Inductive Noise: Sources, Problems, & Solutions

Raj Parihar
Aaron Carpenter

Presented for ACAL
Who cares?

- Power distribution system is essentially resistive and inductive in nature
 - For proof, see any paper or book by Prof. Friedman

- At high frequency
 - $\text{IR} \ll \text{L} \cdot \frac{\text{d}I}{\text{d}t}$
 - High freq, high load, high inductance \Rightarrow more timing/voltage errors
Outline

- What is inductive (or di/dt) noise?
- How does it affect modern processors?
- Can we fix it at circuit/package level?
- Can we reduce it?
- Can we correct/recover from it?
What is inductive noise?

- Voltage drop because of inductance ($Z_L = j\omega L$)
 - As frequency increases, so does the inductive component
- $V = L \frac{di}{dt}$
 - On-chip inductance is unavoidable
 - di/dt noise increases with switching speed, current load
- Voltage power delivery system has noise margins (typically 5-10\% of nominal V_{dd})

E. Grochowski, D. Ayers, and V. Tiwari, “Microarchitectural di/dt Control,” DATC 03.
D. Ernst et al, “Razor: Circuit-Level Correction of Timing Errors for Low-Power Operation,” MICRO03
How does it affect modern processors?

- **Mid-Frequency di/dt noise**
 - Power supply resonance 50-200MHz

- **High-Frequency di/dt noise**
 - Single cycle, large current swing
 - Can happen at any time
 - Can’t eliminate a resonance
Can we fix it at circuit/package level?

- Decoupling Capacitors
 - Offset the inductive load
 - Keep area, cost, energy low
 - Place decaps equally OR
 - Determine current draw during design, place decaps where load determines

Floorplanning Fixes

- Floorplanning
 - Self & correlated weighting on modules
 - Iteratively decide where to put them to reduce load on Vdd power pins Reduce need for decaps

Architectural Reduction

- Gradual wake-up, sleep signals
 - More time, less current change
 - Decrease performance

- Pipeline Damping or Muffling
 - Stop pipeline from issuing to stop high current draw
 - Insert dummy instructions to keep resources busy to stop big low swings

- Noise controller
 - Decay counter – only turn off after 16 cycles of idleness
 - Queue-based – priority for certain modules
 - Pre-emptive gating – make sure not to turn off and get turned back on

Reduced di/dt - Costs

- **Goal of body of work:**
 - Keep current swings low, reducing di per cycle
- **All have tradeoffs in performance and/or power and energy**
 - Decreasing the pipeline throughput, throttling performance
 - Inserting instructions to raise energy
 - The end goal is to keep consistency
- **Tried to reduce the physical noise**
 - Instead, reduce *the effects* of noise on the architecture
Next Level: Architectural Tricks

- Architectural techniques
 - Mainly targets low- or mid- frequency di/dt noise
 - More efficient solutions
 - Compare to “pure” circuit based techniques

- Change the way we look at the noise
 - Treat as voltage (noise margin) or timing violation
 - Avoid the errors from happening
 - Or accept the errors and recover from them
RAZOR Flip Flops

- Timing critical Flip Flops are augmented with shadow latch

- Shadow (backup) latch
 - Conservative timing
 - Verifies the results

- If timing violation detected
 - Store results from shadow latch

- In RAZOR
 - Only 3% FFs require backup
 - Failure is not an option!

- **DIVA** vs RAZOR
 - Full fledge as oppose to selective
Sensor based Throttling

- "Voltage emergency"
 - Coarse grain phenomenon
 - 10s’ of clock cycles
 - Due to sudden rush of activities
 - Branch misprediction
 - L2 cache miss, Pipeline flushing

- Sensor based control
 - Sensor: Detect the droop/surge
 - Actuator: Control clock gating, functional units, data L1 cache

- Downsides
 - Inherent sensor delay (1-2 clks)
 - Sensor error – false alarm

- ~20% performance/energy ↑
Software based Approach

- Identification of loops/code sequences which cause the voltage “emergencies”

- Findings/Insights
 - 2-5 loops are responsible for ~ 75% of the total voltage emergencies per application

- Software based solutions
 - L2 miss: Better (balanced) prefetching
 - Long latency INS: Better code scheduling
 - Branch Misprediction: Perfect prediction
 - Loop unrolling: Performance vs inductive noise

- All above optimizations together can
 - Reduce 10-60% of the emergencies

Reasons of voltage emergencies

Consider di/dt noise in all above optimizations!
Voltage Emergency Prediction

- "Predictor" replaces the threshold sensor

- Voltage "emergencies" are
 - Consequence of control flow and micro-architectural events
 - Easy to accurately predict (~90% of the time)

- Signature based throttling
 - Predictor "learns" the signatures
 - Eventually predicts the emergency in advance
 - 13.5% higher performance compared to sensor-based throttling

- Fail-Safe mechanism
 - Checkpoint based recovery

- Sufficient lead time to activate the control

3/7/2012

DeCoR: **Delayed Commit & Rollback**

- Doesn’t require fast sensors or actuation mechanisms
- Machine architecture divided into
 - Rollback (RB) protected zone
 - Performance enhancing parts
 - i.e. ROB, issue logic, LSQ etc
 - Timing margin (TM) protected zone
 - Employs improved circuit techniques
 - i.e. Retirement Register File, L1
- Delayed Commit
 - Verify the noise speculative state
- Rollback
 - If sensor detects the emergency, flush all the speculative states
- **Sensor delay doesn’t penalize!**

Tribeca: PVT Variations

- A fine-grain distributed local recovery (LR) scheme
 - Per-unit voltage settings
 - Error detection unit (EDU)
 - Transition of each stage
 - Replay using buffers

- Comparison: Max clk speed possible
 - Worst case design: upto ~75% of F_{MAX}
 - Tribeca design: upto ~ 91% of F_{MAX}

- Area overhead
 - IBM POWER6: Global recovery unit
 - 15% of baseline design; without RU
 - Area overhead: 1% of POWER6

Some Other Advancements

• **RAZOR II**
 - Detection happens in shadow flip flop
 - For correction a global recovery unit is used

• **Bullet proof pipeline**
 - BIST for whole pipeline
 - Results are validated after each stage

• **Event-Guided approach voltage noise in processors**
 - Monitor “hot loops” i.e. loops with L2 misses and pipeline flushing

• **IBM POWER6 reliability**
 - Ships with a global recovery unit
References

References (cont…)

• D. Ernst et al, “Razor: Circuit-Level Correction of Timing Errors for Low-Power Operation”, IEEE MICRO 2004

• Joseph, R. et al, “Control Techniques to Eliminate Voltage Emergencies in High Performance Processors”, HPCA-03

• Reddi, V. et al, “Voltage Emergency Prediction: Using Signatures to Reduce Operating Margins”, HPCA-09

• Gupta, M. et al, “DeCoR: A Delayed Commit and Rollback Mechanism for Handling Inductive Noise in Processors”, HPCA-08

References (not covered)

- Process Variation Tolerance/Timing Tolerance
Questions?
Backup Slides
Where is it a problem?

- **Mid-frequency**
 - Current load transitions operate @ power supply resonance (50-200MHz)

- **High-frequency**
 - Large current swing in a single clock cycle
 - Exacerbated by clock gating

M. Popovich and E. Friedman, “Decoupling capacitors for multi-voltage power distribution systems,” TVLSI Vol 14, No 3, March 2006
Tribeca: Tackle PVT Variations

- PVT variations
 - Vary from part to part of chips
 - Adding them together leads to excessive conservative design
 - Differ significantly in temporal and spatial scales

- Fine grain mechanism to control various part of microarchitecture
 - Global recovery mechanism maybe wasteful