

A Systems Approach to Color Scanning

Gaurav Sharma

Color and Digital Imaging Systems (CADISYS)

Digital Imaging Technology Center (DITC)

Xerox Corporation

11/13/97

Acknowledgements

- Good part from my PhD work at NCSU
 - -Other contributors from NCSU
 - Joel Trussell
 - Poorvi Vora
 - Michael Vrhel
- Shen-ge Wang (ECS Project)
 - -work, examples, slides

Outline

- Historical evolution
- Systems Perspective
- Quality factors
- Comparative evaluation
- Conclusions
- Current Work

Historical Evolution of Color Scanning

- Original use in Color printing
 - -Photographic inputs
 - -Scanner directly drove printer
 - -Closed proprietary systems with expert operator

Historical Evolution of Color Scanning

Densitometric Scanning

Historical Evolution of Color Scanning

Present scenario

- -Digital images from scanner for multiple uses
- Multiplicity of input media (photo, litho, xero, inkjet)
- Open networked systems with novice users

Two major problems

- -Not feasible to relate each I/O device pair
- -densitometry unsuitable for input measurement

Device Independent (DVI) Color

- Use common language for communication
 - -calibrate I/O devices to a DVI color space
 - -decouples problem and eliminates operator
- Devices Need Calibration

Scanner Calibration

Scanner Calibration

• Limitation of current color scanners: Different input media require different calibration

Scanner Calibration

User must identify medium

Problem: Eye and Scanner See Color Differently

Requirement for Matching Eye

• Luther-Ives Condition:

Viewing illum x Cone Sensitivities

Scanning illum x Filter Transmittances

$$A_L = T G$$

Colorimetric Scanning

- Why isn't everybody doing it already?
 - -Fabrication of filters that match the eye is not easy
 - -Signal to noise issues

- -Material and fabrication constraints
- Cost constraints

Measure of Goodness

 Needed to evaluate one set of scanner sensitivities in relation to another

- Wish list
 - -agreement with perceptual evaluation
 - -readily computable
 - -account for differing noise performance
 - -continuous and differentiable function of scanner sens
- Useful for design as the quantity to be optimized

Existing Measures

- Luther-Ives condition
 - -binary measure of goodness
 - -little utility in design
- Neugebauer's Quality Factor
 - -Single filter evaluation
 - -Closeness to a color mixture curve
 - Average for multiple filters

$$q_n(\mathbf{g}) = \left(\frac{\left\|\mathbf{P}_{\mathbf{A}_{\mathbf{L}}}\mathbf{g}\right\|}{\left\|\mathbf{g}\right\|}\right)^2$$

New Measures

- Vora-Trussell measure
 - -generalizes Neugebauer quality factor
 - -arbitrary # of filters
 - -noise unaccounted for
 - -non-linearities in perception ignored

$$q_{v}(\mathbf{G}) = \frac{tr(\mathbf{P}_{\mathbf{A}_{L}}\mathbf{P}_{\mathbf{G}})}{3}$$

New Measures

- Comprehensive Figure of Merit
 - -based on minimum achievable error in CIELAB
 - -takes measurement noise into account
 - -simplification using small error approximation
 - -computationally simple and analytic
 - -encompasses other measures as sub-cases

251 Filter sets

- -Parameterized filters with Gaussian transmittances
- -parameters varied to obtain large set
- base set designed to optimize Vora-measure
- Reflectance dataset
 - -240 Kodak Q60 target
 - 120 Dupont paint catalog
 - -64 Munsell chart
- Signal independent noise at SNRs of 40, 50, 60dB
- Measures computed from sensitivities, statistics
- Avg. ∆E*_{ab} from simulated noisy measurements
- Scatter plots of measures vs. Avg. △E*_{ab}

Conclusions

- A comprehensive figure of merit for evaluation of scanner colorimetric quality is defined
 - -useful in evaluation and design
 - -Existing measures are in poor agreement with perception
 - -New figure of merit provides excellent agreement with Avg. ΔE_{ab}^* over wide range of SNRs
 - under appropriate simplifying conditions the new figure of merit collapses to the existing measures

Work in Xerox (ECS/CADISYS/DITC)

Three Approaches to counter Media Dependence

Colorimetric scanning

- match the eye
- Four-filter scanning
 - quasispectrophotometer

- Media identification
 - automated expert

Colorimetric Scanning

- Design algorithms
 - approx colorimetric filters with actual materials
 - well separated red, green, and blue for high SNR
- Sample design (glass filter)

FWA coated filter design

- work ongoing

Scanning with more than 3 filters

Spectrophotometer

- Spectrophotometry Extremely Slow and Expensive
- How much information do we really need?

Four Filter Scanning

- Goal:
 - record spectral information (more than eye)
- Enables matching of eye under several lights and provides manufacturing flexibility
- Requirements:
 - -3 too few and 36 too many
 - 4 filters pretty good

Four Filter Scanning: Status

Preliminary filter designs

- Not designed for manufacturability
- Collaborating on FWA designs
 - using color filter coatings

Media Identification

- Goal:
 - Identify the scanned medium (automated expert operator)
- Makes system easier to use
- Requirements:
 - -sufficient spectral information to differentiate document types

Media Identification: Status

Simulation

- overlay transparency/filter with existing RGB channels

Encouraging results

- 90% classification accuracy for photo, litho and inkjet media

		Classified as		
Input		Photographic	Lithographic	Inkjet
Medium:	Photographic	0.94	0.05	0.01
	Lithographic	0.05	0.85	0.10
	Inkjet	0.06	0.01	0.93

Media Identification

- Interim solution
- Works for single material pages
- Problems with:
 - -mixed media pages
 - -new media types
 - inkjet
 - hi-fi color

Summary

Approach	Single calibration	Des ign Modifications	Status	Multiple Viewing Illuminants
Colorimetric	✓	Major	Needs Work	×
Four Filter	✓	Major	Needs Work	✓
Me dia Ide ntific atio n	×	Minor	Available	✓

Colorimetric Scanning

- 3-D representations of the object spectrum in both cases
- Current (non-colorimetric scanners)
 - -Different 3-D representations in scanner and eye due to differences in sensitivities and illuminants
 - Colors that appear identical to scanner can appear different to eye and vice-versa

Scanner RGB (140,79,6) for both

ΔE*ab Difference of 13.17 Units

Media Dependence Cross-tests

Train	Testing		(Ave. ∆E)	
	Photo.	Litho.	Xero.	Inkjet
Photo.	0.95	4.14	3.83	3.43
Litho.	4.32	0.78	1.90	2.40
Xero.	3.97	1.82	1.11	1.86
Inkjet	4.68	3.33	3.57	1.21

 $\Delta E = 1$: ~ Just Noticeable Color Difference

Max. $\Delta E \sim 3$ Ave. ΔE

Empty Slide

