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SwiftReg cluster registration automatically
reduces flow cytometry data variability
including batch effects
Jonathan A. Rebhahn1, Sally A. Quataert1, Gaurav Sharma2,3 & Tim R. Mosmann1✉

Biological differences of interest in large, high-dimensional flow cytometry datasets are often

obscured by undesired variations caused by differences in cytometers, reagents, or operators.

Each variation type requires a different correction strategy, and their unknown contributions

to overall variability hinder automated correction. We now describe swiftReg, an automated

method that reduces undesired sources of variability between samples and particularly

between batches. A high-resolution cluster map representing the multidimensional data is

generated using the SWIFT algorithm, and shifts in cluster positions between samples are

measured. Subpopulations are aligned between samples by displacing cell parameter values

according to registration vectors derived from independent or locally-averaged cluster shifts.

Batch variation is addressed by registering batch control or consensus samples, and applying

the resulting shifts to individual samples. swiftReg selectively reduces batch variation,

enhancing detection of biological differences. swiftReg outputs registered datasets as stan-

dard .FCS files to facilitate further analysis by other tools.
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Several types of variability contribute to the changes in
marker intensity (using fluorescence or mass labels) that are
inherent in flow cytometry. Day-to-day (batch) variations in

global channel values can be caused by cytometer settings (e.g.,
photomultiplier tube (PMT) voltages, laser power, or different
cytometers). The fluorescence of positively stained cells can be
affected by staining protocol variations, antibody batches, or
reagent instability. More complex changes in multiple channels
are induced by variables that affect cell health and viability, e.g.,
shipping, cell handling, thawing, processing, and operator varia-
bility. Fluorescence intensities may also be affected by biological
variations, including genetics, environment, disease, age, gender,
lifestyle, therapy, or microbiome. In any study, only one or a few
of these sources of variation will be the target of investigation of
the study—the others should be minimized so that the target
variation (e.g., therapy-induced changes) can be analyzed clearly.
Thus methods to reduce variability should ideally be objective, yet
selective, for certain types of variability.

Manual gating analysis can be selectively adjusted to deal with
some batch or individual variability, but the process is time-
consuming and subjective. Some manual gating software packa-
ges offer auto-positioning gates to adjust for batch effects.
However, these approaches are limited to two-dimensional (2D)
gates, require a priori identification of gates, and fail in the pre-
sence of large shifts in subpopulation location.

There are now many excellent automated methods to identify
subpopulations in flow cytometry samples. The strategies used to
address inter-sample variation in such methods broadly fall into
three categories: (1) Template-based methods generate models
from selected or pooled samples and store all the relevant para-
meters (e.g., centroids, shapes, proportions, etc.)1–6. Individual
samples can then be assigned to the template model. These
methods work well if batch variation is smaller than the biological
variation of interest, for example, our SWIFT algorithm3 was able
to handle substantial variations between analysis centers7. How-
ever, as batch variation increases, cells are assigned more fre-
quently to the wrong clusters. (2) Cluster matching approaches
attempt to match clusters between individually clustered samples
to achieve a 1-to-1 or 1-to-N mapping of clusters with similar
characteristics across samples8–16. Two of these methods15,16 try
to mitigate adverse effects of batch variation during the cluster
matching process using a random effects model during the
matching process. (3) Registration (data alignment) approaches
are normally preprocessing steps to move the data directly (i.e.,
register) to improve alignment across samples17,18. Of these three
classes of approach, registration has the advantage that it is a
preprocessing step that leaves open the possibility of subsequently
analyzing the cell subpopulations by any of the wealth of flow
analysis programs now available.

The registration (fluorescence normalization) programs fda-
Norm and gaussNorm17 normalize one channel at a time but
require pre-gating of a subpopulation and do not address mul-
tidimensional linkages between biological subpopulations. A per-
population “local” approach18 builds upon fdaNorm, tightly
integrating local (subpopulation specific) intensity normalization
with the gating process. Specific features (histogram peaks or
valleys) of manually gated or semi-manually selected data are
used to modify samples to match a reference sample. However,
this approach still relies on manual gating and does not provide
an exhaustive registration of subpopulations at high resolution.

To address these issues, we have developed an automated,
flexible registration tool, swiftReg, that uses the high-resolution
cluster information from the SWIFT clustering algorithm as the
basis for registration and generates free-standing registered data
files that can subsequently be analyzed by any automated or
manual analysis method. This approach has several advantages—

first, cells are assigned to clusters using information from all
channels, so even large shifts in one channel can be correctly
identified and corrected because of the information in other
channels. Second, the method should be robust to large changes
in specific subpopulations, e.g., loss of CD4+ populations in
AIDS, situations in which methods based on bulk channel shifts
would result in the wrong adjustment. Third, this high-resolution
registration tool can accommodate shifts of different magnitude
or direction in many different subpopulations. Fourth, the swif-
tReg tool can be used in either channel-specific or fine-grained
subpopulation-specific modes. As a result, swiftReg can selectively
minimize batch variations, while preserving biological variations
and thus allowing meaningful sample comparison with greater
clarity.

Results
Identification of variation using SWIFT clusters. As described
above, several sources of variation may exist in flow cytometry
data. The high-resolution SWIFT cluster templates provide sen-
sitive tools for both identifying and then correcting different
sources of variation. An initial SWIFT cluster template is pro-
duced from a reference sample, then any number of test samples
are assigned to that template. Each cell is assigned to the most
probable cluster, so often each template cluster will “catch” the
appropriate cells even if that subpopulation has shifted sub-
stantially. However, the centroid of the resulting subpopulation
may be shifted relative to the template. Figure 1a shows the
variation in a fluorescence cytometry dataset (JMW090 and
JMW092) of influenza peptide-stimulated human peripheral
blood mononuclear cell (PBMC) samples2,19. The heatmaps show
the correlations of cluster centroids between samples (see
“Methods”) in an experiment that contained variations due to
assay day, cytometer, subject, and bleed. Major changes were
caused by cytometer and assay day differences, whereas sequential
blood samples from the same subject were much more consistent.

Quality control (QC) plots (Fig. 1b, c) show, in bleed 1 of the
same samples, the variation of the centroids of each cluster (dots),
each sample (columns), and each channel (rows). The horizontal
line for each channel represents the 1:1 log ratio of the sample
cluster median fluorescence intensity (MFI) to a standardized
cluster MFI (standard values were the average of the MFIs for that
cluster in all eight samples from subject 5). Thus a dot that lies
further off the line indicates a greater MFI inconsistency between
sample and standard for that cluster, and the pattern of dots for
each sample is unique but may be similar to that of other samples
that experienced similar experimental conditions. The degree of
similarity is analogous to correlation measures, but dot patterns
reveal more underlying complexity. For example, dot patterns for
CD4 are more similar for samples run on the same cytometer,
while patterns for CD45RA suggest subjects 1–4 are more similar
to each other than to subjects 5 and 6.

The QC plots can facilitate rapid qualitative assessment of
variation between sample groups when visualizing all channels
and samples together (Fig. 1c). This fine-grained analysis shows
that certain channels, e.g., CD45RA and CD4, contribute more
strongly to MFI inconsistencies between samples than, for
example, any of the scatter channels that all have comparatively
tighter distributions about the 1:1 line. In addition to the
variations in fluorescence intensities, there were substantial
variations in the size (number of cells) of the clusters, potentially
due to both mis-assignment of cells to the wrong cluster because
of fluorescence changes, as well as genuine changes in
subpopulation sizes.

Thus the SWIFT high-resolution cluster maps provide a very
sensitive tool for identifying and localizing inter-sample variation.
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If this variation results in mis-assignment of cells to inappropriate
clusters, then cluster registration should improve the identifica-
tion of subpopulation size variation between the experimental
groups.

Strategy for SWIFT-based registration. Some previous regis-
tration methods have registered fluorescence intensities between

samples using all, or a major subset of the data, in single-channel
histograms. However, a shift in the global fluorescence values in
one channel could be due to a change in the proportions of bright
and dim cell subpopulations (Fig. 2a), or a shift in fluorescence
intensity. Different registration adjustments are required in these
two situations. Therefore, we use the model defined in the SWIFT
cluster template (i.e., cluster centroids, shapes, and proportions)
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Fig. 2 Strategy for SWIFT cluster-based registration. a Two Gaussian distributions demonstrate two possible explanations for bulk population shifts.
Compared to the middle panel, the peak shift in the overall population (black line) could be due to changes in the sizes or intensities of the constituent red
and blue subpopulations. b Independent cluster registration (ICR): from JMW092, a test sample was assigned to a template containing 184 clusters
derived from the reference sample and the cluster mean fluorescence intensities of test and reference samples compared (non-registered). For each
cluster, the cluster movement value was calculated (arrows shown for a few selected clusters), and these values were applied to register the sample events
and improve the correlation between sample and reference clusters (registered). The axes represent the ArcSinh-transformed mean fluorescence intensity
values for each cluster, shown in the CD3 channel. c Neighbor-dependent cluster registration (NDCR): the cluster positions were determined as in b, and a
best-fit correction line was calculated (red line, non-registered). All individual events were registered according to cluster movement values derived from
this line, resulting in locally constrained registration that preserves local variation (registered). The axes are the same as in b.
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that incorporates information from all other channels, to register
samples at the subpopulation level.

From JMW092, a test sample was assigned to a reference
template produced by SWIFT clustering of a reference sample.
The cluster movement vectors between test sample and reference
template were measured for each cluster, e.g., the staining in
almost all clusters of the test sample was slightly lower than the
reference sample, in the CD3 channel shown in Fig. 2. In
independent cluster registration (ICR), each cell is moved (in
several iterations) according to the cluster movement vector of its
cluster. For cells with partial membership in more than one
cluster, the cell is moved according to the weighted vector of the
relevant clusters (Fig. 2b). As the cells are re-assigned to the
reference template model after each iterative shift, a cell may
change its majority membership to a different cluster during the
registration process. Thus the resulting medians do not always
reach the exact reference values after four iterations.

However, batch effects may cause mainly global changes in
particular channels. For example, alterations in staining will alter
the MFI of positively stained cells but not autofluorescence,
whereas alterations in PMT amplification will alter both. Because
of the unknown contributions of different sources of variation, we
developed an empirical neighbor-dependent cluster registration
(NDCR) method to register cells using a correction value
determined by all clusters with similar values in that channel. A
best-fit correction line for each channel is generated from the
cluster information and each cell is then registered according to
the cluster’s position along this correction line (horizontal arrows,
Fig. 2c).

Evaluation of ICR and NDCR with semi-synthetic and real
data. To evaluate swiftReg’s abilities to improve cell classification,
we constructed semi-synthetic datasets to contrast two types of
variation: subpopulation-specific shifts and bulk channel shifts.
Cluster templates were derived from three samples in dataset
JMW092, and one well-resolved, moderate-sized cluster of cells
was selected from each sample. A semi-synthetic series of samples
was then constructed for each cluster by moving the cluster
progressively in two dimensions. A second series of samples was
constructed, for each cluster, by moving all cells progressively in
the same two dimensions. This strategy allowed unambiguous
tracking of cells and clusters.

Samples in each semi-synthetic series were then assigned to the
cluster template produced from the normal sample, and the
cluster assignments of the target clusters were determined. As the
magnitude of synthetic adjustments increased, cells in the original
cluster were increasingly mis-assigned to the wrong cluster
(illustrated for one cluster in Fig. 3a, which is Cluster One in
Fig. 3b). Samples in each series were then registered (using ICR,
NDCR, or both) to the first sample in the series. Registration
substantially improved the ability to assign the target cells to the
appropriate cluster (Fig. 3b). As expected, ICR was more effective
at improving assignment when cells in only one cluster were
moved, whereas NDCR was often more effective at correcting
samples in which all cells were moved, presumably because
information from many clusters provided a better estimate of the
global shift. Importantly, sequential registration by NDCR then
ICR provided the best, or close to the best, performance for each
situation (Fig. 3b). Registration allowed cells to be assigned more
robustly to the correct cluster, tolerating deviations that were up
to sixfold greater (Fig. 3b).

Using real, unmodified flow data, we next evaluated the effect
of different numbers of registration iterations, and two
approaches to registration iterations, partial or full. The partial
method performed an incomplete position-update per cell per

iteration, e.g., 25%, 33%, 50%, and then 100% of the cluster
movement vectors. The partial iterations were designed to test the
possibility that correct assignment might be improved by a more
cautious approach to the final positions. The full method
performed a complete position-update per cell per iteration, thus
for four iterations each step would be 100% of the cluster
movement vectors.

From the SDY420 study in the publicly available ImmPort
database (https://www.immport.org/shared/study/SDY420)21, we
chose five samples from the same subject (internal standards) that
were analyzed by CyTOF on different days. One sample was
randomly selected as the reference and all other samples were
registered to it. Registration was tested using partial vs. full
position-updates for NDCR, ICR, and both (NDCR followed by
ICR). The number of iterations was also varied from 1 to 10 for
NDCR or ICR, and to keep the total number of steps for the dual
method equivalent, we used 1 to 5 for NDCR followed by 1 to 5
for ICR. Euclidean distances between registered clusters and
reference clusters were measured, as well as differences between
cluster sizes. The Root Mean Squared Errors (RMSE) of the
distances and the sizes were calculated for registered samples, and
then divided by the RMSE of the non-registered samples to yield
a relative RMSE. For NDCR RMSEs, there is little difference
between partial or full iterations, and errors do not improve
substantially after the third iteration (Fig. 3c). For ICR, full
iterations resulted in lower RMSEs than partial iterations and
neither improves substantially after the fourth iteration. Registra-
tion by NDCR+ICR with full iterations resulted in slightly lower
relative RMSE than partial iterations and neither improves
substantially after two iterations of each (i.e., two NDCR followed
by two ICR). Furthermore, the combined NDCR+ICR method
gives the lowest relative RMSE for cluster sizes of all scenarios
tested.

Improvement of sample uniformity. NDCR and NDCR+ICR
were applied separately to the fluorescence flow cytometry data
shown in Fig. 1, and the registered samples were assigned to the
original cluster template. As expected, the cluster centroids in
each channel correlated more closely between samples after
registration, and consistent with Fig. 3, sequential application of
NDCR+ICR achieved the best results (Fig. 4). Very importantly,
the registration of the positions of each cluster also improved the
correlation of cluster sizes between samples (Fig. 4, size), even
though the registration did not directly target the cluster sizes.
This is consistent with the ability of swiftReg to correct the mis-
assignment of cells demonstrated in semi-synthetic data (Fig. 3b)
and also with the reduction of the RMSE of the cluster sizes in
CyTOF data (Fig. 3c).

Comparison between swiftReg and a prior method. The semi-
automated method described by Finak et al.18 uses operator
input to define target subpopulations and then automatically
registers the data in multiple samples to a reference. We
compared automated swiftReg registration using the same
dataset—a subset of a 10-color intracellular cytokine staining
dataset in which pre- and post-vaccination PBMC samples
from 48 subjects in a Phase I HIV vaccine trial (HVTN080
https://flowrepository.org/id/FR-FCM-ZZ7U) were stimulated
with three HIV antigens20. Some batches in this dataset lacked
positively stained, rare subpopulations for stimulated samples,
thus certain subpopulations existed in some batches but not
others. ICR should not be used in such cases so as to avoid
potential mis-assignment. Therefore, NDCR alone was used to
register all samples, and then activated T cell subsets were
evaluated in the resulting data using the same gating strategy as
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Finak et al. In this dataset, an apparently CD4+ Perforin+ cell
subpopulation was identified as an artifact of day-to-day var-
iation18. Cells in this subpopulation were enumerated in non-
registered and registered samples by conventional bivariate
gating (see Supplementary Fig. 1). The perforin staining varied
between batches 880 and 1053 (Fig. 5a, reference and non-
registered), but after registration the values in batch 1053

(registered) were aligned well with batch 880. Even though
registration was performed without specifically targeting any
subpopulation, swiftReg was able to markedly reduce the
number of the CD4+ Perforin+ cells, without materially
affecting CD4 T cell subpopulations producing Interleukin 2
and Interferon-gamma (Fig. 5b). Thus swiftReg improved the
consistency of the dataset without operator guidance.
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Batch registration reduces batch but not subject variation. The
most troublesome source of variation in many large flow datasets
is batch variation, due to changes in cytometer settings, reagents,
or sample handling between batches analyzed on different days.
We have extended swiftReg to target the elimination of these
batch effects, while maintaining biological variation to the max-
imum extent possible.

A cluster template is produced from an internal standard
sample in the reference batch, and the internal standard from
every other batch is registered to this template. The cluster
movement vectors for each cluster are saved in a batch
registration template and applied to each individual sample in
the reference batch (the principle of batch registration is
illustrated with synthetic data in Fig. 6a–f). If internal standards
are not available, batch consensus samples can be used instead,
provided that each batch includes a similar representation of all
biological groups. This process reduces the overall differences
between the two batches but does not affect variation between
samples within a batch.

Batch registration reduces the variation between experimental
groups, and this often increases the ability to detect differences
between biological groups. In the publicly available ImmPort
database (https://www.immport.org/shared/study/SDY420), the
SDY420 study21 describes the CyTOF flow cytometry data from
260 subjects with ages varying between 41 and 90 years, analyzed
with a panel of 27 markers focusing on surface antigens of
lymphocytes and myeloid cells. These samples were analyzed in
24 batches, with an experimental design that included an internal
standard in each batch. Using SWIFT clustering and QC plots
(described in Fig. 1) to examine the consistency of each parameter
across samples, there were clearly batch effects between the
internal standard samples (Fig. 7a, non-registered) and between
subject samples. Batch registration was performed using the
internal standards from each batch. This resulted in almost
complete alignment of the internal standard samples (Fig. 7a,
registered) and marked improvements in the consistency of
marker expression in the young/old study samples (Fig. 7b, batch-
registered). Note that heterogeneity within a batch was preserved,
e.g., sample-specific variability in CD20 in one sample within the
batch (blue arrows) or CD45RA in another sample (red arrows).
The alignment of internal standards is further shown for five
selected batches as stacked histograms before and after registra-
tion (Supplementary Figs. 2 and 3). For the same five batches, the
remaining samples are also shown before and after batch
registration (Supplementary Figs. 4 and 5).

A consensus registered sample was then created by subsampling
and concatenating all registered samples, and a cluster template was
created by clustering in SWIFT. All registered and non-registered
samples were assigned to this template. In the non-registered data,
31 clusters showed differences between young and old subjects

(Fig. 8a, non-registered) even after Benjamini–Hochberg correction
for multiple outcomes22. In contrast, 127 clusters showed young/old
differences in the registered data (Fig. 8a, batch-registered). Thus
registration (using only batch information) increased the ability to
detect biological differences between the experimental groups.

To facilitate comparisons with previous analyses, we aggregated
clusters by cluster gating (i.e., gating all cells within a cluster only
according to the median fluorescence values of their cluster,
Supplementary Fig. 6a) as described previously3 into well-
recognized phenotypes. As expected from the original analysis of
the SDY420 dataset21, B cell and CD8 T cell clusters were prominent
among the clusters showing differences with aging (Fig. 8b, c). The
SWIFT high-resolution analysis separates any subpopulations that
would be multimodal in any combination of dimensions, resulting
in large numbers of clusters. Figure 8d shows the detailed analysis of
the cluster sizes in all subjects, for two selected naive CD8+ T cell
clusters, as well as the total of all naive T cell clusters. The aggregated
naive CD8 T cell subpopulation showed a clear downward trend
with age, consistent with the analysis in the original study21 in which
the naive CD8 T cells showed the most prominent effect with age,
and the variation in the data at different ages was similar in
registered or non-registered data. As the naive CD8+ T cells are
defined by several markers with strongly bimodal distributions, the
probabilistic assignment process in SWIFT can overcome moderate
batch effects and successfully assign cells to the correct broad
phenotype, due to the multi-channel consideration of cluster
membership. In contrast, more subtle variations, such as those
defining cluster 322, show a stronger requirement for registration
before clear-cut trends can be identified.

SWIFT separates clusters on the basis of multidimensional
unimodality and therefore identifies subpopulations that cannot
be defined in traditional 2D plots. Biological significance of such
high-dimensional separations is supported by the behavior of
clusters such as 124, which shows very little change with age in
spite of being defined by markers similar to the age-dependent
cluster 322 (Fig. 8d).

To further demonstrate the improvement of detection of
biological differences in registered data using another analysis
modality, the registered files were analyzed by manual gating
using a single set of gates for all samples (Supplementary Fig. 6b).
Both naive CD4 and naive CD8 T cell subpopulations showed
more variation in the original data but less variation after
registration (Fig. 9, age). This resulted in a much more obvious
trend for reduced numbers of naive CD8 T cells with age and
even revealed a marginally significant (p value 0.0311) effect of
age on the naive CD4 T cell subpopulation. These improvements
in the detection of biological differences were accompanied by
blunting, but not complete removal, of the batch effects
demonstrated in the same data plotted according to batch
number (Fig. 9, batch).

Fig. 3 Evaluation of iterative registration using semi-synthetic and real data. a One of the samples described in Fig. 1 was clustered using the SWIFT
algorithm. To create semi-synthetic samples with cluster-scale variability, after compensation and background subtraction, values in two channels for one
cluster were divided by scaling factors ranging from 1 (no change) to 10 in 8 steps. For semi-synthetic samples with channel-scale variability, all cells were
scaled by the same eight increments. The increments are expressed as magnitudes, i.e., numbers increase to indicate larger deviations between non-scaled
and scaled values. The data were then ArcSinh transformed (see axes). All samples were then assigned to the original template. Cells in the specified
cluster were assigned correctly (green) or incorrectly (magenta). Gray contours represent all cells. b Three cluster- and channel-scaled samples were
registered to the corresponding original, non-scaled samples by ICR, NDCR, or NDCR+ICR. Registered samples were then assigned to the original cluster
templates. For three clusters (one from each sample, Cluster One is shown in Fig. 3a), the capture of cells by the correct cluster was measured for
increasing magnitudes of deviation. c From SDY420, five samples from the same subject were collected and frozen, then analyzed by CyTOF on different
days. One sample was randomly selected as the reference and clustered using the SWIFT algorithm, and then the remaining samples were registered to the
resulting template. Registration was repeated with varying numbers of iterations of NDCR or ICR or both and either partial or full position updates per
iteration. All registered samples were then assigned to the reference SWIFT cluster template. The RMSE of each registered sample relative to the RMSE of
its non-registered counterpart are shown.
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Discussion
swiftReg has several advantages. Registration using swiftReg is
fully automated and does not require user selection of landmarks
or target subpopulations. Several types of variation can be
addressed, and batch registration can enhance identification of
biological effects by selectively removing batch effects that would
otherwise obscure small biological effects. A requirement for
registration can be determined by examining the full dataset using
tools such as the correlation heatmaps or QC plots described in
Fig. 1. A particular advantage is that registration can be per-
formed without any pre-definition of subpopulations of interest.
In fact, it is critically important that the subpopulations of interest
are not pre-defined, so that the registered dataset can be explored

in a non-biased manner. We identified batch effects in all multi-
batch datasets that we analyzed, from multiple laboratories, so
swiftReg is likely to be helpful in many datasets.

When is swiftReg most required? In general, major cell types,
defined by multiple clearcut markers (e.g., T cells are CD3+
CD4+CD20−CD14−CD19−) can be identified well by the basic
SWIFT clustering assignment step, so that substantial batch
variations can be handled effectively by the main SWIFT algo-
rithm. Registration is more important for more subtle sub-
population differences in which critical markers are not as
distinctly bimodal, e.g., manually gated naive CD4 and CD8 T
cell subpopulations, or some of the high-resolution SWIFT
clusters.
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swiftReg can substantially improve data by reducing variability
and particularly batch effects, but there are limits beyond which
registration cannot help. Cluster registration is a supplement, not
a replacement, for good experimental design and data reprodu-
cibility. If clusters are shifted substantially, there will inevitably be
ambiguities in the assignment of cells to clusters, and neither
manual nor automated registration can correct the aberrations.
Although swiftReg can improve the overall detection of biological
differences in datasets, we cannot exclude the possibility that
occasional subpopulations could show anomalous results. If a
particular subpopulation is absent in the reference sample, or
absent from an entire batch, this subpopulation may not be
aligned correctly by registration (see recommendations below).

The choice of reference sample for derivation of a cluster
template is strongly dependent on the experimental design. This
sample should include representatives of all subpopulations in the
experiment (e.g., only antigen-stimulated samples contain acti-
vated T cell subpopulations) to ensure all subpopulations are
registered appropriately. If unique subpopulations are suspected
in some samples, then a concatenate of all samples should be used
as reference. Batch registration should be performed with internal
standards if available, so that the appropriate registration vectors
for each cluster can be calculated without any influence from the
biological groups in the experiment. Alternatively, batch con-
catenates should be used, provided biological groups are repre-
sented at similar proportions in each batch.

swiftReg is a flexible tool, with several choices for different
types of experimental data. We envisage that batch registration
will be the most widely used application of swiftReg. The use of
NDCR and ICR will be influenced by the type of variation present

in each dataset, but in general the most effective protocol is to use
a few cycles of NDCR followed by a few cycles of ICR. The initial
constrained NDCR cycles should correct global effects and
leverage all the information from surrounding clusters to deter-
mine the initial correction vectors, followed by the fine tuning
with ICR. In rare cases when a key subpopulation is missing from
an entire batch, only NDCR should be used. Recommendations
for the choice of method are:

● For batch registration with internal standards, use NDCR
followed by ICR.

● To reduce all MFI variation due to either artifactual or
biological differences between samples, e.g., enumerating
cytokine-producing cells, use NDCR followed by ICR on
individual samples.

● To remove channel-specific effects (e.g., staining or PMT
voltage changes) in the absence of internal controls and to
preserve minor positional information, use NDCR only.

● If some batches contain subpopulations that are completely
absent in other batches (or their controls), use NDCR only.

● In each case, a total of four iterations (two each NDCR and
ICR for the combined method) are recommended, as a
compromise between speed and completeness.

The outputs from swiftReg are user-friendly, standard-format
FCS 3.0 files in which each event has been shifted. These files can
be analyzed either manually or by any of the automated clustering
and gating methods that are becoming increasingly available. The
production of standard .FCS files also makes swiftReg a useful
component of automated processing pipelines. In all cases, the
registered data from swiftReg should improve the quality of
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    showing Batches

f.  Batch-registered,
    showing Old and Young

d.  Register BATCHES
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Fig. 6 Strategy for selective removal of variation due to batches. a–f The batch registration strategy is illustrated with synthetic data that models a single
cluster as a two-dimensional Gaussian distribution. Eighteen Gaussians of 300 cells each represent 18 subjects, each with a different cluster centroid. Each
subject is represented by a different color in a, and the three batches are designated in b. Six samples were designated as old and 12 as young (c). The
cluster movement vectors necessary to register the centroids of the blue and green batches onto the red batch are shown in d, and the batches and young/
old samples after registration are shown in e, f. Colors represent different subjects (a), batches (b, d, e), or age (c, f).
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subsequent analysis and increase the detectability of biological
changes.

Methods
Heatmap of cluster correlations. The SWIFT clustering algorithm2,3 written in
MATLAB (The MathWorks, Inc., Natick, MA, United States) was used to produce
a cluster template from a concatenate of influenza peptide-stimulated and negative
control samples from a normal human subject. Forty-eight individual samples were
assigned to this template as previously described2. This provided a table of the sizes
(cells per cluster) of each sample and a second table of the centroids (i.e., medians
of compensated fluorescence intensity values that are then ArcSinh-transformed)
of each cluster, each channel, each sample. For cluster sizes or channel centroids,
correlations were calculated between each sample pair A and B, according to Eq. 1,

ρ A;Bð Þ ¼ 1
N � 1

XN
i¼1

Ai � μA
σA

� �
Bi � μB

σB

� �
; ð1Þ

where N is the number of clusters, A and B are vectors of either single-
channel cluster centroids or cluster sizes from sample A and B (respectively), μ and
σ are the mean and standard deviation of the respective vectors, and ρ is the
Pearson correlation coefficient (i.e., linear dependence) between vectors of samples
A and B23.

Creation of two sets of semi-synthetic samples. A sample was clustered by
SWIFT and one cluster was selected for tracking. The selected cluster was well
resolved, meaning for repeated SWIFT assignments the cluster contained at least
80% of the original cells at least 80% of the time. We further selected the most
stable cohort (>95% same cells, >95% of repeat assignments) of cells within the
well-resolved cluster for precise tracking. The sample was then analyzed manually
in FlowJo to identify background staining levels in each channel. The semi-
synthetic sample was then compensated and the backgrounds subtracted. Then the
CD3 and CD4 values of only the stable cohort of cells were divided by a series of
scaling factors ranging from 1 (no change) to 10, in 8 steps, and the non-cohort
cells were unchanged. Then the backgrounds were added back, and a new FCS file
was generated for each scaling factor used. A second set of semi-synthetic samples
was created by scaling CD3 and CD4 values of all cells. In both sets, the same stable
cohort of cells was tracked.

Selection of reference samples. Registration broadly requires a reference (target)
sample and test samples (to be registered). The reference is a single-sample or
consensus (i.e., concatenation of multiple files) FCS 3.0 formatted file. The best
reference sample is highly dependent on the dataset and should ideally contain all
the subpopulations present in any sample to be registered, e.g., antigen-stimulated
samples will contain additional subpopulations relative to negative controls.
Consensus references reduce the risk of missing subpopulations within a dataset
and minimize effects of occasional outliers. However, consensus samples will
broaden peaks and decrease resolution, and inclusion of substantially different
samples may result in false heterogeneity, i.e., one subpopulation represented by
two peaks.

Calculation of cluster movement vectors. SWIFT was used to produce a cluster
template from a reference sample. This template contains a Gaussian Mixture
Model (GMM) that encodes each cluster in the reference sample as a set of cen-
troids (mean of the transformed intensity of all events in the cluster in each
dimension), covariances, and relative sizes. Test samples were assigned to the
reference GMM, with every event allocated proportionally to one or more clusters,
specifically, the proportion of an event allocated to a cluster equals the GMM
posterior probability estimate that the event comes from the cluster. After initial
assignment, new cluster centroids were calculated for the test sample. Individual
channel movement values were calculated as the difference between the centroids
of the sample and reference for that cluster. The cluster movement vector is the
combination of the individual channel movement values, i.e., the cluster movement
vectors will bring the centroids of each test sample cluster into alignment with
those of the corresponding reference cluster.

Independent cluster registration. The overall goal of ICR is to align each test
sample cluster, independently, to the corresponding cluster in the reference tem-
plate. Thus each cell in the test sample is moved according to its cluster movement
vector, to align the data more closely with the reference. If a cell has a very high
probability of belonging to only one cluster, the movement vector is simply the
cluster movement vector for that cluster. If a cell has partial membership in more
than one cluster (e.g., 40% and 60% in A and B, respectively), the cell is moved
along a compound vector assembled from the weighted vectors for each relevant
cluster (40% A, 60% B). This avoids introducing discontinuities in the cell
movements.

In samples requiring registration, some cells will almost certainly be assigned
to the wrong cluster during the initial assignment to the reference template. To
provide opportunities for correction of these initial mis-assignments, cells are
moved iteratively, recalculating new centroids and cluster movement vectors after
each iteration. The final cell intensities in each channel are then saved in a
standard FCS file that can be analyzed by standard manual or algorithmic
methods.

It is important to note that ICR can potentially introduce false heterogeneity if
there are rare subpopulations that are only present in either the reference or the
sample. This issue can be addressed using the following methods.

Neighbor-dependent cluster registration. To establish neighbor-dependent
channel movement values, sample clusters are first ranked in ascending order
according to the cluster centroid values in that channel, of the sample being
registered. Because estimation uncertainty of centroids is inversely related to
cluster size, clusters are weighted between 0 and 1 according to size (see below
and Supplementary Fig. 7). For each channel, clusters are then binned such that
the cluster weight per bin is a percentage of the total cluster weights in the
sample. Thus, for example, with 20 bins, each bin would contain 5% by weight of
clusters. The number of bins used is a function of the number of clusters (see
below and Supplementary Fig. 8). The average bin intensity is the weighted
average of the sample cluster centroids in that bin. The bin movement value is the
weighted average of the differences between the sample and reference channel
values for the clusters in that bin. Then a smooth spline curve is fitted across the
average bin intensities (x-axis) and bin movement values (y-axis) and attenuated
to zero for outlier regions with no clusters. For each channel, each cluster’s
neighbor-dependent movement value is then given by the curve at the point that
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Fig. 7 Evaluation of selective removal of variation due to batches. Batch
registration of the SDY420 study was performed by registering each of the
internal standards to a reference (Batch 4) internal standard to generate 24
batch-specific registration templates, and the shifts in these templates were
applied to the appropriate batches of individual samples (total
260 samples). For three batches, consensus reference samples were used
because internal standards were unavailable. A concatenate of the
registered samples was clustered in SWIFT, and all samples were assigned
to the resulting cluster template. QC plots (described in Fig. 1) show the
variation in the centroids of 13 selected channels of each cluster in all
internal standards before and after registration (a) and in 12 actual samples
from one batch before and after batch registration (b). Arrows indicate
samples that are outliers for CD20 or CD45RA cluster centroids.
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Fig. 8 Evaluation of SWIFT clusters that change with age. a–c The registered and non-registered samples described in Fig. 7 were analyzed by comparing
the numbers of cells/cluster between the oldest 20 and youngest 20 subjects (n= 20 biologically independent samples per group). Each dot represents
one cluster. p Values were calculated by two-sided Wilcoxon test, followed by Benjamini–Hochberg correction for multiple measures and plotted against
the ratio of the geometric means of the old and young groups. The colored line indicates p= 0.05. Clusters were classified by cluster gating
(Supplementary Fig. 6a) into a live cell clusters, b B cell clusters, and c CD8 T cell clusters. In d, each dot represents one subject. Cluster sizes are sorted by
age or batch for two selected naive CD8 T cell clusters (124 and 322), and the sum of the cells in all 32 naive CD8 T cell clusters for each subject. p Values
were derived from a two-sided Wilcoxon test of two subject groups (oldest vs. youngest) with n= 20 biologically independent samples per group.
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matches that cluster’s centroid. The overall cluster movement vector is the
combination of all the single-channel movement values. As with ICR, NDCR uses
compound vectors for cells with multiple cluster memberships, registration is
performed iteratively, and registered data is encoded and output as standard
FCS files.

Calculation of cluster weights for NDCR. The cluster centroids used in gen-
erating the best-fit correction line are weighted according to size. During NDCR
registration, corresponding clusters in the test sample and reference template may
have different numbers of cells (κ). Owing to estimation uncertainty, κ is the
minimum size of the test sample or reference template cluster. Furthermore, we
assume that centroid estimate accuracy improves with cluster size (i.e., law of large
numbers applies) and that the centroid estimation errors relative to cluster cov-
ariances are consistent across clusters and experiments. We therefore fix our test
statistic parameters to a standard deviation (σ) of 1.0, and a mean (μ) of 1/15 but
allow the κ to vary. Our goal is to assign the cluster weight (ω) based on the
probability that a sample cluster is correctly assigned (within a tolerance of μ) to its
cluster in the reference. Setting the tolerance to a constant relative to σ allows the
probability to adjust according to the size of the smallest cluster between the
reference or sample. Using this formulation (Eq. 2), we get the equation,

ω ¼ 1� 2 ´ tcdf � μ

σ
ffiffiffi
κ

p ;max 1; κ� 1ð Þ
� �

ð2Þ

where tcdf is the Student’s t cumulative distribution function in MATLAB, with test
statistic � μ

σ
ffiffi
κ

p , and degrees of freedom max 1; κ� 1ð Þ. The function is para-

meterized to produce a range of weights between ~0.1 and 1, such that large
clusters (e.g., >10,000 cells) have equal weights of 1. Progressively smaller clusters
have smaller weights (Supplementary Fig. 7). If there is no corresponding cluster in
the test sample, then that cluster size is 0, and the calculated weight becomes 0 for
that cluster. This would mean the zero-weighted cluster has no impact on the
movement of any cells during registration. This setting is adjustable in the con-
figuration file, and we recommend that it not be set <1/20 or >1/10. The default of
1/15 should be suitable for samples containing <20 million cells.

Calculation of binning for NDCR. To obtain stable bin movement vector estimates
for NCDR, each bin should contain more than one cluster (ideally the more the
better). We use the following heuristic (Eq. 3) to calculate the number of bins,

Bins ¼ 0:75 ´
ffiffiffiffi
N

pj k
ð3Þ

where N is the number of clusters. We further constrain the minimum and
maximum number of bins to 2 and 20, respectively (Supplementary Fig. 8).

Batch cluster registration. To remove variation due to experimental batches,
while maintaining as much biological variation as possible, swiftReg was extended
to register batches. The overall strategy is to register the batches to each other as
single units and apply the resulting batch-specific shifts to all individual samples in
that batch.

A SWIFT cluster template is produced from an internal standard (or consensus
sample) from a reference batch, and internal standards (or consensus samples)
from each of the other batches are registered to the reference template. The
resulting batch movement vectors are captured in a batch registration template. All
individual samples in each batch are then registered using these batch-derived
cluster movement vectors.

Selection of both reference and test samples is critical for successful batch
registration. Two methods are appropriate: (1) If internal standards are available
(e.g., if aliquots of a single sample were cryopreserved, and one aliquot was thawed
to accompany each batch), then these should be used from both reference and test
batches to derive the batch registration template. (2) If internal standards were not
included, then a concatenate of all test samples in each batch should be used,
provided each batch contained a similar distribution of samples from all the
experimental groups.

Statistics and reproducibility. The SDY420 dataset consisted of 260 CyTOF flow
cytometry samples from subjects with age varying between 41 and 90 years and
contained no replicates (i.e., each sample was from a single subject). Two groups
were identified from the 20 oldest and 20 youngest subjects (n= 20 biologically
independent samples per group). p Values for all group-wise comparisons in Figs. 8
and 9 were calculated via a two-sided Wilcoxon test. p Values in the volcano plots
in Figs. 8a–c were further corrected for multiple measures by the
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Fig. 9 Manual analysis of the registered data. The registered and non-registered samples described in Fig. 7 were analyzed manually using a single set of
gates without any algorithmic assistance. The same gates (Supplementary Fig. 6b) were used to analyze both registered and non-registered data. Each dot
represents one subject. Subpopulation sizes are sorted by age or batch for naive CD4 T cells or naive CD8 T cells. p Values were derived from a two-sided
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Benjamini–Hochberg method. The three different datasets described in this paper
show that our method reproducibly improves batch data consistency. We provide
sufficient instruction to reproduce the same analyses.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source datasets analyzed during the current study are available in the following
repositories/accession codes: Fluorescence samples: JMW090 (8 samples) https://
flowrepository.org/id/FR-FCM-ZZ8W; JMW090 (40 samples) https://flowrepository.org/
id/FR-FCM-Z284; JMW092 https://flowrepository.org/id/FR-FCM-Z283; and HVTN080
https://flowrepository.org/id/FR-FCM-ZZ7U; CyTOF samples: SDY420 https://www.
immport.org/shared/study/SDY420 and SDY420 Metadata (https://doi.org/10.5281/
zenodo.3733491). All relevant data generated and analyzed are available from the authors
upon reasonable request. Processed data underlying Figs. 2b, c; 3b, c; 5b; 8a–d; and 9 are
available via the following links: Fig. 2 data (https://doi.org/10.5281/zenodo.3727063);
Fig. 3 data (https://doi.org/10.5281/zenodo.3727074); Fig. 5 data (https://doi.org/10.5281/
zenodo.3727077); Fig. 8 data (https://doi.org/10.5281/zenodo.3727082); and Fig. 9 data
(https://doi.org/10.5281/zenodo.3727088).

Code availability
swiftReg is included in the SWIFT package (https://doi.org/10.5281/zenodo.3704000),
which is freely available for download at http://www.ece.rochester.edu/projects/siplab/
Software/SWIFT.html
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