The model captures both topological (A') and external influences (X).

Problem Statement:
Given $Y[t]_{1:T}$ and X adhering to (1), track the underlying network topology ($A'_{1:T}$) and the effect of external influences ($B'_{1:T}$).

Sparse exponentially-weighted least squares estimator

Assuming the network topology changes slowly and has sparse edge connectivity, the estimator

$$
(A', B') = \arg \min_{A,B} \sum_{t=1}^{T} \frac{1}{2} \sum_{i,j} (Y[t][i] - A[i,j]X[j] - B[i])^2 + \lambda |A|,
$$

where $\beta \in (0,1]$, $\lambda > 0$, and $|A| = \sum \sum |a|$, tracks A' and B' where $\beta \in (0,1]$, $\lambda > 0$, and $|A| = \sum \sum |a|$.

Benefits:
1. Causal interactions among nodes (topological influences)
2. Time-varying interactions in psychometrics, social sciences, and gene regulation [Goldberger72][Cai13]
3. Time-invariant SEM for gene network inference [Cai13]

Goal:
Let C cascades propagate during time interval $t \in [0,T]$, and exhibit slow variations.

Related work:
1. Maximum likelihood estimation (MLE) for static network inference [Rodriguez14]
2. MLE-based stochastic gradient descent for dynamic network inference [Rodriguez13]
3. Time-invariant SEM for gene network inference [Cai13]

Contributions:
1. Dynamic SEM for tracking time-varying networks
2. Accounting for external (non-topological) influences in cascades

Conclusions and Related Work

- Node infection times depend on:
 1. Causal interactions among nodes (topological influences)
 2. Susceptibility to cascades (external influences)
- Structural equation models (SEM) provide a general statistical framework for capturing causal interactions in psychometrics, social sciences, and gene regulation [Goldberger72][Cai13]

Synthetic dataset:
Cascades data generated from $Y[t] = (X - A'[t]B'[t]X) + e[t]$, where $e[t] \sim \mathcal{N}(0, I)$. $A'[t]_{0,1} \sim \mathcal{N}(0, 100)$. $X = 100$, $C = 150$, $T = 1, \ldots, 1000$. Edge weights were varied as $i)$ $a'[t] \sim \text{Bernoulli}(0.5)$

Real datasets:
Popular "memes" on the web were tracked between March 2011 and February 2012 [Rodriguez13].

Numerical Results

Proximal Gradient Algorithm

PG iterations with equality constraints yield the (pseudo) real-time tracking algorithm

Model and Problem Statement

Consider a dynamic network of N nodes, over which C cascades propagate during T time intervals.

The postulated dynamic SEM for infection time of node i by cascade c during time interval t is

$$y_{i,c} = \sum_{j \neq i} a_{i,j}y_{j,c} + b_{c} + e_{i,c}.$$

Let $Y'[t] = [y'[t]]$, $X = [x[t]]$, $B' = [b']$, and $B = \text{diag}(b_1, \ldots, b_N)$, collecting observations for N nodes and C contagions yields the dynamic matrix SEM

$$Y'[t] = A'[t]Y'[t] + B'X + B,$$

$t = 1, \ldots, T.$

Reference

