Perillo and W. Heinzelman, “DAPR: A protocol for wireless sensor networks

utilizing an application-based routing cost,” in Proceedings of the IEEE Wireless

Communications and Networking Conference (WCNC’04), 2004.

233

234

[7] A. G. Ruzzelli, G. M. P. O’Hare, M. J. O’Grady, and R. Tynan, “MERLIN: A syn-

ergetic integration of MAC and routing protocol for distributed sensor networks,”

in Proceedings of the Communications Society Conference on Sensor and Ad Hoc

Communications and Networks (SECON’06), Sept. 2006.

[8] I. Rhee and J. Lee, “Energy-efficient route-aware MAC protocols for diffusion-

based sensor networks,” in NCSU Technical Report 2004-4-13, CSC, NCSU,

2005.

[9] F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang, “PEAS: A robust energy conserv-

ing protocol for long-lived sensor networks,” in Proceedings of the Twenty-Third

International Conference on Distributed Computing Systems (ICDCS), 2003.

[10] C. Gui and P. Mohapatra, “Power conservation and quality of surveillance in tar-

get tracking sensor networks,” in Proceedings of the 10th Annual International

Conference on Mobile Computing and Networking (ACM MobiCom), Oct. 2004.

[11] F. Ye, G. Z. abd S. Lu, and L. Zhang, “A robust data delivery protocol for large

scale sensor networks,” in Proceedings of the Second International Symposium on

Information Processing in Sensor Networks (IPSN), 2003.

[12] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guaranteed de-

livery in ad-hoc wireless networks,” in Proceedings 3rd ACM International Work-

shop on Discrete Algorithms and Methods for Mobile Computing and Communi-

cations DIAL M99, pp. 48–55, Aug. 1999.

[13] B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for wireless net-

works,” in Proceedings of the Sixth Annual International Conference on Mobile

Computing and Networking (MobiCom’00), 2000.

[14] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance vector routing,”

in Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and

Applications, pp. 90–100, Feb. 1999.

[15] K. Langendoen, “Medium access control in wireless sensor networks,” in Medium

Access Control in Wireless Networks, Volume II: Practice and Standards, Nova

Science Publishers, 2007.

235

[16] A. El-Hoiydi, “Aloha with preamble sampling for sporadic traffic in ad hoc wire-

less sensor networks,” in Proceedings of the IEEE International Conference on

Communications (ICC’02), Apr. 2002.

[17] A. El-Hoiydi and J. Decotignie, “WiseMAC: An ultra low power MAC proto-

col for multi-hop wireless sensor networks,” in Proceedings of the First Inter-

national Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGO-

SENSORS), July 2004.

[18] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wire-

less sensor networks,” in Proceedings of the 2nd ACM Conference on Embedded

Networked Sensor Systems (SenSys’04), pp. 95–107, Nov. 2004.

[19] Y. Wei, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol for wire-

less sensor networks,” in Proceedings of the Twenty-First International Annual

Joint Conference of the IEEE Computer and Communications Societies (INFO-

COM’02), June 2002.

[20] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac protocol for

wireless sensor networks,” in Proceedings of the First ACM Conference on Em-

bedded Networked Sensor Systems (SenSys’03), Oct. 2003.

[21] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a short preamble

MAC protocol for duty-cycled wireless sensor networks,” in Proceedings of the

4th Embedded Networked Sensor Systems (SenSys’06), pp. 307–320, Nov. 2006.

[22] K.-J. Wong and D. Arvind, “SpeckMAC: Low-power decentralised MAC proto-

col low data rate transmissions in Specknets,” in Proceedings 2nd IEEE Interna-

tional Workshop on Multi-hop Ad Hoc Networks: from Theory to Reality (REAL-

MAN’06), May 2006.

[23] S. Liu, K.-W. Fan, and P. Sinha, “CMAC: An energy efficient MAC layer protocol

using convergent packet forwarding for wireless sensor networks,” in Proceedings

of the Communications Society Conference on Sensor and Ad Hoc Communica-

tions and Networks (SECON’07), June 2007.

236

[24] G. Lu, B. Krishnamachari, and C. Raghavendra, “An adaptive energy-efficient

and low-latency MAC for data gathering in sensor networks,” in Proceedings of

the Fourth International Workshop on Algorithms for Wireless, Mobile, Ad Hoc

and Sensor Networks (WMAN), 2004.

[25] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling in wireless

sensor networks,” in Proceedings of the Seventh ACM International Symposium

on Mobile Ad Hoc Networking and Computing (MobiHoc’06), May 2006.

[26] V. Srivastava and M. Motani, “Cross-layer design: A survey and the road ahead,”

in IEEE Communications Magazine, vol. 43, pp. 112–119, Dec. 2005.

[27] V. Kawadia and P. Kumar, “A cautionary perspective on cross-layer design,” in

Proceedings Wireless Communications, Feb. 2005.

[28] L. V. Hoesel, T. Nieberg, J. Wu, and P. J. M. Havinga, “Prolonging the lifetime of

wireless sensor networks by cross-layer interaction,” in IEEE Wireless Communi-

cations, pp. 78–86, Dec. 2004.

[29] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross-layer rate con-

trol in wireless networks,” in Proceedings of 24th International Annual Joint Con-

ference of the IEEE Computer and Communications Societies (INFOCOM’05),

Mar. 2005.

[30] B. Kim, Y. Fang, and T. Wong, “Rate-adaptive MAC protocol in high-rate per-

sonal area networks,” in Proceedings IEEE Wireless Communication and Net-

working Conference (WCNC), Mar. 2004.

[31] H. Pham and S. Jha, “An adaptive mobility-aware MAC protocol for sensor net-

works (MS-MAC),” in Proceedings 1st Conference on Mobile Ad-hoc and Sensor

Systems (MASS’04), Oct. 2004.

[32] R. Jurdak, P. Baldi, and C. V. Lopes, “Adaptive low power listening for wireless

sensor networks,” in IEEE Transactions on Mobile Computing, vol. 6, Aug. 2007.

[33] C. M. Vigorito, D. Ganesan, and A. G. Barto, “Adaptive control of duty cycling in

energy-harvesting wireless sensor networks,” in Proceedings of The Fourth IEEE

237

Communications Society Conference on Sensor and Ad Hoc Communications and

Networks (SECON’07), June 2007.

[34] H. K. Le, D. Henriksson, and T. Abdelzaher, “A control theory approach to

throughput optimization in multi-channel collection sensor networks,” in Pro-

ceedings of the Sixth International Symposium on Information Processing in Sen-

sor Networks (IPSN’07), Apr. 2007.

[35] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: A neighborhood ab-

straction for sensor networks,” in Proceedings of ACM International Conference

on Mobile Systems, Applications, and Services (MobiSYS’04), June 2004.

[36] Q. Wang and M. A. Abu-Rgheff, “Cross-layer signalling for next-generation wire-

less systems,” in Proceedings of the IEEE Wireless Communications and Network-

ing Conference (WCNC’03), vol. 2, pp. 1084–1089, Mar. 2003.

[37] M. Conti, G. Maselli, G. Turi, and S. Giordano, “Cross-layering in mobile ad hoc

network design,” in IEEE Computer, pp. 48–51, Feb. 2004.

[38] C. M. Sadler, L. Kant, and W. Chen, “Cross-layer self-healing mechanisms in

wireless networks,” in Proceedings 6th World Wireless Congress (WWC’05), May

2005.

[39] R. Winter, J. H. Schiller, N. Nikaein, and C. Bonnet, “Crosstalk: Cross-layer de-

cision support based on global knowledge,” in IEEE Communications Magazine,

Jan. 2006.

[40] C. T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler, S. Shenker, and

I. Stoica, “A modular network layer for sensornets,” in Proceedings 7th Sympo-

sium on Operating Systems Design and Implementation (OSDI’06), Nov. 2006.

[41] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica, “A uni-

fying link abstraction for wireless sensor networks,” in Proceedings Proceedings

of the 3rd Embedded Networked Sensor Systems (SenSys’05), Nov. 2005.

[42] A. Dunkels, F. Osterlind, and Z. He, “An adaptive communication architecture

for wireless sensor networks,” in Proceedings 1st ACM Conference on Embedded

Networked Sensor Systems (SenSys’07), Nov. 2007.

238

[43] I. F. Akyildiz, M. C. Vuran, and Ö. B. Akan, “A cross-layer protocol for wireless

sensor networks,” in Proceedings of the Conference on Information Science and

Systems (CISS’06), (Princeton, NJ), pp. 22–24, Mar. 2006.

[44] K. Römer, “Time synchronization in ad hoc networks,” in Proceedings of the Sec-

ond ACM International Symposium on Mobile Ad Hoc Networking and Comput-

ing (MobiHoc), 2001.

[45] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization

using reference broadcasts,” in Proceedings of the Fifth Symposium on Operating

Systems Design and Implementation (OSDI), 2002.

[46] M. Sichitiu and V. Ramadurai, “Localization of wireless sensor networks with

a mobile beacon,” in Proceedings 1st IEEE International Conference on Mobile

Ad-Hoc and Sensor Systems (MASS’04), Oct. 2004.

[47] E. Ould-Ahmed-Vall, D. Blough, B. Heck, and G. Riley, “Distributed unique

global id assignment for sensor networks,” in Proceedings 2nd IEEE International

Conference on Mobile Adhoc and Sensor Systems Conference (MASS’05, Nov.

2005.

[48] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and J. Stankovic, “An

entity maintenance and connection service for sensor networks,” in Proceedings

The First International Conference on Mobile Systems, Applications, and Services

(MobiSys’03), May 2003.

[49] V. Lenders, M. May, and B. Plattner, “Towards a new communication paradigm

for mobile ad hoc networks,” in Proceedings 2nd IEEE International Conference

on Mobile Ad-Hoc and Sensor Systems (MASS MHWMN’05 Workshop, Oct. 2005.

[50] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet indirection

infrastructure,” in Proceedings SIGCOMM’02, 2002.

[51] K. Römer, O. Kasten, and F. Mattern, “Middleware challenges for wireless sensor

networks,” in ACM SIGMOBILE Mobile Computing and Communications Re-

view, vol. 6, 2002.

239

[52] M.-M. Wang, J.-N. Cao, J. Li, and S. K. Das, “Middleware for wireless sensor

networks: A survey,” in Journal of Computer Science and Technology, vol. 23,

pp. 305–326, May 2008.

[53] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, “Middleware to support

sensor network applications,” in IEEE Network, vol. 18, pp. 6–14, Jan. 2004.

[54] S. Li, Y. Lin, S. H. Son, J. A. Stankovic, and Y. Wei, “Event detection services

using data service middleware in distributed sensor networks,” in Proceedings of

the 2nd International Conference on Information Processing in Sensor Networks,

pp. 502–517, Apr. 2003.

[55] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. D. Kim, B. Zhou, and E. G. Sirer, “On

the need for system-level support for ad hoc and sensor networks,” in Operating

Systems Review, vol. 36, 2002.

[56] Q. Han and N. Venkatasubramanian, “AutoSeC: An integrated middleware frame-

work for dynamic service brokering,” in IEEE Distributed Systems Online, vol. 2,

2001.

[57] T. Liu and M. Martonosi, “Impala: A middleware system for managing auto-

nomic, parallel sensor systems,” in Proceedings of the 9th ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming (PPoPP’03), pp. 107–

118, June 2003.

[58] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Issues in designing middleware

for wireless sensor networks,” in IEEE Network Magazine, vol. 18, Jan. 2004.

[59] R. Cornea, S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian,

“Managing cross-layer constraints for interactive mobile multimedia,” in Proceed-

ings of the IEEE Workshop on Constraint-Aware Embedded Software, 2003.

[60] “Network simulator ns-2.28 and ns 2-1b.” http://www.isi.edu/nsnam/ns/.

[61] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-specific

protocol architecture for wireless microsensor networks,” IEEE Transactions on

Wireless Communications, vol. 1, pp. 660–670, Oct. 2002.

240

[62] B. Hamdaoui and P. Ramanathan, “Lifetime-throughput tradeoff for elastic traf-

fic in multi-hop hotspot networks,” in Proceedings 47th Annual IEEE Global

Telecommunications Conference (Globecom’04), Dec. 2004.

[63] W. Su and T. Lim, “Cross-layer design and optimization for wireless sensor net-

works,” in 7th ACIS International Conference on Soft. Engr., Artificial Intelli-

gence, Networking, and Parallel/Distributed Computing (SNPD’06), pp. 278–

284, June 2006.

[64] C. J. Merlin and W. B. Heinzelman, “Cross-layer gains for sensor net-

works,” in Proceedings Conference on Distributed Computing in Sensor Systems

(DCOSS’06) Poster Session, June 2006.

[65] H. Zimmermann, “OSI reference model—the ISO model of architecture for open

systems interconnection,” in IEEE Transactions on Communications, vol. 28,

pp. 425–432, Apr. 1980.

[66] A. Belenki, Product Director, Luxoft Labs, “Overcoming challenges of TinyOS

use in commercial ZigBee applications,” in TinyOS Technology Exchange III, Feb.

2006.

[67] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, “Geographic

routing without location information,” in Proceedings of the Ninth Annual Inter-

national Conference on Mobile Computing and Networking (MobiCom’03), 2003.

[68] MoteIV Tmote sky. http://www.moteiv.com/tmote.

[69] C. J. Merlin and W. B. Heinzelman, “Sensor network middleware for managing

a cross-layer architecture,” in Proceedings DCOSS’06 - EAWMS Workshop, June

2006.

[70] Philip Lewis et al., “Ad-hoc routing component architecture.”

http://www.tinyos.net/tinyos-1.x/doc/ad-hoc.pdf, 2003.

[71] T. Stathopoulos, L. Girod, J. Heidemann, and D. Estrin, “Mote herding for tiered

wireless sensor networks,” in CENS Tech. Rep. #58, Dec. 2005.

241

[72] B. Otal and L. Alonso, “A cross-layer energy-saving mechanism for an enhance-

ment of 802.11 WLAN systems,” in Proceedings of Vehicular Technology Con-

ference (VTC’04), May 2004.

[73] K. Arisha, M. Youssef, and M. Younis, “Energy-aware TDMA based MAC for

sensor networks,” in IEEE Workshop on Integrated Management of Power Aware

Communications Computing and Networking (IMPACCT’02), 2002.

[74] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a tiny aggregation

service for ad-hoc sensor networks,” in Proceedings of the ACM Symposium on

Operating System Design and Implementation (OSDI’02), 2002.

[75] E. Souto, G. Guimaräes, G. Vasconcelos, M. Vieira, N. Rosa, and C. Ferraz,

“A message-oriented middleware for sensor networks,” in Proceedings of the

2nd Workshop on Middleware for Pervasive and Ad-hoc Computing (MPAC’04),

pp. 127–134, Oct. 2004.

[76] O. Yang, C. J. Merlin, and W. B. Heinzelman, “A general cost function to reflect

sensor support for application requirements,” in Proceedings of the 4th Conference

on Distributed Computing in Sensor Systems (DCOSS’07 Poster Session), June

2007.

[77] X. Shi and G. Stromberg, “SyncWUF: An ultra low-power mac protocol for wire-

less sensor networks,” in IEEE Transactions on Mobile Computing, vol. 6, pp. 115

– 125, Jan. 2007.

[78] S. Mahlknecht and M. Böck, “CSMA-MPS: A minimum preamble sampling mac

protocol for low power wireless sensor networks,” in Proceedings of the IEEE

International Workshop on Factory Communication Systems, Sept. 2004.

[79] G. C. Goodwin and K. S. Sin in Adaptive Filtering Prediction and Control,

Prentice-Hall, 1984.

[80] P. Kumar and P. Varaiya in Stochastic Systems: Estimation, Identification, and

Adaptive Control, Prentice-Hall, 1986.

