On-Chip Interconnects and Wire Problems

ACAL Group Seminar

Raj Parihar
Outline

- Wire Problem
- Wire Metrics
- Leveraging Wire Properties
- Wire Aware Microarchitectures
- Summary
- References
Future of Wires

- Scaling and Current Scenario
 - Increasing Chip Complexity (More functionality)
 - Local wire % grows exponentially
 - CAD tool should account this increased wire density
 - Global On-Chip Communication Cost
 - Wire performance, relative to gates will continue to worsen
 - Aggressive use of repeaters and buffers results into increased chip area and power consumption
Wire Problem: What is it?

- With Technology Scaling
 - Gate delay decreases
 - less area and capacitance
 - On chip Local wire delay decreases
 - Wires geometry is scaled down too
 - Global wire delay scales upward
 - These wires do not scale down

- Increasing difference in “global wire delay” w. r. t. gate delays is popularly known as “Wire Problem”.

- On an average 50% power is consumed in on-chip interconnects.
Metrics for Gates & Wires

- How does a wire affect Circuit Performance?
 - Capacitance
 - Adds load to driving gate
 - Capacitance, Resistance and Inductance
 - Add signal delay (i.e. RC delay)
 - Capacitance, Inductance
 - Add signal noise by coupling to neighbors
Wire Characterizes

- RC Delay Models
 - Inductance effect is avoided for various reasons

- Resistance Modeling
 - R wire = p / (Thickness – barrier) . (Width – 2 barrier)

- Capacitance Modeling
 - C wire = 2. C vert + 2. C horz + C fringe (vert, horz)
Leveraging Wire Properties

- Heterogeneous – Hybrid Wire Architecture
 - Low Latency Wires
 - High Bandwidth Wires
 - Low Power Wires

- The idea is to use appropriate sets of wire for a particular kind of transfer
 - Improves performance (Roughly 10%)
 - Saves overall energy (Roughly 60%)
Wire Aware Microarchitecture # 1

- A Directory-based Cache Coherence Implementation with hop imbalance
- Example: Write Miss by P1
Wire Aware Microarchitecture # 2

- Accelerating Cache Access in Highly Associative caches
- Optimize the Hit Latency of Tag Array

Diagram:
- Low Latency L wire
- High BW/ Low Power wire
- Tag Array
- Data Array
Wire Aware Design: Guidelines

- Narrow Width Messages (Low Latency Wire)
 - ACK, NAK and other short messages
 - Invalidation in Cache Coherence Protocols
 - Checks and Control Signal Data

- High Bandwidth Messages (High BW Wire)
 - Data read from L1 or L2 cache
 - Inter-processor data sharing in MP

- Low Power Communication (Low Power Wires)
 - Write backs due to cache eviction
L Wire: Implementation & Deployment

- Low latency wire implementation
 - Fat RC wire with higher aspect ratio
 - High Speed Optical Links
 - Differential Twisted Pairs
 - Electromagnetic Waveguides
 - Low Swing Differential Pairs

- Deployment of L wires
 - Traffic characterization
 - *Latency – Bandwidth* trade-off
Leveraging Wires Further… (Ideas)

- Traffic Classification
 - Latency Critical
 - Bandwidth Critical
 - Power Aware Transfer

- Decoupled Architecture
 - The idea is to decouple the whole architecture into two parts
 - Latency Critical / Bandwidth Relaxed
 - Latency Relaxed / Bandwidth Critical
Wire Problem: Implications

- **Architecture**
 - Communication centric rather than computation centric

- **CAD Tools**
 - Accurate wire modeling and inductance extrication

- **Circuit**
 - High speed serial links and on-chip deployment

- **Manufacturing**
 - Feasibility of packaging and manufacturability
Summary

- On-Chip Wires: No more a second class citizens. They need attentions now.

- Heterogeneous – hybrid, optimized for specific wire architecture would be most efficient in terms of Power, Area, Delay.

- Adding the support for modeling into CAD tools is interesting and challenging. Avoid “Wire Exceptions” using low Latency wires.

- On-chip traffic study, characterization & Exploitation
References

