Robust Network Topology Inference

Santiago Segarra
Institute for Data, Systems, and Society
Massachusetts Institute of Technology
segarra@mit.edu
http://www.mit.edu/~segarra/

Co-authors: Antonio G. Marques, Gonzalo Mateos, and Alejandro Ribeiro

ICASSP, March 9, 2017
Desiderata: Process, analyze and learn from network data [Kolaczyk’09]
Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

Network as graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships

Interest here not in G itself, but in data associated with nodes in \mathcal{V}

\Rightarrow Object of study is a graph signal

\Rightarrow As.: Signal properties related to topology of G (e.g., smoothness)
Graph signal processing (GSP)

- Undirected G with adjacency matrix A
 $\Rightarrow A_{ij} =$ Proximity between i and j
- Define a signal x on top of the graph
 $\Rightarrow x_i =$ Signal value at node i
Graph signal processing (GSP)

- Undirected G with adjacency matrix A
 \[A_{ij} = \text{Proximity between } i \text{ and } j \]
- Define a signal x on top of the graph
 \[x_i = \text{Signal value at node } i \]

- Associated with G is the graph-shift operator $S = V\Lambda V^T \in \mathcal{M}^N$
 \[S_{ij} = 0 \text{ for } i \neq j \text{ and } (i, j) \notin E \text{ (local structure in } G) \]
 \[\text{Ex: } A, \text{ degree } D \text{ and Laplacian } L = D - A \text{ matrices} \]
Graph signal processing (GSP)

- Undirected G with adjacency matrix A
 \[A_{ij} = \text{Proximity between } i \text{ and } j \]
- Define a signal x on top of the graph
 \[x_i = \text{Signal value at node } i \]

- Associated with G is the graph-shift operator $S = V\Lambda V^T \in \mathcal{M}^N$
 \[S_{ij} = 0 \text{ for } i \neq j \text{ and } (i, j) \notin \mathcal{E} \text{ (local structure in } G) \]
 \[\text{Ex: } A, \text{ degree } D \text{ and Laplacian } L = D - A \text{ matrices} \]

- Graph Signal Processing \rightarrow Exploit structure encoded in S to process x
 \[\text{Our view: GSP well suited to study (network) diffusion processes} \]
Motivation and context

- Network topology inference from nodal observations [Kolaczyk’09]
 - Approaches use Pearson correlations to construct graphs [Brovelli04]
 - Partial correlations and conditional dependence [Friedman08, Karanikolas16]

- Key in neuroscience [Sporns’10]
 - Functional net inferred from activity
Network topology inference from nodal observations [Kolaczyk’09]
⇒ Approaches use Pearson correlations to construct graphs [Brovelli04]
⇒ Partial correlations and conditional dependence [Friedman08, Karanikolas16]

Key in neuroscience [Sporns’10]
⇒ Functional net inferred from activity

Most GSP works: How known graph S affects signals and filters

Here, reverse path: How to use GSP to infer the graph topology?
⇒ Gaussian graphical models [Egilmez16]
⇒ Smooth signals [Dong15], [Kalofolias16]
⇒ Stationary signals [Segarra16], [Pasdeloup16]
⇒ Directed graphs [Mei-Moura15], [Shen16]

Today’s talk: Guarantees of robustness in topology inference
Our approach for topology inference

- We propose a two-step approach for graph topology identification

STEP 1:
Identify the eigenvectors of the shift

STEP 2:
Identify eigenvalues to obtain a suitable shift

- Alternative sources for spectral templates V
 - Design of graph filters [Segarra et al’15]
 - Graph sparsification and Network deconvolution [Feizi et al’13]

- Small number of $\{x_i\}$ or specific signal features
 \Rightarrow May lead to noisy or incomplete eigenvectors \hat{V}

- How good is the recovery of S when \hat{V} (instead of V) is available?
Step 1: Obtaining the eigenvectors

- \(\mathbf{x} \) is a \textbf{stationary process} on the unknown graph \(\mathbf{S} \)
 - \(\Rightarrow \) Observed \(\{\mathbf{x}_i\} \) are random realizations of \(\mathbf{x} \)
 - \(\Rightarrow \) Eigenvectors \(\mathbf{V} \) can be recovered from covariance \(\mathbf{C}_\mathbf{x} \)

- Signal \(\mathbf{x} \) is the response of a linear diffusion process to a white input

\[
\mathbf{x} = \alpha_0 \prod_{l=1}^{\infty} (\mathbf{I} - \alpha_l \mathbf{S}) \mathbf{w} = \sum_{l=0}^{\infty} \beta_l \mathbf{S}^l \mathbf{w} = \left(\sum_{l=0}^{N-1} h_l \mathbf{S}^l \right) \mathbf{w} := \mathbf{H} \mathbf{w}
\]

- Common generative model. Heat diffusion if \(\alpha_k \) constant
- \(\mathbf{H} \) is a \textbf{graph filter} on the unknown graph
- \(\mathbf{H} \) diagonalized by the eigenvectors \(\mathbf{V} \) of the shift operator \(\mathbf{S} \)
Step 1: Obtaining the eigenvectors

- The covariance matrix of the signal x is
 \[C_x = \mathbb{E} \left[(Hw(Hw)^H) \right] = H\mathbb{E} \left[(ww^H) \right] H^H = HH^H \]

- Since H is diagonalized by V, so is the covariance C_x
 \[C_x = V \left| \sum_{l=0}^{L-1} h_l \Lambda^l \right|^2 V^H \]

- Any shift with eigenvectors V can explain x
 \Rightarrow G and its specific eigenvalues have been obscured by diffusion

Observations

(a) Identifying $S \rightarrow$ Identifying the eigenvalues
(b) Correlation methods \rightarrow Eigenvalues are kept unchanged
(c) Precision methods \rightarrow Eigenvalues are inverted
Step 2: Obtaining the eigenvalues

- We can use extra knowledge/assumptions to choose one graph
 ⇒ Of all graphs, select one that is optimal in some sense

\[
S_*^0 := \arg\min_{S, \lambda} \|S\|_0 \quad \text{s. to} \quad S = \sum_{k=1}^{N} \lambda_k v_k v_k^H, \quad S \in S
\]

- Set \(S \) contains all admissible scaled adjacency matrices

\[
S := \{S \mid S_{ij} \geq 0, \quad S \in \mathcal{M}^N, \quad S_{ii} = 0, \quad \sum_j S_{1j} = 1\}
\]
Step 2: Obtaining the eigenvalues

- We can use extra knowledge/assumptions to choose one graph
 \[\Rightarrow \text{Of all graphs, select one that is \textit{optimal} in some sense} \]

\[S_0^* := \arg\min_{S,\lambda} \|S\|_0 \quad \text{s. to} \quad S = \sum_{k=1}^{N} \lambda_k v_k v_k^H, \quad S \in S \]

- Set \(S \) contains all admissible scaled \textit{adjacency} matrices

\[S := \{S \mid S_{ij} \geq 0, \quad S \in \mathcal{M}^N, \quad S_{ii} = 0, \quad \sum_j S_{1j} = 1\} \]

- Non-convex problem, relax to \(\ell_1 \)-norm minimization, e.g., [Tropp’06]

\[S_1^* := \arg\min_{S,\lambda} \|S\|_1 \quad \text{s. to} \quad S = \sum_{k=1}^{N} \lambda_k v_k v_k^H, \quad S \in S \]

- What if \(V \) is not available? \[\Rightarrow \text{Noisy and/or incomplete } \hat{V} \]
Robust shift identification

- Two-step algorithm based on perfect **spectral templates**
 - However, perfect knowledge of V may not be available
 - Robust designs?

Q1: How to modify the optimization in step 2?
 - Distance for noise, orthogonal subspace for incomplete

Q2: Recovery guarantees?
Incomplete spectral templates

- Partial access to $V \Rightarrow$ Only K known eigenvectors $[v_1, \ldots, v_K]$

$$\min_{\{S, S_{\tilde{K}}, \lambda\}} \|S\|_1 \text{ s. to } S = S_{\tilde{K}} + \sum_{k=1}^{K} \lambda_k v_k v_k^H, \quad S \in S, \quad S_{\tilde{K}} v_k = 0$$

- How does the (partial) knowledge of V_K affect the recovery?
Incomplete spectral templates

- Partial access to $\mathbf{V} \Rightarrow$ Only K known eigenvectors $[v_1, \ldots, v_K]$

$$\min_{\{S, S_{\bar{K}}, \lambda\}} \|S\|_1 \text{ s. to } S = S_{\bar{K}} + \sum_{k=1}^{K} \lambda_k v_k v_k^H, \quad S \in S, \quad S_{\bar{K}} v_k = 0$$

- How does the (partial) knowledge of \mathbf{V}_K affect the recovery?

- Define $\mathbf{P} := [P_1, P_2]$ in terms of \mathbf{V}_K, and $\Upsilon := [I_{N^2}, 0_{N^2 \times N^2}]$

\Rightarrow Goal is to reformulate problem as $\min_t \|\Upsilon t\|_1 \text{ s.to} \mathbf{P}^T t = \mathbf{b}$

S* and S_0^* coincide if the two following conditions are satisfied:
1) $\text{rank}([P_1^T, P_2^T]) = |\mathcal{K}| + N^2$; and
2) There exists a constant $\delta > 0$ such that

$$\eta_{\mathbf{P}} := \|\Upsilon_{\mathcal{K}c}(\delta^{-2}\mathbf{P}\mathbf{P}^T + \Upsilon_{\mathcal{K}c}^T \Upsilon_{\mathcal{K}c})^{-1}\Upsilon_{\mathcal{K}c}^T\|_\infty < 1.$$

- Cond. 1) ensures uniqueness of solution S^*

- Cond. 2) guarantees existence of a dual certificate for ℓ_0 optimality
We might have access to \(\hat{V} \), a noisy version of the spectral templates.

\[
\Rightarrow \text{With } d(\cdot, \cdot) \text{ denoting a (convex) distance between matrices }
\]

\[
\min_{\{S, \lambda, \hat{S}\}} \|S\|_1 \quad \text{s. to } \hat{S} = \sum_{k=1}^{N} \lambda_k \hat{v}_k \hat{v}_k^H, \quad S \in S, \quad d(S, \hat{S}) \leq \epsilon
\]

How does the noise in \(\hat{V} \) affect the recovery?
We might have access to \hat{V}, a noisy version of the spectral templates. With $d(\cdot, \cdot)$ denoting a (convex) distance between matrices,

$$\min_{\{S, \lambda, \hat{S}\}} \|S\|_1 \quad \text{s. to} \quad \hat{S} = \sum_{k=1}^N \lambda_k \hat{v}_k \hat{v}_k^H, \quad S \in S, \quad d(S, \hat{S}) \leq \epsilon$$

How does the noise in \hat{V} affect the recovery?

Stable recovery can be established \Rightarrow depends on noise level

\Rightarrow Reformulate problem as $\min_t \|t\|_1 \quad \text{s. to} \quad \|R^T t - b\|_2 \leq \epsilon$

Conditions 1) and 2) but based on R, guaranteed $d(S^*, S_0^*) \leq C\epsilon$

$\Rightarrow \epsilon$ large enough to guarantee feasibility of S_0^*

\Rightarrow Constant C depends on \hat{V} and the support K
Social graphs from imperfect templates

- Identification of multiple social networks $N = 32$
 - Defined on the same node set of students from Ljubljana
 - Synthetic signals from diffusion processes in the graphs
- Recovery for incomplete (left) and noisy (right) spectral templates

- Error (left) decreases with increasing nr. of spectral templates
- Error (right) decreases with increasing number of observed signals
Performance comparisons

- Comparison with graphical lasso and sparse correlation methods
 - Evaluated on 100 realizations of ER graphs with $N = 20$ and $p = 0.2$

Graphical lasso implicitly assumes a filter $H_1 = (\rho I + S)^{-1/2}$

\Rightarrow For this filter spectral templates work, but not as well

- For general diffusion filters H_2 spectral templates still work fine
Inferring direct relations

- Our method can be used to sparsify a given network
 - Keep direct and important edges or relations
 - Discard indirect relations that can be explained by direct ones

- Use eigenvectors \hat{V} of given network as noisy templates

Ex: Infer contact between amino-acid residues in BPT1 BOVIN
 - Use mutual information of amino-acid covariation as input

- Network deconvolution assumes a specific filter model [Feizi et al’13]
 - We achieve better performance by being agnostic to this
Network topology inference cornerstone problem in Network Science
- Most GSP works analyze how S affect signals and filters
- Here, reverse path: How to use GSP to infer the graph topology?

Our GSP approach to network topology inference
- Two step approach: i) Obtain V; ii) Estimate S given V
Network topology inference cornerstone problem in Network Science
- Most GSP works analyze how S affect signals and filters
- Here, reverse path: How to use GSP to infer the graph topology?

Our GSP approach to network topology inference
- Two step approach: i) Obtain V; ii) Estimate S given V

How to obtain the spectral templates V
- Based on covariance of stationary signals
- Other sources: network operators, network deconvolution
Network topology inference cornerstone problem in Network Science
- Most GSP works analyze how S affect signals and filters
- Here, reverse path: How to use GSP to infer the graph topology?

Our GSP approach to network topology inference
⇒ Two step approach: i) Obtain V; ii) Estimate S given V

How to obtain the spectral templates V
⇒ Based on covariance of stationary signals
⇒ Other sources: network operators, network deconvolution

Infer S via convex optimization
⇒ Objectives promotes desirable properties
⇒ Constraints encode structure a priori info and structure
⇒ Formulations for noisy and incomplete templates