Machine Learning

Topic 3: Memory based learning
Nearest Neighbor Classifier

• Example of memory-based (a.k.a case-based) learning

• The basic idea:
 1. Get some example set of cases with known outputs
 e.g diagnoses of infectious diseases by experts
 2. When you see a new case, assign its output to be the same as the most similar known case.
 Your symptoms most resemble Mr X.
 Mr X had the flu.
 Ergo you have the flu.
General Learning Task

There is a set of possible examples \(X = \{ \vec{x}_1, \ldots, \vec{x}_n \} \)

Each example is an \(k \)-tuple of attribute values
\[\vec{x}_1 = \langle a_1, \ldots, a_k \rangle \]

There is a target function that maps \(X \) onto some finite set \(Y \)
\[f : X \rightarrow Y \]

The DATA is a set of tuples \(<\text{example, target function values}>\)
\[D = \{ \langle \vec{x}_1, f(\vec{x}_1) \rangle, \ldots, \langle \vec{x}_m, f(\vec{x}_m) \rangle \} \]

Find a hypothesis \(h \) such that...
\[\forall \vec{x}, h(\vec{x}) \approx f(\vec{x}) \]
Eager vs. Lazy

• Eager learning
 – Explicitly learn \(h \) from training data
 – E.g. decision tree, linear regression, svm, neural nets, etc.

• Lazy learning
 – Delay the learning process until a query example must be labeled
 – \(h \) is implicitly
 – E.g. Nearest neighbor, kNN, locally weighted regression, etc.
Single Nearest Neighbor

Given some set of training data...

\[D = \{ < \vec{x}_1, f(\vec{x}_1) >, ... < \vec{x}_m, f(\vec{x}_m) > \} \]

...and query point \(\vec{x}_q \), predict \(f(\vec{x}_q) \)

1. Find the nearest member of the data set to the query

\[\vec{x}_{nn} = \arg \min_{\vec{x} \in D} (d(\vec{x}, \vec{x}_q)) \]

2. Assign the nearest neighbor’s output to the query

\[h(\vec{x}_q) = f(\vec{x}_{nn}) \]

Our hypothesis

Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2011
• Find closest point. \(\tilde{x}_{nn} = \arg \min_{x \in D} d(\tilde{x}, \tilde{x}_q) \)

• Give query its value \(f(\tilde{x}_q) = f(\tilde{x}_{nn}) \)
Two-dimensional

• Voronoi diagram
What makes a memory based learner?

- A distance measure

 Nearest neighbor: typically Euclidean

- Number of neighbors to consider

 Nearest neighbor: One

- A weighting function (optional)

 Nearest neighbor: unused (equal weights)

- How to fit with the neighbors

 Nearest neighbor: Same output as nearest neighbor
K-nearest neighbor

- A distance measure
 Euclidean
- Number of neighbors to consider
 K
- A weighting function (optional)
 Unused (i.e. equal weights)
- How to fit with the neighbors
 regression: average output among K nearest neighbors.
 classification: most output among K nearest neighbors
Examples of KNN where $K=9$

Reasonable job
Did smooth noise

Screws up on the ends

OK, but problem on the ends again.
Kernel Regression

- A distance measure: *Scaled Euclidean*
- Number of neighbors to consider: *All of them*
- A weighting function (optional)

\[w_i = \exp \left(- \frac{d(x_i, x_q)^2}{K_w^2} \right) \]

Nearby points to the query are weighted strongly, far points weakly. The K_w parameter is the Kernel Width.

- How to fit with the neighbors

\[h(x_q) = \frac{\sum_i w_i \cdot f(x_i)}{\sum_i w_i} \]

A weighted average
Kernel Regression

Kernel Weight = 1/32 of X-axis width

A better fit than KNN?

Kernel Weight = 1/32 of X-axis width

Definitely better than KNN! Catch: Had to play with kernel width to get this result

Kernel Weight = 1/16 of X-axis width

Nice and smooth, but are the bumps justified, or is this overfitting?
Weighting dimensions

- Suppose data points are two-dimensional
- Different dimensional weightings affect region shapes

\[d(x, y) = (x_1 - y_1)^2 + (x_2 - y_2)^2 \]

\[d(x, y) = (x_1 - y_1)^2 + (3x_2 - 3y_2)^2 \]
kNN and Kernel Regression

• Pros
 – Robust to noise
 – Very effective when training data is sufficient
 – Customized to each query

• Cons
 – How to weight different dimensions?
 – Irrelevant dimensions
 – Computationally expensive to label a new query

Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2011
Locally Weighted (Linear) Regression

- Linear regression: global, linear
 \[Err = \sum_{\tilde{x} \in D} \frac{1}{2} (f(\tilde{x}) - h(\tilde{x}))^2 \quad h(\tilde{x}) = \tilde{a}^T \tilde{x} + \tilde{b} \]

- kNN: local, constant

- LWR: local, linear
 \[Err(x_q) = \sum_{x \in kNN(x_q)} \frac{1}{2} (f(x) - h(x))^2 \]
 \[Err(x_q) = \sum_{x \in D} \frac{1}{2} (f(x) - h(x))^2 \exp \left(-\frac{d(x, x_q)^2}{K_w^2} \right) \]
Locally Weighted (Linear) Regression

\[KW = \frac{1}{16} \text{ of x-axis width.} \]

\[KW = \frac{1}{32} \text{ of x-axis width.} \]

\[KW = \frac{1}{8} \text{ of x-axis width.} \]

Nicer and smoother, but even now, are the bumps justified, or is this overfitting?
Locally Weighted Polynomial Regression

- Use a polynomial instead of a linear function to fit the data locally
 - Quadratic, cubic, etc.

Kernel Regression
Kernel width K_W at
optimal level.

LW Linear Regression
Kernel width K_W at
optimal level.

LW Quadratic Regression
Kernel width K_W at
optimal level.

$KW = \frac{1}{100} \; x$-axis

$KW = \frac{1}{40} \; x$-axis

$KW = \frac{1}{15} \; x$-axis
Summary

- Memory-based learning are “lazy”
 - Delay learning until receiving a query
- Local
 - Training data that localized around the query contribute more to the prediction label
- Robust to noise
- Curse of dimensionality
 - Irrelevant dimensions
 - How to scale dimensions
Summary

• Nearest neighbor
 – Output the nearest neighbor’s label

• kNN
 – Output the average of the k NN’s labels

• Kernel regression
 – Output weighted average of all training data’s (or k NN’s) labels

• Locally weighted (linear) regression
 – Fit a linear function locally