Probability Review

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

September 28, 2016
Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation
Markov’s inequality

- RV X with $\mathbb{E}[|X|] < \infty$, constant $a > 0$

- Markov’s inequality states $\Rightarrow P(|X| \geq a) \leq \frac{\mathbb{E}(|X|)}{a}$

Proof.

- $\mathbb{I}\{|X| \geq a\} = 1$ when $|X| \geq a$ and 0 else. Then (figure to the right)

 $$a\mathbb{I}\{|X| \geq a\} \leq |X|$$

- Use linearity of expected value

 $$a\mathbb{E}(\mathbb{I}\{|X| \geq a\}) \leq \mathbb{E}(|X|)$$

- Indicator function’s expectation = Probability of indicated event

 $$aP(|X| \geq a) \leq \mathbb{E}(|X|)$$
Chebyshev’s inequality

- RV X with $\mathbb{E}(X) = \mu$ and $\mathbb{E}[(X - \mu)^2] = \sigma^2$, constant $k > 0$
- Chebyshev’s inequality states $\Rightarrow P(|X - \mu| \geq k) \leq \frac{\sigma^2}{k^2}$

Proof.
- Markov’s inequality for the RV $Z = (X - \mu)^2$ and constant $a = k^2$

$$P((X - \mu)^2 \geq k^2) = P(|Z| \geq k^2) \leq \frac{\mathbb{E}[|Z|]}{k^2} = \frac{\mathbb{E}[(X - \mu)^2]}{k^2}$$

- Notice that $(X - \mu)^2 \geq k^2$ if and only if $|X - \mu| \geq k$ thus

$$P(|X - \mu| \geq k) \leq \frac{\mathbb{E}[(X - \mu)^2]}{k^2}$$

- Chebyshev’s inequality follows from definition of variance
If absolute expected value is finite, i.e., $E[|X|] < \infty$

\Rightarrow Complementary (c)cdf decreases at least like x^{-1} (Markov’s)

If mean $E(X)$ and variance $E[(X - \mu)^2]$ are finite

\Rightarrow Ccdf decreases at least like x^{-2} (Chebyshev’s)

Most cdfs decrease exponentially (e.g. e^{-x^2} for normal)

\Rightarrow Power law bounds $\propto x^{-\alpha}$ are loose but still useful

Markov’s inequality often derived for nonnegative RV $X \geq 0$

\Rightarrow Can drop the absolute value to obtain $P(X \geq a) \leq \frac{E(X)}{a}$

\Rightarrow General bound $P(X \geq a) \leq \frac{E(X^r)}{a^r}$ holds for $r > 0$
Convergence of random variables

Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation
Sequence of RVs $X_N = X_1, X_2, \ldots, X_n, \ldots$

\Rightarrow Distinguish between random process X_N and realizations x_N

Q1) Say something about X_n for n large? \Rightarrow Not clear, X_n is a RV

Q2) Say something about x_n for n large? \Rightarrow Certainly, look at $\lim_{n \to \infty} x_n$

Q3) Say something about $P(X_n \in \mathcal{X})$ for n large? \Rightarrow Yes, $\lim_{n \to \infty} P(X_n \in \mathcal{X})$

Translate what we now about regular limits to definitions for RVs

Can start from convergence of sequences: $\lim_{n \to \infty} x_n$

\Rightarrow Sure and almost sure convergence

Or from convergence of probabilities: $\lim_{n \to \infty} P(X_n)$

\Rightarrow Convergence in probability, in mean square and distribution
Convergence of sequences and sure convergence

- Denote sequence of numbers \(x_N = x_1, x_2, \ldots, x_n, \ldots \)

- **Def:** Sequence \(x_N \) converges to the value \(x \) if given any \(\epsilon > 0 \)
 \[\Rightarrow \text{There exists } n_0 \text{ such that for all } n > n_0, \ |x_n - x| < \epsilon \]

- Sequence \(x_n \) comes arbitrarily close to its limit \(\Rightarrow |x_n - x| < \epsilon \)
 \[\Rightarrow \text{And stays close to its limit for all } n > n_0 \]

- Random process (sequence of RVs) \(X_N = X_1, X_2, \ldots, X_n, \ldots \)
 \[\Rightarrow \text{Realizations of } X_N \text{ are sequences } x_N \]

- **Def:** We say \(X_N \) converges surely to RV \(X \) if
 \[\Rightarrow \lim_{n \to \infty} x_n = x \text{ for all realizations } x_N \text{ of } X_N \]

- Said differently, \(\lim_{n \to \infty} X_n(s) = X(s) \) for all \(s \in S \)

- **Not really adequate.** Even a (practically unimportant) outcome that happens with vanishingly small probability prevents sure convergence
Almost sure convergence

- RV X and random process $X_N = X_1, X_2, \ldots, X_n, \ldots$
- Def: We say X_N converges almost surely to RV X if

$$P \left(\lim_{n \to \infty} X_n = X \right) = 1$$

\Rightarrow Almost all sequences converge, except for a set of measure 0

- Almost sure convergence denoted as $\Rightarrow \lim_{n \to \infty} X_n = X \text{ a.s.}$

\Rightarrow Limit X is a random variable

Example

- $X_0 \sim \mathcal{N}(0, 1)$ (normal, mean 0, variance 1)
- Z_n sequence of Bernoulli RVs, parameter p
- Define $\Rightarrow X_n = X_0 - \frac{Z_n}{n}$

$\frac{Z_n}{n} \to 0$ so $\lim_{n \to \infty} X_n = X_0$ a.s. (also surely)
Consider $S = [0, 1]$ and let $P(\cdot)$ be the uniform probability distribution

$$P([a, b]) = b - a \text{ for } 0 \leq a \leq b \leq 1$$

Define the RVs $X_n(s) = s + s^n$ and $X(s) = s$

For all $s \in [0, 1)$ \Rightarrow $s^n \to 0$ as $n \to \infty$, hence $X_n(s) \to s = X(s)$

For $s = 1$ \Rightarrow $X_n(1) = 2$ for all n, while $X(1) = 1$

Convergence only occurs on the set $[0, 1)$, and $P([0, 1)) = 1$

\Rightarrow We say $\lim_{n \to \infty} X_n = X$ a.s.

\Rightarrow Once more, note the limit X is a random variable
Convergence in probability

- **Def:** We say X_N converges in probability to RV X if for any $\epsilon > 0$

\[
\lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1
\]

⇒ Prob. of distance $|X_n - X|$ becoming smaller than ϵ tends to 1

- Statement is about probabilities, not about realizations (sequences)
 ⇒ Probability converges, realizations x_N may or may not converge
 ⇒ Limit and prob. interchanged with respect to a.s. convergence

Theorem

Almost sure (a.s.) convergence implies convergence in probability

Proof.

- If $\lim_{n \to \infty} X_n = X$ then for any $\epsilon > 0$ there is n_0 such that

\[
|X_n - X| < \epsilon \text{ for all } n \geq n_0
\]

- True for all almost all sequences so $P(|X_n - X| < \epsilon) \to 1$
Convergence in probability example

- $X_0 \sim \mathcal{N}(0, 1)$ (normal, mean 0, variance 1)
- Z_n sequence of Bernoulli RVs, parameter $1/n$
- Define $\implies X_n = X_0 - Z_n$
- X_n converges in probability to X_0 because

\[
P(|X_n - X_0| < \epsilon) = P(|Z_n| < \epsilon) = 1 - P(Z_n = 1) = 1 - \frac{1}{n} \to 1
\]

- Plot of path x_n up to $n = 10^2$, $n = 10^3$, $n = 10^4$
 $\implies Z_n = 1$ becomes ever rarer but still happens
Difference between a.s. and in probability

- Almost sure convergence implies that almost all sequences converge
- Convergence in probability does not imply convergence of sequences
- Latter example: \(X_n = X_0 - Z_n, Z_n \) is Bernoulli with parameter \(1/n \)
 \[\Rightarrow \text{Showed it converges in probability} \]
 \[P(\left|X_n - X_0\right| < \epsilon) = 1 - \frac{1}{n} \to 1 \]
 \[\Rightarrow \text{But for almost all sequences, } \lim_{n \to \infty} x_n \text{ does not exist} \]
- Almost sure convergence \(\Rightarrow \) disturbances stop happening
- Convergence in prob. \(\Rightarrow \) disturbances happen with vanishing freq.
- Difference not irrelevant
 - Interpret \(Z_n \) as rate of change in savings
 - With a.s. convergence risk is eliminated
 - With convergence in prob. risk decreases but does not disappear
Mean-square convergence

Def: We say X_n converges in mean square to RV X if

$$\lim_{n \to \infty} \mathbb{E} \left[|X_n - X|^2 \right] = 0$$

⇒ Sometimes (very) easy to check

Theorem

Convergence in mean square implies convergence in probability

Proof.

From Markov’s inequality

$$P \left(|X_n - X| \geq \epsilon \right) = P \left(|X_n - X|^2 \geq \epsilon^2 \right) \leq \frac{\mathbb{E} \left[|X_n - X|^2 \right]}{\epsilon^2}$$

If $X_n \to X$ in mean-square sense, $\mathbb{E} \left[|X_n - X|^2 \right]/\epsilon^2 \to 0$ for all ϵ

Almost sure and mean square ⇒ neither one implies the other
Consider a random process X_n. Cdf of X_n is $F_n(x)$

Def: We say X_n converges in distribution to RV X with cdf $F_X(x)$ if

$$\lim_{n \to \infty} F_n(x) = F_X(x)$$

for all x at which $F_X(x)$ is continuous

No claim about individual sequences, just the cdf of X_n

⇒ **Weakest** form of convergence covered

Implied by almost sure, in probability, and mean square convergence

Example

- $Y_n \sim \mathcal{N}(0, 1)$
- Z_n Bernoulli with parameter p
- Define $X_n = Y_n - 10Z_n/n$
- $\frac{Z_n}{n} \to 0$ so $\lim_{n \to \infty} F_n(x) \sim \mathcal{N}(0, 1)$
Convergence in distribution (continued)

- Individual sequences x_n do not converge in any sense
 \Rightarrow It is the distribution that converges

- As the effect of Z_n/n vanishes pdf of X_n converges to pdf of Y_n
 \Rightarrow Standard normal $\mathcal{N}(0,1)$
Implications

- Sure \Rightarrow almost sure \Rightarrow in probability \Rightarrow in distribution
- Mean square \Rightarrow in probability \Rightarrow in distribution
- In probability \Rightarrow in distribution
Limit theorems

Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation
Independent identically distributed (i.i.d.) RVs $X_1, X_2, \ldots, X_n, \ldots$

Mean $\mathbb{E}[X_n] = \mu$ and variance $\mathbb{E}[(X_n - \mu)^2] = \sigma^2$ for all n

Q: What happens with sum $S_N := \sum_{n=1}^{N} X_n$ as N grows?

Expected value of sum is $\mathbb{E}[S_N] = N\mu \Rightarrow$ Diverges if $\mu \neq 0$

Variance is $\mathbb{E}[(S_N - N\mu)^2] = N\sigma^2 \Rightarrow$ Diverges if $\sigma \neq 0$ (always true unless X_n is a constant, boring)

One interesting normalization $\Rightarrow \bar{X}_N := (1/N) \sum_{n=1}^{N} X_n$

Now $\mathbb{E}[\bar{X}_N] = \mu$ and $\text{var}[\bar{X}_N] = \sigma^2/N \Rightarrow$ Law of large numbers (weak and strong)

Another interesting normalization $\Rightarrow Z_N := \frac{\sum_{n=1}^{N} X_n - N\mu}{\sigma\sqrt{N}}$

Now $\mathbb{E}[Z_N] = 0$ and $\text{var}[Z_N] = 1$ for all values of $N \Rightarrow$ Central limit theorem
Law of large numbers

- Sequence of i.i.d. RVs $X_1, X_2, \ldots, X_n, \ldots$ with mean μ
- Define sample average $\bar{X}_N := (1/N) \sum_{n=1}^{N} X_n$

Theorem (Weak law of large numbers)

Sample average \bar{X}_N of i.i.d. sequence converges in prob. to $\mu = \mathbb{E}[X_n]$

$$\lim_{N \to \infty} P \left(|\bar{X}_N - \mu| < \epsilon \right) = 1, \quad \text{for all } \epsilon > 0$$

Theorem (Strong law of large numbers)

Sample average \bar{X}_N of i.i.d. sequence converges a.s. to $\mu = \mathbb{E}[X_n]$

$$P \left(\lim_{N \to \infty} \bar{X}_N = \mu \right) = 1$$

- **Strong law implies weak law.** Can forget weak law if so wished
Proof of weak law of large numbers

▸ **Weak** law of large numbers is very simple to prove

Proof.

▸ Variance of \bar{X}_N vanishes for N large

$$\text{var} [\bar{X}_N] = \frac{1}{N^2} \sum_{n=1}^{N} \text{var} [X_n] = \frac{\sigma^2}{N} \to 0$$

▸ But, what is the variance of \bar{X}_N?

$$0 \leftarrow \frac{\sigma^2}{N} = \text{var} [\bar{X}_N] = \mathbb{E} [(\bar{X}_N - \mu)^2]$$

▸ Then, \bar{X}_N converges to μ in mean-square sense

⇒ Which implies convergence in probability

▸ **Strong** law is a little more challenging. Will not prove it here
Closing the loop

- **Repeated experiment** \(\Rightarrow \) Sequence of i.i.d. RVs \(X_1, X_2, \ldots, X_n, \ldots \)
 \(\Rightarrow \) Consider an event of interest \(X \in E \). Ex: coin comes up ‘H’

- Fraction of times \(X \in E \) happens in \(N \) experiments is

\[
\bar{X}_N = \frac{1}{N} \sum_{n=1}^{N} I\{X_n \in E\}
\]

- Since the indicators also i.i.d., the strong law asserts that

\[
\lim_{N \to \infty} \bar{X}_N = \mathbb{E}[I\{X_1 \in E\}] = P(X_1 \in E) \quad a.s.
\]

- Strong law consistent with our intuitive notion of probability
 \(\Rightarrow \) Relative frequency of occurrence of an event in many trials
 \(\Rightarrow \) Justifies simulation-based prob. estimates (e.g. histograms)
Central limit theorem (CLT)

Theorem (Central limit theorem)

Consider a sequence of i.i.d. RVs $X_1, X_2, \ldots, X_n, \ldots$ with mean $E[X_n] = \mu$ and variance $E[(X_n - \mu)^2] = \sigma^2$ for all n. Then

$$\lim_{N \to \infty} P \left(\frac{\sum_{n=1}^{N} X_n - N\mu}{\sigma \sqrt{N}} \leq x \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du$$

- Former statement implies that for N sufficiently large

$$Z_N := \frac{\sum_{n=1}^{N} X_n - N\mu}{\sigma \sqrt{N}} \sim \mathcal{N}(0, 1)$$

\Rightarrow Z_N converges in distribution to a standard normal RV

\Rightarrow Remarkable universality. Distribution of X_n arbitrary
CLT (continued)

- Equivalently can say \[\sum_{n=1}^{N} X_n \sim \mathcal{N}(N\mu, N\sigma^2) \]
- Sum of large number of i.i.d. RVs has a normal distribution
 \[\Rightarrow \text{Cannot take a meaningful limit here} \]
 \[\Rightarrow \text{But intuitively, this is what the CLT states} \]

Example

- Binomial RV \(X \) with parameters \((n, p)\)
- Write as \(X = \sum_{i=1}^{n} X_i \) with \(X_i \) i.i.d. Bernoulli with parameter \(p \)
- Mean \(\mathbb{E}[X_i] = p \) and variance \(\text{var}[X_i] = p(1-p) \)
 \[\Rightarrow \text{For sufficiently large } n \Rightarrow X \sim \mathcal{N}(np, np(1-p)) \]
Conditional probabilities

Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation
Conditional pmf and cdf for discrete RVs

- Recall definition of conditional probability for events E and F

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

⇒ Change in likelihoods when information is given, renormalization

- Def: Conditional pmf of RV X given Y is (both RVs discrete)

$$p_{X \mid Y}(x \mid y) = P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Which we can rewrite as

$$p_{X \mid Y}(x \mid y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p_{XY}(x, y)}{p_Y(y)}$$

⇒ Pmf for RV X, given parameter y (“Y not random anymore”)

- Def: Conditional cdf is (a range of X conditioned on a value of Y)

$$F_{X \mid Y}(x \mid y) = P(X \leq x \mid Y = y) = \sum_{z \leq x} p_{X \mid Y}(z \mid y)$$
Conditional pmf example

- Consider independent Bernoulli RVs Y and Z, define $X = Y + Z$

- **Q:** Conditional pmf of X given Y? For $X = 0$, $Y = 0$

$$p_{X|Y}(X = 0 \mid Y = 0) = \frac{P(X = 0, Y = 0)}{P(Y = 0)} = \frac{(1 - p)^2}{1 - p} = 1 - p$$

- Or, from joint and marginal pmfs (just a matter of definition)

$$p_{X|Y}(X = 0 \mid Y = 0) = \frac{p_{XY}(0, 0)}{p_Y(0)} = \frac{(1 - p)^2}{1 - p} = 1 - p$$

- Can compute the rest analogously

$$p_{X|Y}(0|0) = 1 - p, \quad p_{X|Y}(1|0) = p, \quad p_{X|Y}(2|0) = 0$$

$$p_{X|Y}(0|1) = 0, \quad p_{X|Y}(1|1) = 1 - p, \quad p_{X|Y}(2|1) = p$$
Conditioning on sum of Poisson RVs

Consider independent Poisson RVs Y and Z, parameters λ_1 and λ_2

Define $X = Y + Z$. Q: Conditional pmf of Y given X?

$$p_{Y|X}(Y = y \mid X = x) = \frac{P(Y = y, X = x)}{P(X = x)} = \frac{P(Y = y)P(Z = x - y)}{P(X = x)}$$

Used Y and Z independent. Now recall X is Poisson, $\lambda = \lambda_1 + \lambda_2$

$$p_{Y|X}(Y = y \mid X = x) = \frac{e^{-\lambda_1} \lambda_1^y}{y!} \frac{e^{-\lambda_2} \lambda_2^{x-y}}{(x-y)!} \left[\frac{e^{-(\lambda_1+\lambda_2)}(\lambda_1 + \lambda_2)^x}{x!} \right]^{-1}$$

$$= \frac{x! \lambda_1^y \lambda_2^{x-y}}{y!(x-y)! (\lambda_1 + \lambda_2)^x}$$

$$= \binom{x}{y} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^y \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{x-y}$$

\Rightarrow Conditioned on $X = x$, Y is binomial $(x, \lambda_1/(\lambda_1 + \lambda_2))$
Conditional pdf and cdf for continuous RVs

- **Def:** Conditional pdf of RV X given Y is (both RVs continuous)

 $$f_{X|Y}(x \mid y) = \frac{f_{XY}(x, y)}{f_Y(y)}$$

- For motivation, define intervals $\Delta x = [x, x+dx]$ and $\Delta y = [y, y+dy]$

 \Rightarrow Approximate conditional probability $P(X \in \Delta x \mid Y \in \Delta y)$ as

 $$P(X \in \Delta x \mid Y \in \Delta y) = \frac{P(X \in \Delta x, Y \in \Delta y)}{P(Y \in \Delta y)} \approx \frac{f_{XY}(x, y)dxdy}{f_Y(y)dy}$$

- From definition of conditional pdf it follows

 $$P(X \in \Delta x \mid Y \in \Delta y) \approx f_{X|Y}(x \mid y)dx$$

 \Rightarrow What we would expect of a density

- **Def:** Conditional cdf is

 $$F_{X|Y}(x) = \int_{-\infty}^{x} f_{X|Y}(u \mid y)du$$
Communications channel example

- Random message (RV) Y, transmit signal y (realization of Y)
- Received signal is $x = y + z$ (z realization of random noise)

 \Rightarrow Model communication system as a relation between RVs

 $$X = Y + Z$$

 \Rightarrow Model additive noise as $Z \sim \mathcal{N}(0, \sigma^2)$ independent of Y

- Q: Conditional pdf of X given Y? Try the definition

 $$f_{X|Y}(x \mid y) = \frac{f_{XY}(x, y)}{f_Y(y)} = \frac{?}{f_Y(y)}$$

 \Rightarrow Problem is we don’t know $f_{XY}(x, y)$. Have to calculate

- Computing conditional probs. typically easier than computing joints
Communications channel example (continued)

- If \(Y = y \) is given, then “\(Y \) not random anymore”
 - ⇒ It is still random in reality, we are thinking of it as given

- If \(Y \) were not random, say \(Y = y \) with \(y \) given then \(X = y + Z \)
 - ⇒ Cdf of \(X \) given \(Y = y \) now easy (use \(Y \) and \(Z \) independent)

\[
P(X \leq x \mid Y = y) = P(y + Z \leq x \mid Y = y) = P(Z \leq x - y)
\]

- But since \(Z \) is normal with zero mean and variance \(\sigma^2 \)

\[
P(X \leq x \mid Y = y) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x-y} e^{-z^2/2\sigma^2} \, dz
\]

\[
= \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-(z-y)^2/2\sigma^2} \, dz
\]

⇒ \(X \) given \(Y = y \) is normal with mean \(y \) and variance \(\sigma^2 \)
Digital communications channel

- Conditioning is a common tool to compute probabilities

- Message 1 (w.p. p) ⇒ Transmit $Y = 1$
- Message 2 (w.p. q) ⇒ Transmit $Y = -1$
- Received signal ⇒ $X = Y + Z$

- Decoding rule ⇒ $\hat{Y} = 1$ if $X \geq 0$, $\hat{Y} = -1$ if $X < 0$

 ⇒ **Errors:** ● to the left of 0 and ● to the right

 $\hat{Y} = -1$ \Rightarrow $\hat{Y} = 1$

- Q: What is the probability of error, $P_e := P(\hat{Y} \neq Y)$?
From communications channel example we know:

⇒ If $Y = 1$ then $X \mid Y = 1 \sim \mathcal{N}(1, \sigma^2)$. Conditional pdf is

$$f_{X \mid Y}(x \mid 1) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-1)^2}{2\sigma^2}}$$

⇒ If $Y = -1$ then $X \mid Y = -1 \sim \mathcal{N}(-1, \sigma^2)$. Conditional pdf is

$$f_{X \mid Y}(x \mid -1) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x+1)^2}{2\sigma^2}}$$
Write probability of error by conditioning on $Y = \pm 1$ (total probability)

$$P_e = P \left(\hat{Y} \neq Y \mid Y = 1 \right) P (Y = 1) + P \left(\hat{Y} \neq Y \mid Y = -1 \right) P (Y = -1)$$

$$= P \left(\hat{Y} = -1 \mid Y = 1 \right) p + P \left(\hat{Y} = 1 \mid Y = -1 \right) q$$

According to the decision rule

$$P_e = P \left(X < 0 \mid Y = 1 \right) p + P \left(X \geq 0 \mid Y = -1 \right) q$$

But X given Y is normally distributed, then

$$P_e = \frac{p}{\sqrt{2\pi}\sigma} \int_{-\infty}^{0} e^{-\frac{(x-1)^2}{2\sigma^2}} \, dx + \frac{q}{\sqrt{2\pi}\sigma} \int_{0}^{\infty} e^{-\frac{(x+1)^2}{2\sigma^2}} \, dx$$
Conditional expectation

Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation
Definition of conditional expectation

- **Def:** For continuous RVs X, Y, conditional expectation is

 $$
 \mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) \, dx
 $$

- **Def:** For discrete RVs X, Y, conditional expectation is

 $$
 \mathbb{E}[X \mid Y = y] = \sum_x x p_{X \mid Y}(x \mid y)
 $$

- Defined for given y ⇒ $\mathbb{E}[X \mid Y = y]$ is a number

 ⇒ All possible values y of Y ⇒ random variable $\mathbb{E}[X \mid Y]$

- $\mathbb{E}[X \mid Y]$ a function of the RV Y, hence itself a RV

 ⇒ $\mathbb{E}[X \mid Y = y]$ value associated with outcome $Y = y$

- If X and Y independent, then $\mathbb{E}[X \mid Y] = \mathbb{E}[X]$
Consider independent Bernoulli RVs Y and Z, define $X = Y + Z$

Q: What is $\mathbb{E}[X \mid Y = 0]$? Recall we found the conditional pmf

$$p_{X \mid Y}(0 \mid 0) = 1 - p, \quad p_{X \mid Y}(1 \mid 0) = p, \quad p_{X \mid Y}(2 \mid 0) = 0$$

$$p_{X \mid Y}(0 \mid 1) = 0, \quad p_{X \mid Y}(1 \mid 1) = 1 - p, \quad p_{X \mid Y}(2 \mid 1) = p$$

Use definition of conditional expectation for discrete RVs

$$\mathbb{E}[X \mid Y = 0] = \sum_x x p_{X \mid Y}(x \mid 0)$$

$$= 0 \times (1 - p) + 1 \times p + 2 \times 0 = p$$
Iterated expectations

- If \(E[X \mid Y] \) is a RV, can compute expected value \(E_Y[E_X[X \mid Y]] \)
 Subindices clarify innermost expectation is w.r.t. \(X \), outermost w.r.t. \(Y \)

- \(\textbf{Q:} \) What is \(E_Y[E_X[X \mid Y]] \)? Not surprisingly \(\Rightarrow E[X] = E_Y[E_X[X \mid Y]] \)

- Show for discrete RVs (write integrals for continuous)

\[
E_Y[E_X[X \mid Y]] = \sum_y E_x[X \mid Y = y] p_Y(y) = \sum_y \left[\sum_x p_{X,Y}(x,y) \right] p_Y(y) \\
= \sum_x \left[\sum_y p_{X,Y}(x,y) p_Y(y) \right] = \sum_x \left[\sum_y p_{X,Y}(x,y) \right] \\
= \sum_x x p_X(x) = E[X]
\]

- Offers a useful method to compute expected values

 \(\Rightarrow \) Condition on \(Y = y \)
 \(\Rightarrow \) Compute expected value over \(X \) for given \(y \)
 \(\Rightarrow \) Compute expected value over all values \(y \) of \(Y \)
Consider a probability class in some university

⇒ Seniors get an \(A = 4 \) w.p. 0.5, \(B = 3 \) w.p. 0.5

⇒ Juniors get a \(B = 3 \) w.p. 0.6, \(C = 2 \) w.p. 0.4

⇒ An exchange student is a senior w.p. 0.7, and a junior w.p. 0.3

Q: Expectation of \(X = \) exchange student’s grade?

Start by conditioning on standing

\[
\mathbb{E}[X \mid \text{Senior}] = 0.5 \times 4 + 0.5 \times 3 = 3.5
\]

\[
\mathbb{E}[X \mid \text{Junior}] = 0.6 \times 3 + 0.4 \times 2 = 2.6
\]

Now sum over standing’s probability

\[
\mathbb{E}[X] = \mathbb{E}[X \mid \text{Senior}] \cdot P(\text{Senior}) + \mathbb{E}[X \mid \text{Junior}] \cdot P(\text{Junior})
\]

\[
= 3.5 \times 0.7 + 2.6 \times 0.3 = 3.23
\]
Conditioning on sum of Poisson RVs

- Consider independent Poisson RVs Y and Z, parameters λ_1 and λ_2
- Define $X = Y + Z$. What is $\mathbb{E}[Y \mid X = x]$?
 - We found $Y \mid X = x$ is binomial $(x, \lambda_1/(\lambda_1 + \lambda_2))$, hence
 $$\mathbb{E}[Y \mid X = x] = \frac{x\lambda_1}{\lambda_1 + \lambda_2}$$
- Now use iterated expectations to obtain $\mathbb{E}[Y]$
 - Recall X is Poisson with parameter $\lambda = \lambda_1 + \lambda_2$
 $$\mathbb{E}[Y] = \sum_{x=0}^{\infty} \mathbb{E}[Y \mid X = x] \cdot p_X(x) = \sum_{x=0}^{\infty} \frac{x\lambda_1}{\lambda_1 + \lambda_2} \cdot p_X(x)$$
 $$= \frac{\lambda_1}{\lambda_1 + \lambda_2} \cdot \mathbb{E}[X] = \frac{\lambda_1}{\lambda_1 + \lambda_2} (\lambda_1 + \lambda_2) = \lambda_1$$
- Of course, since Y is Poisson with parameter λ_1
Conditioning to compute expectations

- As with probabilities conditioning is useful to compute expectations
 ⇒ Spreads difficulty into simpler problems (divide and conquer)

Example

- A baseball player scores X_i runs per game
 ⇒ Expected runs are $\mathbb{E}[X_i] = \mathbb{E}[X]$ independently of game

- Player plays N games in the season. N is random (playoffs, injuries?)
 ⇒ Expected value of number of games is $\mathbb{E}[N]$

- What is the expected number of runs in the season? ⇒ $\mathbb{E}\left[\sum_{i=1}^{N} X_i\right]$

- Both N and X_i are random, and here also assumed independent
 ⇒ The sum $\sum_{i=1}^{N} X_i$ is known as compound RV
Sum of random number of random quantities

Step 1: Condition on $N = n$ then

$$\left[\sum_{i=1}^{N} X_i \mid N = n \right] = \sum_{i=1}^{n} X_i$$

Step 2: Compute expected value w.r.t. X_i, use N and the X_i independent

$$\mathbb{E}_{X_i} \left[\sum_{i=1}^{N} X_i \mid N = n \right] = \mathbb{E}_{X_i} \left[\sum_{i=1}^{n} X_i \right] = n \mathbb{E} [X]$$

⇒ Third equality possible because n is a number (not a RV)

Step 3: Compute expected value w.r.t. values n of N

$$\mathbb{E}_N \left[\mathbb{E}_{X_i} \left[\sum_{i=1}^{N} X_i \mid N \right] \right] = \mathbb{E}_N \left[N \mathbb{E} [X] \right] = \mathbb{E} [N] \mathbb{E} [X]$$

Yielding result

$$\mathbb{E} \left[\sum_{i=1}^{N} X_i \right] = \mathbb{E} [N] \mathbb{E} [X]$$

Ex: Suppose X is a geometric RV with parameter p

- Calculate $E[X]$ by conditioning on $Y = \mathbb{I}\{ \text{“first trial is a success”} \}$
 - If $Y = 1$, then clearly $E[X | Y = 1] = 1$
 - If $Y = 0$, independence of trials yields $E[X | Y = 0] = 1 + E[X]$

- Use iterated expectations

\[
E[X] = E[X | Y = 1]P(Y = 1) + E[X | Y = 0]P(Y = 0) \\
= 1 \times p + (1 + E[X]) \times (1 - p)
\]

- Solving for $E[X]$ yields

\[
E[X] = \frac{1}{p}
\]

- Here, direct approach is straightforward (geometric series, derivative)
 - Oftentimes simplifications can be major
A miner is trapped in a mine containing three doors

At all times $n \geq 1$ while still trapped
- The miner chooses a door $D_n = j, j = 1, 2, 3$
- Choice of door D_n made independently of prior choices
- Equally likely to pick either door, i.e., $P(D_n = j) = 1/3$

Each door leads to a tunnel, but only one leads to safety
- Door 1: the miner reaches safety after two hours of travel
- Door 2: the miner returns back after three hours of travel
- Door 3: the miner returns back after five hours of travel

Let X denote the total time traveled till the miner reaches safety

Q: What is $E[X]$?
The trapped miner example (continued)

▶ Calculate $\mathbb{E}[X]$ by conditioning on first door choice D_1

⇒ If $D_1 = 1$, then 2 hours and out, i.e., $\mathbb{E}[X \mid D_1 = 1] = 2$

⇒ If $D_1 = 2$, door choices independent so $\mathbb{E}[X \mid D_1 = 2] = 3 + \mathbb{E}[X]$

⇒ Likewise for $D_1 = 3$, we have $\mathbb{E}[X \mid D_1 = 3] = 5 + \mathbb{E}[X]$

▶ Use iterated expectations

$$\mathbb{E}[X] = \sum_{j=1}^{3} \mathbb{E}[X \mid D_1 = j] \cdot \mathbb{P}(D_1 = j) = \frac{1}{3} \sum_{j=1}^{3} \mathbb{E}[X \mid D_1 = j]$$

$$= \frac{2 + 3 + \mathbb{E}[X] + 5 + \mathbb{E}[X]}{3} = \frac{10 + 2\mathbb{E}[X]}{3}$$

▶ Solving for $\mathbb{E}[X]$ yields

$$\mathbb{E}[X] = 10$$

▶ You will solve it again using compound RVs in the homework
Def: The conditional variance of X given $Y = y$ is

$$\text{var} [X | Y = y] = \mathbb{E} \left[(X - \mathbb{E} [X | Y = y])^2 \right] \bigg| Y = y$$

$$= \mathbb{E} [X^2 | Y = y] - (\mathbb{E} [X | Y = y])^2$$

\Rightarrow var $[X | Y]$ a function of RV Y, value for $Y = y$ is var $[X | Y = y]$.

Calculate var $[X]$ by conditioning on $Y = y$. Quick guesses?

\Rightarrow var $[X] \neq \mathbb{E}_Y [\text{var}_X (X | Y)]$

\Rightarrow var $[X] \neq \text{var}_Y [\mathbb{E}_X (X | Y)]$

Neither. Following conditional variance formula is the correct way

$$\text{var} [X] = \mathbb{E}_Y [\text{var}_X (X | Y)] + \text{var}_Y [\mathbb{E}_X (X | Y)]$$
Proof.

- Start from the first summand, use linearity, iterated expectations

$$
\mathbb{E}_Y[\text{var}_X(X \mid Y)] = \mathbb{E}_Y \left[\mathbb{E}_X(X^2 \mid Y) - (\mathbb{E}_X(X \mid Y))^2 \right]
\hspace{1cm} = \mathbb{E}_Y \left[\mathbb{E}_X(X^2 \mid Y) \right] - \mathbb{E}_Y \left[(\mathbb{E}_X(X \mid Y))^2 \right]
\hspace{1cm} = \mathbb{E} \left[X^2 \right] - \mathbb{E}_Y \left[(\mathbb{E}_X(X \mid Y))^2 \right]
$$

- For the second term use variance definition, iterated expectations

$$
\text{var}_Y[\mathbb{E}_X(X \mid Y)] = \mathbb{E}_Y \left[(\mathbb{E}_X(X \mid Y))^2 \right] - (\mathbb{E}_Y[\mathbb{E}_X(X \mid Y)])^2
\hspace{1cm} = \mathbb{E}_Y \left[(\mathbb{E}_X(X \mid Y))^2 \right] - (\mathbb{E} [X])^2
$$

- Summing up both terms yields (blue terms cancel)

$$
\mathbb{E}_Y[\text{var}_X(X \mid Y)] + \text{var}_Y[\mathbb{E}_X(X \mid Y)] = \mathbb{E} \left[X^2 \right] - (\mathbb{E} [X])^2 = \text{var} [X]
$$
Variance of a compound RV

- Let X_1, X_2, \ldots be i.i.d. RVs with $\mathbb{E}[X_1] = \mu$ and $\text{var}[X_1] = \sigma^2$
- Let N be a nonnegative integer-valued RV independent of the X_i
- Consider the compound RV $S = \sum_{i=1}^{N} X_i$. What is $\text{var}[S]$?

- The conditional variance formula is useful here
- Earlier, we found $\mathbb{E}[S|N] = N\mu$. What about $\text{var}[S|N = n]$?

$$
\text{var}\left[\sum_{i=1}^{N} X_i|N = n\right] = \text{var}\left[\sum_{i=1}^{n} X_i|N = n\right] = \text{var}\left[\sum_{i=1}^{n} X_i\right] = n\sigma^2
$$

$\Rightarrow \text{var}[S|N] = N\sigma^2$. Used independence of N and the i.i.d. X_i

- The conditional variance formula is $\text{var}[S] = \mathbb{E}[N\sigma^2] + \text{var}[N\mu]$

Yielding result $\Rightarrow \text{var}\left[\sum_{i=1}^{N} X_i\right] = \mathbb{E}[N] \sigma^2 + \text{var}[N] \mu^2$
Glossary

- Markov's inequality
- Chebyshev's inequality
- Limit of a sequence
- Almost sure convergence
- Convergence in probability
- Mean-square convergence
- Convergence in distribution
- I.i.d. random variables
- Sample average
- Centering and scaling

- Law of large numbers
- Central limit theorem
- Conditional distribution
- Communication channel
- Probability of error
- Conditional expectation
- Iterated expectations
- Expectations by conditioning
- Compound random variable
- Conditional variance