Mathematical Discontinuities in CIEDE2000 Color Difference Computations

Gaurav Sharma*, Wencheng Wu+, Edul N. Dalal+, Mehmet U. Celik*

*University of Rochester
+Xerox Corporation
Outline

• Color Difference Equations
• CI EDE2000 Computation
• Sources of Discontinuity
• Discontinuity Visualization
• Discontinuity Magnitude Characterization
 ▪ Maximum (reasonable) magnitude
• Conclusions + workarounds
Color Difference Equations

- Quantitative evaluation of color differences
- Main uses:
 - Quantitative color error evaluation
 - Algorithm/parameter optimization
Color Difference Equations: Desirable Attributes

- Perceptual uniformity
 - Equal numerical differences correspond to equal perceived differences

- Mathematical properties:
 - Continuity and differentiability
 - Taylor series/small-error approximation
 - Gradient based optimization
 - Symmetry
 - reference/sample distinction un-necessary
 - Correspondence to a distance metric
 - Underlying “uniform” color space
CIE 1976 CI ELAB Color Space

- “Uniform” color space
 - Based on ANLAB, in turn on Munsell
- Transformation of 1931 CI EXYZ tristimulus coordinates
- Nonlinearity: Cube-root with linear end segment
 \[
 f(x) = \begin{cases}
 x^{\frac{1}{3}} & x > .008856 \\
 7.787x + \frac{16}{116} & x \leq .008856
 \end{cases}
 \]
- Transformation carefully designed
 - Continuous first derivatives [Pauli1976]
Cl ELAB Based Color Difference

Fomulae

• 1976: ΔE_{ab}^* Color difference
 ▪ Euclidean distance betw. points in Cl ELAB space
 \[
 \Delta E_{ab}^* = \sqrt{\Delta L^2 + \Delta a^2 + \Delta b^2} = \sqrt{\Delta L^*^2 + \Delta C^*^2 + \Delta H^*^2}
 \]

• CMC and Cl E ‘94 color difference Eqns.
 ▪ Chroma/Hue dependent weights for ΔL^*, ΔC^*, ΔH^*
 ▪ Greater uniformity w.r.t. experimental data
 ▪ Retain continuity of first derivatives
CI EDE2000

- **a* Axis Scaling**
 - \(a^* \rightarrow a' \)
- **Decomposition**
- **Hue, Chroma Dependent Weighting**
- **Cross Term (blue hue nonlinearity)**

\[
\Delta E_{00}^{12} = \sqrt{\left(\frac{\Delta L'}{k_L S_L} \right)^2 + \left(\frac{\Delta C'}{k_C S_C} \right)^2 + \left(\frac{\Delta H'}{k_H S_H} \right)^2 + R_T \left(\frac{\Delta C'}{k_C S_C} \right) \left(\frac{\Delta H'}{k_H S_H} \right)}
\]

- CI EDE2000 Color Difference is discontinuous
Cl EDE2000 Hue & Hue Weighting Functions

\[\Delta H' = 2 \sqrt{C'_1 C'_2} \sin \left(\frac{\Delta h'}{2} \right) \]

\[T = 1 - 0.17 \cos(\bar{h}' - 30^\circ) + 0.24 \cos(2\bar{h}') + 0.32 \cos(3\bar{h}' + 6^\circ) - 0.20 \cos(4\bar{h}' - 63^\circ) \]

\[S_H = 1 + 0.015 \bar{C}' T \]

- \(C'_1, C'_2 \) sample chroma values
- \(\Delta h' \) hue angle difference
- \(\bar{h}' \) mean hue angle
- \(\bar{C}' \) mean chroma value (arithmetic)
Mean Hue/Hue Difference Computation

- Mean: Bi-sector of smaller angle between h_1 and h_2
- Difference: Smaller angle + direction gives sign

\[
\Delta h' = h_1 - h_2
\]

Discontinuous Operations
Mean Hue Discontinuity

- 180° discontinuity in mean hue
Hue-difference Discontinuity

- 180° (Sign) discontinuity in hue difference

$\Delta h'_{12} = \pi - \varepsilon/2$

$\Delta h'_{13} = -\pi + \varepsilon/2$

- 180° (Sign) discontinuity in hue difference
Discontinuity Characterization

- Where does it occur?

- How big is it (magnitude)?
Discontinuity Locations

- 6-D Space of input values

\[\Delta E_{00}(L_1^*, a_1^*, b_1^*; L_2^*, a_2^*, b_2^*) \]

- Discontinuity for points \(180^\circ\) apart in hue

\[a_1 b_2 = -a_2 b_1 \]

- 5-D manifold in 6-D space
Discontinuity Locations

- Discontinuity loci in h_1, h_2 plane

\[h_2 = h_1 + 180 \]

\[h_2 = h_1 - 180 \]
Visualization
Discontinuity Magnitude

- Main contribution mean hue discontin. in

\[\left(\frac{\Delta H'}{k_H S'_H} \right)^2 \]

- Minor contribution from hue diff. discontin.
 - Sign change of \(\Delta H' \)
 - Contributes through rotation term
Discontinuity Magnitude Bounds

- CIEDE2000 intended for small color differences
- Colors under 5 ΔE_{ab}^* units apart
 - Discontinuity magnitude under 0.2374
 - Non-negligible, not too large
 - Occurs for 143° hue sample
- Increasing distance: sharp rise
Conclusions

- CI EDE2000 color difference is a discontinuous function
- Discontinuity for colors 180° apart in hue
- Discontinuity magnitude small in small error practical applications
 - Under 0.238 for color under 5 ΔE^*_{ab} units apart
- Serious limitation for
 - Taylor series/small error approximations
 - Gradient based optimization
Potential workarounds/fixes

- Use formula asymmetrically
 - Major discontinuity due to mean hue eliminated
- Symmetrize if nesc by averaging color differences
- Discontin in Rotation term remains
 - Harder to fix
 - Probably requires different functional format and re-optimization of parameters
Additional Information

• Upcoming paper in Color Research and Application (Feb 2005)
 - includes detailed algorithmic statement of CIEDE2000 computation
 - Additional test data
 - Several available implementations
 + Agreement over CIE draft test data, disagreement over other data!!
Acknowledgements

- Thanks for suggestions/comments to:
 - Mike Brill
 - Anonymous reviewers
Questions