Graph signals and graph-shift operator

- **Graph signal processing - 101**
 - Network as graph G = (V, E): encode pairwise relationships
 - Interest here not in G itself, but in data associated with nodes in V
 - The object of study is a graph signal
 - Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

- **Graph SP: need to broaden classical SP results to graph signals**
 - Motivation and problem formulation
 - BLIND IDENTIFICATION OF GRAPH FILTERS WITH SPARSE INPUTS
 - Our view: GSP well suited to study network processes
 - Assuming a simple graph, we propose a convex algorithm for blind identification of graph filters. Leveraging recent advances in graph signal processing and classical blind deconvolution, we propose a convex algorithm for blind identification of graph filters with sparse inputs. This task amounts to finding the sources and diffusion coefficients that gave rise to an observed network state.

- **Graph signals and graph-shift operator**
 - (Node) graph signals are mappings \(x \colon V \rightarrow \mathbb{R} \)
 - May be represented as a vector \(x \in \mathbb{R}^N \)
 - Graph G is endowed with a graph-shift operator \(S \)

- **Locality of S and frequency-domain representation**
 - \(S \) is a local linear operator
 - Ex: Adjacency A, Degree D, and Laplacian L
 - Time-shift operator when \(S = A \) for G a directed cycle

- **Frequency response of a graph filter**
 - Using \(S = V A V^{-1} \), filter is \(H = \sum_{k} h_k A^k = V \left(\sum_{k} h_k A^k \right) V^{-1} \)

 - Since \(A \) are diagonal, the GFT-IGT can be used to write \(y = Hx \) as \(y = diag(h)k(x) \)

 - Output at frequency \(k \) depends only on input at frequency \(k \)

 - Frequency response of filter \(H = S - \lambda \mathbf{I} \), where \(\lambda \) is Vandermonde

 - Note that GFT for signals \((V - \lambda S) \) and filters \((R - \lambda \mathbf{I}) \) are different

- **Diffusion process as graph filters outputs**
 - Q: Upon observing a graph signal \(y \), how was this signal generated?

 - Postulate the following generative model
 - An original (source) signal \(x^0 \)
 - Diffuse via linear graph dynamics \(S x^0 = x^1 = \cdots = x^L \)

 - Observed signal \(y \) is a linear combination of the diffused signals \(x^0 \)

 - View few elements in \(supp(y) = \{ i \mid x_i \neq 0 \} \) as sources or seeds

Motivation and problem formulation

- **Global opinion profile formed by spreading a rumor**
 - What was the rumor? Who started it?
 - How do people combine the opinions heard to form their own?

- **Problem: Blind identification of graph filters with sparse inputs**
 - Generalizes classic blind deconvolution to graphs

- **Blind identification of graph filters with sparse inputs**
 - Assumes a K-Sparse i.e., \(\|x\|_0 = K \leq S \)

“Lifting the bilinear inverse problem”

- **Leverage the frequency response of graph filters (U = V^{-1})**
 - Use \(V \Sigma A V^{-1} \) where \(y = \mathbf{v} \Sigma \mathbf{a}) = \mathbf{u} \)

 - Blind graph filter identification - Non-convex feasibility problem

- **Key observation**: Using the Khatri-Rao product (can write as \(y = \mathbf{v} (\mathbf{w}^T \mathbf{u}) ^{vec(\mathbf{u})} \))

 - \(y = A \mathbf{v} \mathbf{u} \) is a linear combination of the entries of \(Z \) and \(\mathbf{v} \mathbf{u} \)

 - \(Z \) is of rank 1 and row-sparse

 - \(\mathbf{Z} \) is an S-sparse matrix

 - \(\|x\|_0 = K \leq S \)

 - Blind rank minimization achieves perfect recovery when \(N \geq (L - S) \)

 - \(\|x\|_0 = K \leq S \)

- **Rank minimization s. to row-cardinality constraint is NP-hard. Relax!**

 - Define the rank-one matrices \(\mathbf{Z} = \mathbf{A} \mathbf{v} \mathbf{u} \)

 - \(\mathbf{Z} \) is rank-sparse

 - Shrinkage to row-sparse

Algorithmic approach via convex relaxation

- **Rank minimization s. to row-cardinality constraint is NP-hard. Relax!**

- **Convex relaxation**
 - Minimize with coefficients \(\mathbf{Z} \) for \(\| \mathbf{Z} \|_1 \) per row and permutation \(k \)

- **Multiple output signals**

 - Leverage multiple output signals to aid the blind identification task

 - We have access to a collection of output signals \(\{y_i\} \)

 - Corresponding to different sparse inputs \(x_i \) but a common filter \(H \)

 - Consider the stacked vectors \(y = [y_1, \ldots, y_N]^T \) and \(s = [s_1, \ldots, s_M]^T \)

 - Define the rank-one matrices \(\mathbf{Z} = \mathbf{A} \mathbf{v} \mathbf{u} \)

 - Solve the row-sparse rank-

- **Numerical tests: Known support, random graph models**

 - Performance in Erdős-Rényi and scale-free graphs of varying size

 - Assume known \(\|x\|_0 = K \geq 0 \)

 - Error quantified as \(\| \mathbf{Z} \|_1 \)

 - Two settings: \(L = 1, 2, 20 \) and \(L = 5, S = 40 \)

 - Rank minimization achieves perfect recovery when \(N \geq (L - S) \)

 - Well-below \(N \geq (L - S) \) needed for least squares to succeed

 - Rank minimization is more robust to the type of graph

Recovery rate in random graphs: unknown support

- **Recovery rates on Erdős-Rényi graphs**

 - \(N \) = 50 for varying \(L \) and \(S \)

 - \(P = 1 \) (left), \(P = 1 + \text{reweighted } c_{ij} \) (middle), \(P = 5 + \text{reweighted } c_{ij} \) (right)

- **Exact recovery over non-trivial (L, S) region**

 - Iteratively-reweighted optimization markedly improves recovery

 - Multiple outputs further increases recovery success

- **Performance comparison with alternative methods**

 - Human brain graph of \(N = 66 \) brain regions, \(L = 6 \) and \(S = 6 \)

 - Scalable algorithm using method of multipliers

 - Iteratively-reweighted optimization markedly improves recovery

 - Pseudo-norm \(\|x\|_0 \) needed twice as many observations

Discussion and road ahead

- **Identifiability conditions**

 - When is \(\mathbf{y} = \mathbf{x} \) the unique solution (up to scaling)?

 - Deterministic or probabilistic model assumptions

 - Exact recovery conditions

 - When does the convex relaxation succeed?

 - Lower bound on \(N \) to guarantee recovery for given \(L \) and \(S \)

 - Depends on algebraic features of the graph \(S \)

 - Some graphs are more amenable to blind identification that others

 - Unknown shift \(S \)

 - Network topology inference

 - Endogenous application problems

 - Opinion formation in social networks

 - Identity sources of epileptic seizures

 - Event-driven information cascades

 - Trace ‘patient zero’ for an epidemic outbreak

References