Mapping Networks

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

February 4, 2016
Outline

Introduction to network visualization

Collecting relational network data

Constructing network graph representations

Visualizing network graphs

Case study: Mapping the backbone of “Science”

Large network visualization via the k-core decomposition

Case study: Mapping the logical Internet
Network mapping

- Visual imagery key to network analysis as in other quantitative sciences

Pattern of social linkages [Moreno’32]

- Hand-drawn, annotated graphs ⇒ Computerized, automated diagrams

- Q: What is network mapping?
 - The production of a network-based visualization of a complex system
 - Analogy: Geography and the production of cartographic maps
What is “the” network?

- Often not a single network graph representation of a given system

Ex: Which of these maps best depicts the USA?
Visualization challenges

- Suppose a graph representation $G(V, E)$ of a complex system is given.

Network graph visualization

A visualization of G is a mapping $\phi : (V, E) \mapsto \mathbb{R}^2$ (or \mathbb{R}^3).

- Several nontrivial graph visualization challenges
 - Lack of inherent geometry in G, just two sets V and E
 - Plenty of degrees of freedom and flexibility in specifying ϕ
 - Convey patterns in high-dimensional data. Summarization and scale
 - A diverse range of information that may be communicated, or lost

- Arguably, graph visualization is a quite young, active area of research
 ⇒ Mathematics, algorithms, aesthetics, the human visual system
Three key stages in the production of network maps

- **S1:** Collection of relational data from the system of interest
- **S2:** Construction of the network graph representation
- **S3:** Rendering of the representation as a visual image
Collecting relational network data

Introduction to network visualization

Collecting relational network data

Constructing network graph representations

Visualizing network graphs

Case study: Mapping the backbone of “Science”

Large network visualization via the k-core decomposition

Case study: Mapping the logical Internet
Measuring elements and interactions

- Start with measurements of system ‘elements’ and ‘interactions’

Figure: Drosophila’s circadian rhythm

- Choose what is meant by elements and interactions
 Ex: Proteins and their affinity to bind, or genes and their regulation

- Decide what measurements to take for each
 Ex: Protein affinity experiments, or DNA micro-array experiments

- Choices influence the network graphs that may be constructed
Example: Drosophila’s circadian rhythm

- Related notions of system elements can yield markedly different graphs

- Ex: Protein *Per* interacts with four other proteins; while Gene coding for *Per* regulates none of the other genes directly

- Each one provides a partial view of the underlying biological system
 \[\Rightarrow \text{Choices a fortiori affect analyses performed and conclusions drawn} \]
Further choices

- There may be different scales at which elements could be labeled
 Ex: Users, routers, autonomous systems (ASs) in Internet studies?
 Ex: Authors, papers, journals, disciplines in citation studies?

- Measures of interaction can take many forms (binary, counts, real)
 Ex: Friendship networks in social network analysis
 - Interview and ask about friendship with other actors (binary)
 - Measure frequency of relations e.g., SMS (counts)

- Questions directly measure the interaction. SMS do indirectly

- Not only what we choose (or are capable of) to measure is important
 ⇒ Also is, potentially, what remains unmeasured in the system
Assuming full-accessibility to network data may be overly optimistic.

Enumerated data: Collected exhaustively from the full population

- **Ex:** Social network studies in small groups (clubs, high-schools, ...)
- **Ex:** Exhaustive scientific publication databases for citation analyses

Partial data: Full enumeration of only a subset of the population

- **Ex:** Geographical sub-network or AS of an Internet Service Provider

Sampled data: Selected from the population via a random scheme

⇒ **Sampling is often the rule rather than the exception** (More later)

- **Ex:** Random probing of source-destination pairs in the Internet
- **Ex:** Social network studies about illegal drug usage, or prostitution
Constructing network graph representations

Introduction to network visualization

Collecting relational network data

Constructing network graph representations

Visualizing network graphs

Case study: Mapping the backbone of “Science”

Large network visualization via the k-core decomposition

Case study: Mapping the logical Internet
From measurements to a graph

- Basic goal is specification of $G(V, E)$ from measurements

- The representation may include additional information
 - Edge weights: $\{w_e\}_{e \in E}$ indicating the strength of association
 - Vertex vectors: $\{x_v\}_{v \in V}$ describing element attributes or labels

- Attribute variables may be discrete or continuous in nature
 - Ex: Gender, infection status, population serviced by an airport

- This information we seek to effectively convey in a network map
Specification of vertices and edges

▶ Measurements may be direct declarations of edge/non-edge status

▶ Most commonly, edges dictated after processing measurements
 ▶ Comparison of vertex similarity metric to a threshold
 ▶ Frequently ad hoc, sometimes formal methods (topology inference)

▶ Q: How to address the “ball-of-yarn” phenomenon in visualizations?

▶ Effective use of scale, node aggregation and thinning of edges
 ▶ Rooted sub-trees or DAGs may be trimmed, hiding inner structure
 ▶ Split dense graph into separate subgraphs based on labels, clustering

▶ Ex: Associate genes or proteins with their biological functions
Visualizing network graphs

Introduction to network visualization

Collecting relational network data

Constructing network graph representations

Visualizing network graphs

Case study: Mapping the backbone of “Science”

Large network visualization via the k-core decomposition

Case study: Mapping the logical Internet
Elements of graph visualization

- **Goal:** embed a combinatorial object $G(V, E)$ into 2-D (3-D) space
 - Use symbols (e.g., circles) for vertices, smooth curves for edges

- Uncountably many options, inherently ill-posed

- **Q:** Does it adequately communicate the relational information in G?
 - Guide drawing process by adding specifications and requirements

- **Drawing conventions:** hard requirements a drawing must satisfy
 - **Ex:** Edges as straight lines, no edges intersect, downward trees, . . .

- **Aesthetics:** soft requirements, satisfied if possible
 - **Ex:** Minimize edge crossings, total area, edge bends, . . .

- **Constraints:** requirements that pertain to subgraphs $H \subset G$
 - **Ex:** Placement of a specific vertex or cluster, direction of a path, . . .
Structures that receive most attention: planar graphs and trees

Two common, linear complexity methods for planar graphs
- Use orthogonal paths for edges (e.g., canonical in integrated circuits)
- Use k-sided convex polygons for each cycle of length k

While also planar, structure of trees justifies additional methods

Often a hierarchical structure is to be communicated

Ex: Organizational charts, genealogies, information cascades, ...
Drawing using analogies to physical systems

- In the absence of structure, exploit analogies to physical systems
 - Convey relations via “likes ↔ attraction” and “dislikes ↔ repulsion”

- **Spring-embedder methods** view vertices as masses, edges as springs
 - Perturb and let forces converge, particle system reaches equilibrium

- **Energy-placement methods** define energy function of vertex positions
 - Minimize system energy to place vertices, reach most relaxed state

Fig. 1.2 Zachary's 'karate club' network. Subgroups, centered around actors 1 and 34, are indicated by the coloring and shape of their nodes, using blue squares and red circles, respectively. Links between actors within the same subgroup are colored similar to their nodes, while links between actors of different subgroups are shown in yellow.

Fig. 1.4 AIDS Blog Network
Spring embedder Energy placement

Network Science Analytics Mapping Networks 18
Energy placement via multidimensional scaling

- **Multidimensional scaling (MDS)** commonly used for visualization

- Given pairwise vertex dissimilarities \(\{\delta_{ij}\} \) (e.g., geodesic distances)

 \(\Rightarrow \) **Goal:** Find \(\{x_i \in \mathbb{R}^2\}_{i=1}^{N_v} \) so that \(\|x_i - x_j\|_2 \approx \delta_{ij} \)

- **Approach:** MDS stress (energy function) minimization

 \[
 \arg \min_{\{x_1, \ldots, x_{N_v}\}} \frac{1}{2} \sum_{i=1}^{N_v} \sum_{j=1}^{N_v} (\delta_{ij} - \|x_i - x_j\|_2)^2
 \]

 \(\Rightarrow \) Nonconvex cost. Typically “solved” via gradient descent

- May include structural constraints e.g., vertex centralities

Graph visualization software use a handful of standard methods
\textbf{Ex:} Circular, radial, analogies to physical systems, \ldots

Many graph layout packages, some general and some area specific
\textbf{Ex:} Gephi, Pajek, Graphviz, LaNet-vi, \ldots
\Rightarrow I have listed a few under resources in the class website

Best ones allow for user interaction to manipulate further
\Rightarrow Graph drawing involves not only science but also some art

Few computer-generated drawings cannot be improved “by hand”
Case study

Introduction to network visualization

Collecting relational network data

Constructing network graph representations

Visualizing network graphs

Case study: Mapping the backbone of “Science”

Large network visualization via the k-core decomposition

Case study: Mapping the logical Internet
The human enterprise of Science and Technology, i.e., “Science”

Understand patterns and associations in its growth and development

⇒ Goal of the field known as scientometrics

⇒ Interests government agencies, industry, sciences themselves

Ex: Network representation and visualization of “Science”?

⇒ Go over measurement, network graph construction and visualization
Measurement

- **System**: Science as summarized through the archival literature
- **Elements**: authors, articles, journals, communities
- **Interactions**: inter-citation frequencies among journals over time

\[C_{ij} = \text{Number of times journal } i \text{ cites } j \text{ in e.g., one year} \]

- **Q**: Partial sampling impact?
 \[\Rightarrow \text{Conference proceedings in Computer Science} \]

- **Data from the Institute of Scientific Information (ISI) databases**
 - 1.058M articles from 7,349 journals for the year 2000
 - 23.08M total citations, 16.24M among the database journals
 - Computed matrix of inter-citations \(C_{ij} \) very sparse (98.6% zeros)
Network graph construction

- $G(V, E)$ can be defined directly from the inter-citation matrix
 - Vertices correspond to the 7,121 citing or cited journals
 - Edge (i, j) joins journals i and j if $C_{ij} + C_{ji} > 0$

- **Validation:** found journal clusters not matching human expectation

- Use the Jaccard inter-citation frequency measure to define edges

\[
JAC_{ij} = JAC_{ji} = \frac{C_{ij} + C_{ji}}{\sum_{k \neq j} C_{ik} + \sum_{k \neq i} C_{jk}}
\]

- **Trim weaker edges** such that degrees are upper-bounded by 15
Preliminary visualization

- Software package used: VxOrd (Sandia Labs)
- Spring-embedder algorithm
 - Linear complexity $O(N_v)$
 - Edge-cutting criteria
- Journals tend to cluster
 - Densely inter-connected
 - Few ties among clusters
- Manually assigned labels
 - Clusters \Rightarrow ISI categories
- No edges for readability

Fig. 3.5 Preliminary map of Science, resulting from a combination of automated drawing software and human interpretation and annotation. All edges have been removed, to improve readability. Figure courtesy of Kevin Boyack.
Further post-processing

- Goal is to obtain a map at the level of scientific disciplines

1) Each discipline cluster replaced with a single vertex
 - Vertex size \propto number of journals in the cluster
 - Vertex color \propto relative frequency of self-citation within discipline
 - Darker vertices suggest more independent disciplines

2) Placed arcs joining pairs of vertices (disciplines)
 - Draw arc (i, j) if 7.5% or more of all citations from i were to j
 - Darker edges represent higher percentages
 - VxOrd places highly-connected vertices closer to the center
The backbone of Science

▶ Backbone of Science: final map at the level of scientific disciplines
Large-scale network visualization

Introduction to network visualization

Collecting relational network data

Constructing network graph representations

Visualizing network graphs

Case study: Mapping the backbone of “Science”

Large network visualization via the \(k \)-core decomposition

Case study: Mapping the logical Internet
Many interesting networks are large and complex

- Difficult to visualize
- Computationally intensive
- Structure hindered

Ex: The blogosphere with > 1M nodes

Idea: Use the k-core decomposition for hierarchical visualization
The k-core decomposition

- Consider a given graph $G(V, E)$

- **Def:** An induced subgraph $G'(V', E')$ of G is a k-core if $d_v(G') \geq k$ for all $v \in V'$, and G' is maximal

- Degrees are in the induced subgraph G', not in G

- **Hierarchy:** larger “coreness” \Rightarrow larger degrees and centrality

- **Algorithm:** recursively prune all vertices of degree less than k
 \Rightarrow Complexity $O(N_v + N_e)$, very efficient for sparse graphs
Example: k-core decompositions

- **Ex:** Trees are 1-cores, cycles are 2-cores, K_n is a $(n - 1)$-core

- **Ex:** A graph with multiple cores

⇒ A k-core is always included within the $(k - 1)$-core
⇒ While some vertices have $d_v(G) = 4$, the 4-core is empty
Preliminary definitions

- Vertex i has coreness $c_i = c$ if $i \in c$-core, but $i \notin (c + 1)$-core
- A shell C_c comprises all vertices with coreness c
 - The maximum value of c such that $C_c \neq \emptyset$ is c_{max}
 - The k-core is a disjoint union of shells

$$ k\text{-core} = \bigcup_{k \leq c \leq c_{\text{max}}} C_c $$

- Each connected set of vertices having coreness c is a cluster Q^c
 - The maximum number of clusters in a shell C_c is q^c_{max}
 - Each shell is a disjoint union of clusters

$$ C_c = \bigcup_{1 \leq m \leq q^c_{\text{max}}} Q^c_m $$
Example

- **Blue** vertices have coreness $c = 1$, **green** have $c = 2$, **red** have $c = 3$
 \[\Rightarrow \text{Here } c_{\text{max}} = 3 \text{ and shells } \{C_c\}_{c=1}^{3} \text{ are shown in the right} \]

- **All three** k-cores are connected, while shells C_1 and C_2 are not
 \[\Rightarrow \text{Shell } C_1 \text{ has } q_{1\text{max}} = 4 \text{ clusters, } q_{2\text{max}} = 2 \text{ and } q_{3\text{max}} = 1 \]
Visualization using the k-core decomposition

- Given $G(V, E)$ determine the polar coords. $\rho_i \angle \varphi_i$ of each $i \in V$

Key features of the visualization algorithm. For vertex i:
- Radius ρ_i depends on c_i, and coreness of neighbors $V_{c_j \geq c_i}(i)$
- Angle φ_i depends on cluster number q_i within shell C_{c_i}
- Color depends on coreness c_i (e.g., 1 is violet, c_{max} is red)
- Diameter is $\propto \log d_i$
The k-core decomposition of $G(V, E)$ is an input to the algorithm

⇒ Each vertex $i \in V$ has attributes $[c_i, q_i]^T$, such that $i \in Q_{q_i}^{c_i}$

Radius ρ_i of vertex i is given by

$$\rho_i = (1 - \epsilon)(c_{\text{max}} - c_i) + \frac{\epsilon}{|V_{c_j \geq c_i}(i)|} \sum_{j \in V_{c_j \geq c_i}(i)} (c_{\text{max}} - c_j)$$

⇒ Parameter $\epsilon \in (0, 1)$ controls potential ring overlap

Angle φ_i is random, with Normal distribution

$$\varphi_i \sim \mathcal{N} \left(\pi \frac{|Q_{q_i}^{c_i}|}{|C_{c_i}|} + \sum_{1 \leq m < q_i} 2\pi \frac{|Q_m^{c_i}|}{|C_{c_i}|}, \pi \frac{|Q_{q_i}^{c_i}|}{|C_{c_i}|} \right)$$

⇒ Angular sector $[0, 2\pi]$ is partitioned among the $q_{\text{max}}^{c_i}$ clusters
In general, one may obtain disconnected (fragmented) k-cores. The general algorithm can reveal such structure. For details, see: J. I. Alvarez-Hamelin et al, “Large scale networks fingerprinting and visualization using the k-core decomposition,” in *NIPS*, 2005.
Case study

Introduction to network visualization

Collecting relational network data

Constructing network graph representations

Visualizing network graphs

Case study: Mapping the backbone of “Science”

Large network visualization via the k-core decomposition

Case study: Mapping the logical Internet
A single, comprehensive map of the Internet is lacking. Reasons:
- Dynamic and self-organized nature
- Proprietary and security constraints among service providers
- Sheer size

What is “the” Internet?
- The physical infrastructure
- Logical paths of information flow over that infrastructure
- The content underlying that information
- Usage patterns of those disseminating, consuming that content
- Traffic created by such usage

Ex: Hierarchical visualization of the Internet’s logical structure?
- Go over measurement, network graph construction and visualization
Measurement

- **System:** logical Internet, paths over which packets are routed
- **Elements:** used routers, aggregations e.g., autonomous systems (AS)
- **Interactions:** router connections, effective connections between ASs
 - Large-scale measurement via probing, e.g., traceroute

Data by the Cooperative Assoc. for Internet Data Analysis (CAIDA)
- Use the Skitter topology project. 20 worldwide measurement centers
- Sends 800k traceroute-like probes to suitably spread destinations
- Measurements taken from April 21 to May 3, 2003
Network graph construction

- $G(V, E)$ can be inferred from sequences of traceroute probes
 - Use paths from a source to construct trees (or DAGs)
 - Merge collections of trees from multiple sources to form G

- Vertices correspond to the 192,244 discovered routers

- The 609,066 edges join routers along the discovered paths

- Caveat on a few practical difficulties
 - **Asymmetric routing**: Studies realistically produce directed paths
 - **Time sensitivity**: Merge paths that changed (disappeared) over time
 - **Multiple interfaces**: Router may be discovered via multiple “aliases”
 - **Security policies**: Firewalls “hide” the topology behind them
The router-level Internet

Hierarchical structure of the Internet using k-core decomposition
The AS-level Internet

Data from the University of Oregon Route Views Project
Glossary

- Network mapping
- Graph summarization
- Elements and interactions
- Scale
- Measurements of relation
- Enumerated and sampled data
- Vertex similarity
- “Ball-of-yarn” phenomenon
- Graph embedding
- Drawing conventions

- Aesthetics
- Spring-embedder methods
- Energy-placement methods
- Scientometrics
- Jaccard inter-citation frequency
- k-core decomposition
- Vertex coreness
- k-shell and k-core
- Physical and logical Internet
- traceroute probing