What is pitch?

• “Common elements of music are pitch, rhythm, dynamics, and the sonic qualities of timbre and texture.” ---- Wikipedia

• An auditory perceptual attribute in terms of which sounds may be ordered from low to high.

• For (quasi) harmonic sound e.g. a flute note, it is well defined by the Fundamental Frequency (F0).

• A mixture of (quasi) harmonic sounds has multiple pitches (F0s).
Multi-pitch Analysis of Polyphonic Music

- Given polyphonic music played by several harmonic instruments

- Estimate a pitch trajectory for each instrument
Why is it important?

• A fundamental problem in computer audition for harmonic sounds
• Many potential applications
 – Automatic music transcription
 – Harmonic source separation
 – Melody-based music search
 – Chord recognition
 – Music education
 –
How difficult is it?

• Let’s do a test!

 – Q1: How many pitches are there?

 – Q2: What are their pitches?

 – Q3: Can you find a pitch in Chord 1 and a pitch in Chord 2 that are played by the same instrument?

<table>
<thead>
<tr>
<th>Chord 1</th>
<th>Chord 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C4/G4</td>
<td>C4/F4/A4</td>
</tr>
<tr>
<td>Clarinet G4</td>
<td>Clarinet A4</td>
</tr>
<tr>
<td>Horn C4</td>
<td>Viola F4</td>
</tr>
<tr>
<td></td>
<td>Horn C4</td>
</tr>
</tbody>
</table>
We humans are amazing!

- “In Rome, he (14 years old) heard Gregorio Allegri's *Miserere* once in performance in the Sistine Chapel. He wrote it out entirely from memory, only returning to correct minor errors…”

- Can we make computers compete with Mozart??
Our Task

Ground-truth pitch trajectories

Spectrogram
Subtasks in Multi-pitch Analysis

Three levels according to MIREX 2007-2015:

• **Level 1: Multi-pitch Estimation (MPE)**
 – Estimate pitches and polyphony **in each time frame**

• **Level 2: Note Tracking**
 – Track pitches **within a note**

• **Level 3: Streaming (timbre tracking)**
 – Estimate a pitch trajectory for each source (instrument) **across multiple notes**
State of the Art

• Level 1: Multi-pitch Estimation
 – Klapuri’03, Goto’04, Davy’06, Klapuri’06, Yeh’05, Emiya’07, Pertusa’08, Duan’10, etc.

• Level 2: Note Tracking
 – Ryynanen’05, Kameoka’07, Poliner’07, Lagrange’07, Chang’08, Benetos’11, etc.

• Level 3: Streaming (timbre tracking)
 – Vincent’06, Bay’12, Duan’14
Level 1: Multi-pitch Estimation

Estimate pitches in each single frame
Multi-pitch Estimation (MPE)

• Why difficult?
 – Overlapping harmonics
 • C4 (46.7%), E4 (33.3%), G4 (60%)
 – How to associate the 28 significant peaks to sources?
 – Instantaneous polyphony estimation
 – Large hypothesis space
Two Methods at Level 1

- Iterative spectral subtraction
 - [Klapuri, 2003]

- Probabilistic modeling of peaks and non-peak regions
 - [Duan et al., 2010]
Iterative Spectral Subtraction

[Klapuri, 2003]
Bandwise F0 Estimation

\[Z_b(k) = G_b(k)Z(k) \]

- magnitude spectrum in Band b
- original magnitude spectrum (noise reduced)
Bandwise F0 Estimation

\[
L_b(n) = \max_{m \in M} \left\{ \frac{J(m,n)-1}{c(m,n)} \sum_{j=0}^{J(m,n)-1} Z_b(k_b + m + n_j) \right\}
\]

Weight of F0 hyp, \(n \)

of partials

Normalization factor

Freq. offset

\[Z_{12}(k)\]

\[L_{12}(n)\]

ECE 477 - Computer Audition, Zhiyao Duan 2015
Integrate Weights Across Subbands

- Inharmonicity of higher harmonics should be considered

\[f_h = hF \sqrt{1 + (h^2 - 1)\beta} \]

Piano note (65Hz)

Piano note (470Hz)
Spectral Subtraction

• Given the estimated predominant F0, we can find out all its harmonics and subtract their energy from the mixture spectrum.

• How much energy should we subtract?
 – All?
 – Some harmonics are overlapped by those of other F0s, hence their energy is larger.
Spectral Smoothness

(a) Magnitude of $Z(k)$

(b) Magnitude of $Z(k)$

ECE 477 - Computer Audition, Zhiyao Duan 2015
Polyphony Estimation

- I.e., when to stop the iterations?

- Stop if the energy of the harmonics of the estimated predominant F0 is smaller than a threshold.
Error Rate

- More errors in later iterations
Discussions

• Advantages
 – Simple idea
 – Fast algorithm
 – Handles inharmonicity

• Disadvantages
 – Spectra in later iterations severely corrupted
 – Spectral smoothness is not enough to determine the amount of energy to subtract

• Why bandwise estimation?
Probabilistic Modeling of Peaks

- A maximum likelihood estimation method

\[\hat{\theta} = \arg \max_{\theta \in \Theta} p(O | \theta) \]

- Spectrum: peaks & the non-peak region

Best pitch estimate (a set of pitches)
Observed power spectrum
Pitch hypothesis, (a set of pitches)

- Spectrum: peaks & the non-peak region

Fourier Transform
Power Spectrum:

ECE 477 - Computer Audition, Zhiyao Duan 2015
Peaks / Non-peak Region

- Peaks: ideally correspond to harmonics

- Non-peak region: frequencies further than a threshold from any peak
Likelihood as Dual Parts

\[p(O|\theta) = p(O^{\text{peak}}|\theta) \cdot p(O^{\text{non-peak}}|\theta) \]

Probability of observing these peaks: \((f_k, a_k), k = 1, \ldots, K.\)

Probability of not having any harmonics in the non-peak region

\[p(O^{\text{peak}}|\theta) \text{ is large} \]
\[p(O^{\text{non-peak}}|\theta) \text{ is small} \]

\[p(O^{\text{peak}}|\theta) \text{ is small} \]
\[p(O^{\text{non-peak}}|\theta) \text{ is large} \]
Likelihood as Dual Parts

\[p(O|\theta) = p(O^{\text{peak}}|\theta) \cdot p(O^{\text{non-peak}}|\theta) \]

Probability of observing these peaks: \((f_k, a_k), k = 1, ..., K.\)

Probability of not having any harmonics in the non-peak region

\[p(O^{\text{peak}}|\theta) \text{ is large} \]

\[p(O^{\text{non-peak}}|\theta) \text{ is large} \]
Likelihood Models

\[
p(O^{\text{peak}} | \theta) \approx \prod_{k=1}^{K} p(f_k, a_k | \theta)
\]

Frequency and Amplitude of the k-th peak

Probability of observing these peaks

\[
p(O^{\text{non-peak}} | \theta) \approx \prod_{F_0 \in \theta} \prod_{h \in \{1 \ldots H\}} 1 - P(e_h = 1 | F_0)
\]

The h-th harmonic of F0 exists or not

Freq of the h-th harmonic

Learned from training data

Probability of not having any harmonics in the non-peak region
Model Training

• For polyphonic music
 – 3000 random chords of polyphony 1 to 6
 – Mixed using note samples from 16 instruments with pitch ranges from C2 (65 Hz) to B6 (1976 Hz)

• For multi-talker speech
 – 500 speech excerpts with 1-3 simultaneous talkers
 – Mixed from single-talker speech

• Obtained ground-truth pitches before mixing
Greedy Search Algorithm

\[\hat{\theta} = \arg \max_{\theta \in \Theta} p(O|\theta) \]

- Parameter space is too big for exhaustive search
- Greedy search algorithm
 - Initialize \(\theta = \emptyset \)
 - For \(i = 1 \) to \(\text{MaxPolyphony} \)
 - Add a pitch to \(\theta \), s.t. likelihood increases
 - End
 - Estimate polyphony \(N \)
 - Return the first \(N \) pitches of \(\theta \)
Polyphony Estimation

- Likelihood increases with estimated polyphony

\[\mathcal{L}(\hat{\theta}^n) \leq \mathcal{L}(\hat{\theta}^{n+1}) \]

Polyphony estimate

T is set to 0.88 empirically

Likelihood increase with polyphony from 1 to MaxPolyphony

ECE 477 - Computer Audition, Zhiyao Duan 2015
Experiments – Polyphony Estimation

- 6000 musical chords mixed using notes unseen in training data (1000 for each polyphony)
Post Processing

- Estimation in each single frame is not robust
 - Insertion, deletion and substitution errors

- Refine estimates using neighboring frames
 - Only keep consistent estimates
Discussions

• Advantages
 – Model parameters can be learned from training data

• Disadvantages
 – Assumes conditional independence of peak amplitudes, given F0s
 – Doesn’t consider the relation between peak amplitudes, e.g., spectral smoothness
Level 2: Note Tracking

Estimate a pitch trajectory for each note
Two Methods at Level 2

• Probabilistic modeling of the spectral-temporal content a note of a source
 – [Kameoka, et al., 2007]

• Classification-based piano note transcription
 – [Poliner & Ellis, 2007]
Harmonic Temporal Structured Clustering (HTC)

- Jointly estimates pitch, intensity, onset, duration of notes.

- Detailed parametric model for the spectral content of a note of a source

- Approximating the spectrogram with superimposed HTC source models

[Kameoka et al, 2007]
HTC Source Model

\[q_k(x, t; \Theta) = w_k \sum_{n=1}^{N} \frac{v_{k,n} U_{k,n}(t)}{\sqrt{2\pi \sigma_k}} e^{-\frac{(x - \mu_k(t) - \log n)^2}{2\sigma_k^2}} \]

- Total energy of the source
- Pitch
- Relative energy of n-th harmonic
- Harmonic envelope over time
The Model in A Single Frame

\[q_k(x, t; \Theta) = w_k \sum_{n=1}^{N} \frac{v_{k,n} U_{k,n}(t)}{\sqrt{2\pi} \sigma_k} e^{-\left(x-\mu_k(t)-\log n\right)^2 / 2\sigma_k^2} \]
Harmonic Envelope

Onset time

\[U_{k,n}(t) = \sum_{y=0}^{Y-1} \frac{u_{k,n,y}}{\sqrt{2\pi} \phi_{k,n}} \exp \left(-\frac{(t - \tau_k - y\phi_{k,n})^2}{2\phi_{k,n}^2} \right) \]
Reconstruction using HTC models

Activation weight of source k

$$\int\int_D m_k(x,t)W(x,t) \log \frac{m_k(x,t)W(x,t)}{q_k(x,t; \Theta)} \, dx \, dt$$
The Unknowns

• Model parameters
 – Pitch, onset time, harmonic width, harmonic envelope over time, duration, etc.

• Latent variable
 – Activation weights of sources

• EM algorithm
Discussions

• Advantages
 – Very detailed model
 – Jointly estimates pitch, onset, duration, etc.

• Disadvantages
 – Model is very complicated
Classification-based Piano Note Transcription

- Train 88 (one-versus-all) SVM classifiers, one for each key of piano, from training audio frames
- Multi-label classification on each frame of the test audio

- Data: MIDI synthesized audio + Yamaha Disklavier playback grand piano
- Feature: a part of the magnitude spectrum

[Poliner & Ellis, 2007]
HMM Post Processing

- 88 HMMs, one for each key
- 2 states: the pitch (key) is on/off
- Transition probability: learned from training data
- Observation probability (state likelihood): the probabilistic output of SVMs
- Viterbi algorithm to refine pitch estimates
HMM Post Processing Result

SVM probabilistic output, i.e. state likelihood

Refined pitch estimates, overlaid with ground-truth pitches
Discussions

• Advantages
 – The first classification-based transcription method
 – Simple idea
 – Easy to implement

• Disadvantages
 – The classification and post-processing of piano keys are performed totally independently
 – Induces more octave errors
Level 3: Multi-pitch Streaming

Estimate a pitch trajectory for each harmonic source
A 2-stage System

- **Stage 1**: Estimate pitches in each single time frame
 - [Duan et al., 2010]

- **Stage 2**: Connect pitch estimates across frames into pitch trajectories
 - [Duan et al., 2014]
How to Stream Pitches?

- Label pitches by pitch order in each frame, i.e. highest, second highest, third highest, ...?

- Connect pitches by continuity?
 - Only achieves note tracking
Clustering Pitches by “Timbre”!

• Human use timbre to discriminate and track sound sources

“Timbre is that attribute of sensation in terms of which a listener can judge that two sounds having the same loudness and pitch are dissimilar.”

---- American Standards Association
How to Represent Timbre?

- **Harmonic structure**

 ![Harmonic structure graphs](image)

 [Duan et. al. 2008]

- **Calculate for each pitch from the mixture**

 ![Pitch vs. Time graphs](image)
Timbre Feature for Talkers

- Characterizes talkers
- Calculated from mixture

<table>
<thead>
<tr>
<th>Pitch</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discrete Cosine Transform

Uniform Discrete Cepstrum (UDC)
Clustering by timbre is not enough

Ground-truth pitch trajectories

K-means clustering with harmonic structure features

ECE 477 - Computer Audition, Zhiyao Duan 2015
Use Pitch Locality Constraints

- **Cannot-link:** between simultaneous pitches (only for monophonic instruments)
- **Must-link:** between pitch estimates close in both time and frequency
Constrained Clustering

- **Objective:** minimize timbre inconsistency
- **Constraints:** pitch locality
 - Inconsistent constraints: caused by incorrect pitch estimates, interweaving pitch trajectories, etc.
 - Heavily constrained: nearly every pitch estimate is involved in at least one constraint

- **Algorithm:** iteratively update the clustering s.t.
 - The objective monotonically decreases
 - The set of satisfied constraints monotonically expands
The Proposed Algorithm

- \(f \): objective function; \(C \): all constraints;
- \(\Pi_n \): clustering in \(n \)-th iteration;
- \(C_n \): \{constraints satisfied by \(\Pi_n \)\};

1. \(n \leftarrow 0 \); Start from an initial clustering \(<\Pi_0, C_0>\);
2. \(n \leftarrow n + 1 \); Find a new clustering \(\Pi_n \) such that \(f(\Pi_{n-1}) > f(\Pi_n) \), and \(\Pi_n \) also satisfies \(C_{n-1} \);
3. \(C_n = \{\text{constraints satisfied by } \Pi_n\} \); so \(C_{n-1} \subseteq C_n \)

- It converges to some local minimum \(<\Pi', C'>\).

\[f(\Pi_0) > f(\Pi_1) > \cdots > f(\Pi') \]

\[C_0 \subseteq C_1 \subseteq \cdots \subseteq C' \]
Find A New Clustering to...

1. Decrease the objective function
2. Satisfy satisfied constraints
 - **Swap set**: a connected graph between two clusters by already satisfied constraints
 - One more must link is satisfied now
 - Try all swap sets to find one that decreases objective
Timbre Objective & Locality Constraints

- Results on 10 quartets played by violin, clarinet, saxophone and bassoon

Accuracy of input pitch estimates

Accuracy of random guess clustering
Works with Different MPE Methods

- Results on 60 duets, 40 trios, and 10 quartets
Example on Music

Ground-truth Pitch Trajectories

Original violin (blue)

Original clarinet (green)

Separated violin (blue)

Separated clarinet (green)

ECE 477 - Computer Audition, Zhiyao Duan 2015
Comparisons on Speech

- 400 2-talker and 3-talker speech excerpts

![Graph showing comparisons between different methods for two-talker and three-talker speech excerpts. The graph compares accuracy (%) for different conditions labeled DG and SG for two-talker and three-talker scenarios. The legend indicates black for Wohlmayr et al '11, gray for Hu & Wang '12, and white for Proposed.]
Example on Speech

Ground-truth pitch trajectories

Our Results
Discussions

• Advantages:
 – Able to stream pitches across notes
 – Considers both timbre and pitch location info

• Disadvantages:
 – Algorithm is slow and complicated.
 – Constraints are binary.
 – Cannot deal with polyphonic instruments e.g. piano and guitar.